JPH0410183B2 - - Google Patents

Info

Publication number
JPH0410183B2
JPH0410183B2 JP58122779A JP12277983A JPH0410183B2 JP H0410183 B2 JPH0410183 B2 JP H0410183B2 JP 58122779 A JP58122779 A JP 58122779A JP 12277983 A JP12277983 A JP 12277983A JP H0410183 B2 JPH0410183 B2 JP H0410183B2
Authority
JP
Japan
Prior art keywords
zinc
battery
nickel
batteries
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58122779A
Other languages
Japanese (ja)
Other versions
JPS6014760A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58122779A priority Critical patent/JPS6014760A/en
Priority to US06/628,083 priority patent/US4603094A/en
Priority to EP84107880A priority patent/EP0130627B1/en
Priority to DE84107880T priority patent/DE3486180T2/en
Publication of JPS6014760A publication Critical patent/JPS6014760A/en
Publication of JPH0410183B2 publication Critical patent/JPH0410183B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 現在使用されている二次電池には鉛電池、ニツ
ケル・カドミウム電池および銀電池がある。現実
には使用される用途に応じて、これらの電池の中
から二次電池を選択することを余儀なくされてい
るといつてもよい。したがつて種種の二次電池例
えば水溶液系においてはニツケル・亜鉛電池、非
水溶液系においてはナトリウム・イオウ電池等の
開発がおこなわれているが未だ成功していない。
特にニツケル・亜鉛電池は鉛電池に比して高エネ
ルギー密度化が可能なため、その実現が期待され
ているが亜鉛負極板のデンドライト成長
(Dendrite growth)、シエイプチエンジ(Shape
Change)やデンシフイケーシヨン
(Densification)に問題があるために実用化に至
つていない。
DETAILED DESCRIPTION OF THE INVENTION Secondary batteries currently in use include lead batteries, nickel-cadmium batteries, and silver batteries. In reality, it may be necessary to select a secondary battery from among these batteries depending on the intended use. Therefore, various types of secondary batteries have been developed, such as nickel-zinc batteries for aqueous systems and sodium-sulfur batteries for non-aqueous systems, but they have not yet been successful.
In particular, nickel-zinc batteries can achieve higher energy densities than lead-acid batteries, so it is hoped that this will become a reality.
It has not been put into practical use due to problems with change and densification.

一方特殊な例であるが電解液に水酸化カリウム
水溶液を用いた二酸化マンガン・亜鉛電池いわゆ
るアルカリマンガン電池があるが、この場合は先
の亜鉛の問題点が存在するが、それ以上に二酸化
マンガンの充電効率が低いという欠点と高率放電
ができないという大きな問題があり充放電サイク
ル数として100サイクルを越えることは困難であ
る。
On the other hand, as a special example, there are manganese dioxide/zinc batteries that use an aqueous potassium hydroxide solution as the electrolyte, so-called alkaline manganese batteries.In this case, the problem with zinc exists, but the problem with manganese dioxide is even greater. There are major problems such as low charging efficiency and inability to perform high rate discharge, and it is difficult to exceed 100 charging/discharging cycles.

また先に述べた銀電池すなわち酸化銀・亜鉛電
池は高率放電が可能であり、エネルギー密度も大
きいが亜鉛の根本的な問題の他に、酸化銀が電解
液に銀酸イオン(Ag(OH)- 2)として溶けだし、
セパレータを酸化してその材質を劣化するという
致命的な欠点があるため、サイクル寿命としては
100サイクルを越えることは難しい。
Furthermore, the silver battery mentioned earlier, that is, the silver oxide/zinc battery, is capable of high rate discharge and has a large energy density, but in addition to the fundamental problem of zinc, silver oxide is added to the electrolyte by silver oxide ions (Ag(OH)). ) - 2 ) begins to melt,
Since it has the fatal disadvantage of oxidizing the separator and deteriorating its material, the cycle life is limited.
It is difficult to exceed 100 cycles.

本発明はニツケル・亜鉛電池や銀電池に使用さ
れる亜鉛負極板のデンドライト成長、シエイプチ
エンジあるいはデンシフイケーシヨンという現像
さらにはニツケル・亜鉛電池や銀電池でおこるセ
パレータの劣化現象が水酸化コバルトを30wt%
以上含む水酸化ニツケルを主体とした正極板を使
用し、かつ充電制御面で工夫をおこなえば著しく
減少し、そのため寿命性能も著しく向上すること
を見いだしたことに基くものである。以下にその
実施例ならびにその効果を詳述する。
The present invention is directed to dendrite growth of zinc negative electrode plates used in nickel-zinc batteries and silver batteries, development called shape engineering or densification, and deterioration phenomena of separators that occur in nickel-zinc batteries and silver batteries. 30wt%
This is based on the discovery that if a positive electrode plate containing nickel hydroxide containing the above-mentioned components is used as a main component, and if the charging control is improved, the battery life can be significantly reduced and the life performance can be significantly improved. Examples and effects thereof will be described in detail below.

実施例 1 コバルトの含有量がニツケルに対して50wt%
(Co/Ni+Co×100)になるような硝酸コバルト
と硝酸ニツケルとの混合水溶液(PH=1、比重
1.50(20℃))を多孔度約80%の焼結式ニツケル基
板に減圧含浸したのち、比重1.25(20℃)の水酸
化カリウム水溶液に浸漬し、つづいて110℃で1
時間乾燥するという操作を繰り返して本発明によ
る正極板を得た。
Example 1 Cobalt content is 50wt% based on nickel
(Co/Ni+Co×100) mixed aqueous solution of cobalt nitrate and nickel nitrate (PH=1, specific gravity
1.50 (20℃)) was impregnated under reduced pressure into a sintered nickel substrate with a porosity of approximately 80%, immersed in a potassium hydroxide aqueous solution with a specific gravity of 1.25 (20℃), and then impregnated at 110℃.
The positive electrode plate according to the present invention was obtained by repeating the drying operation for several hours.

実施例 2 コバルトの含有量がニツケルに対して60wt%
(Co/Ni+Co×100)になるような硝酸コバルト
と硝酸ニツケルとの混合水溶液(PH=1、比重
1.50(20℃))を多孔度が約80%の焼結式ニツケル
基板に減圧含浸したのち、比重1.25(20℃)の水
酸化カリウム水溶液に浸漬し、つづいて110℃で
1時間乾燥するという操作を繰り返して本発明に
よる正極板を得た。
Example 2 Cobalt content is 60wt% based on nickel
(Co/Ni+Co×100) mixed aqueous solution of cobalt nitrate and nickel nitrate (PH=1, specific gravity
1.50 (at 20°C)) into a sintered nickel substrate with a porosity of approximately 80% under reduced pressure, then immersed in an aqueous potassium hydroxide solution with a specific gravity of 1.25 (at 20°C), and then dried at 110°C for 1 hour. The operation was repeated to obtain a positive electrode plate according to the present invention.

実施例 3 コバルトの含有量がニツケルに対して40wt%
(Co/Ni+Co×100)になるような硝酸コバルト
と硝酸ニツケルとの混合水溶液(PH=1、比重
1.30(20℃))に比重1.20(20℃)の水酸化ナトリ
ウム水溶液を加えて、水酸化コバルトと水酸化ニ
ツケルとの共沈殿物を作り、充分に湯洗をおこな
つてからフイルターでろ過し110℃で2時間乾燥
後さらに−200メツシユに粉砕した。この粉末100
部とグラフアイト25部とプロピレングリコール60
部とをよく混練したのちポリテトラフルオロエチ
レン粉末の60%水性デイスパージヨン溶液3部を
加えてさらに混練してから加圧ローラーでシート
状にして20メツシユのニツケル網の両面に圧着し
た。その後110℃で5時間乾燥して本発明による
正極板を得た。
Example 3 Cobalt content is 40wt% relative to nickel
(Co/Ni+Co×100) mixed aqueous solution of cobalt nitrate and nickel nitrate (PH=1, specific gravity
1.30 (20℃)) and a sodium hydroxide aqueous solution with a specific gravity of 1.20 (20℃) to create a coprecipitate of cobalt hydroxide and nickel hydroxide, thoroughly rinsed with hot water, and then filtered with a filter. After drying at 110°C for 2 hours, it was further ground to -200 mesh. This powder 100
25 parts of graphite and 60 parts of propylene glycol
After thoroughly kneading the mixture, 3 parts of a 60% aqueous dispersion solution of polytetrafluoroethylene powder was added and further kneaded, and the mixture was formed into a sheet using a pressure roller and pressed onto both sides of a 20-mesh nickel net. Thereafter, it was dried at 110° C. for 5 hours to obtain a positive electrode plate according to the present invention.

実施例 4 コバルトの含有量がニツケルに対して50wt%
(Co/NI+Co×100)になるような硫酸コバルト
と硫酸ニツケルとの混合水溶液(PH=1、比重
1.30(20℃))に比重1.20(20℃)の水酸化ナトリ
ウム水溶液を加えて、水酸化コバルトと水酸化ニ
ツケルとの共沈殿物を作り、充分に湯洗をおこな
つてからフイルターでろ過し、110℃で2時間乾
燥後さらに−200メツシユに粉砕した。この粉末
100部とニツケル20部とを0.3%のカルボキシメチ
ルセルローズ水溶液60部とを混練してから海綿状
の網目構造を有する発泡ニツケル体(商品名住友
電工KK製セルメツト)に直接塗布してから110
℃で1時間乾燥してさらに所定の厚さにプレスし
て本発明による正極板を得た。
Example 4 Cobalt content is 50wt% based on nickel
(Co/NI+Co×100) mixed aqueous solution of cobalt sulfate and nickel sulfate (PH=1, specific gravity
1.30 (20℃)) and a sodium hydroxide aqueous solution with a specific gravity of 1.20 (20℃) to create a coprecipitate of cobalt hydroxide and nickel hydroxide, thoroughly rinsed with hot water, and then filtered with a filter. After drying at 110°C for 2 hours, the mixture was further ground to -200 mesh. This powder
After kneading 100 parts of nickel and 60 parts of a 0.3% carboxymethyl cellulose aqueous solution, the mixture was directly applied to a foamed nickel body having a spongy network structure (trade name: Celmet manufactured by Sumitomo Electric KK).
It was dried for 1 hour at ℃ and further pressed to a predetermined thickness to obtain a positive electrode plate according to the present invention.

つぎに亜鉛負極板はつぎのようにして製作し
た。まず酸化亜鉛100部と酸化水銀2部と水酸化
カルシウム10部とポリビニルアルコールの5wt%
水溶液40部とをよく混練して20メツシユの銅網に
塗布した。つぎに110℃で1時間熱風乾燥して亜
鉛負極板を製作した。
Next, a zinc negative electrode plate was manufactured as follows. First, 100 parts of zinc oxide, 2 parts of mercury oxide, 10 parts of calcium hydroxide, and 5wt% of polyvinyl alcohol.
The mixture was thoroughly kneaded with 40 parts of an aqueous solution and applied to 20 mesh copper nets. Next, a zinc negative electrode plate was produced by drying with hot air at 110°C for 1 hour.

こうして製作した負極板をセロフアンで4重巻
きにしてから、実施例で述べた正極板と電解液に
比重1.25(20℃)KOH水溶液とを用いて公称容量
が3Ahの角形電池を製作した。実施例1、実施例
2、実施例3および実施例4で製作した正極板を
用いた電池をそれぞれA,B,CおよびDとす
る。なお比較のために実施例1でコバルトの含有
量がニツケルに対して20wt%((Co/Ni+Co×
100)になるような硝酸コバルトと硝酸ニツケル
との混合水溶液を使用して作つた正極板を用いた
電池Eおよび同じような構成の公称容量が3Ahの
銀電池Fをも製作した。
The negative electrode plate thus produced was wound four times with cellophane, and then a prismatic battery with a nominal capacity of 3 Ah was manufactured using the positive electrode plate described in the example and an aqueous KOH solution with a specific gravity of 1.25 (20°C) as the electrolyte. Batteries using the positive electrode plates manufactured in Example 1, Example 2, Example 3, and Example 4 are designated as A, B, C, and D, respectively. For comparison, in Example 1, the cobalt content was 20 wt% ((Co/Ni+Co×
A battery E using a positive electrode plate made using a mixed aqueous solution of cobalt nitrate and nickel nitrate (100) and a silver battery F having a similar configuration and a nominal capacity of 3Ah were also manufactured.

これらの電池のうちA,B,C,DおよびEは
1.95Vの定電圧充電をおこなつたのち0.5CAで端
子電圧が1.0Vまで放電するという充放電サイク
ルを20℃でおこなつた。またFの電池は1.85Vの
定電圧充電をおこなつたのち0.5CAの放電をし
た。
Among these batteries, A, B, C, D and E are
A charge/discharge cycle was performed at 20°C in which the battery was charged at a constant voltage of 1.95V and then discharged to a terminal voltage of 1.0V at 0.5CA. Also, battery F was charged at a constant voltage of 1.85V and then discharged at 0.5CA.

これらの電池のサイクル経過にともなう放電容
量の変化を第1図に示す。図から本発明による電
池A,B,CおよびDは充放電サイクルが450サ
イク以上あるのに対して、従来の電池E,Fは50
サイクルに至るまでに容量が低下しており、本発
明による電池の寿命性能が極めてすぐれていると
いえる。また本発明の電池の容量低下が少ないこ
とより充電効率(Ah効率)が極めて高いことも
わかる。
FIG. 1 shows the changes in discharge capacity of these batteries as the cycles progress. As can be seen from the figure, batteries A, B, C, and D according to the present invention have a charge/discharge cycle of 450 or more cycles, whereas conventional batteries E, F have a charge/discharge cycle of 50 cycles or more.
The capacity decreased by the time the battery reached the cycle, and it can be said that the life performance of the battery according to the present invention is extremely excellent. It can also be seen that the charging efficiency (Ah efficiency) of the battery of the present invention is extremely high as the capacity decrease is small.

従来の電池を充電サイクル後解体して調べると
電池EおよびFのセパレータであるセロフアンは
著しく劣化しており、その部分が亜鉛のデンドラ
イトによつて貫通していた。したがつて前者の電
池は正極板から発生する酸素によつてセロフアン
が劣化したことにより、後者の電池では溶解した
銀酸イオンによつてセパレータが劣化したことに
よつて寿命性能が著しく低下したものであると考
えられる。一方本発明の電池で寿命が尽きた電池
AおよびBを解体して調べたところ、亜鉛負極板
のシエイプチエンジやまた亜鉛のデンドライトも
認められたが、セパレータの材質の強度の劣化は
比較的少ないことがわかつた。
When the conventional batteries were disassembled and examined after the charging cycle, the cellophane separators of batteries E and F were found to have deteriorated significantly and were penetrated by zinc dendrites. Therefore, in the former battery, the cellophane deteriorated due to oxygen generated from the positive electrode plate, and in the latter battery, the separator deteriorated due to dissolved silver acid ions, resulting in a significant decrease in life performance. It is thought that. On the other hand, when batteries A and B of the present invention, which had reached the end of their lifespan, were disassembled and examined, it was found that the zinc negative electrode plates were shaped and zinc dendrites were present, but the strength of the separator material was relatively weak. I found out that there are few.

また本発明による電池を定電流で酸素の発生が
おこる過充電領域まで充電したのち放電するとい
う充放電をおこなつたところ、いずれの場合も充
放電サイクルが100サイクルを越えることがなか
つた。したがつて本発明による電池でも酸素が発
生する領域まで充電すると通常のニツケル−亜鉛
電池や銀−亜鉛電池程度の寿命性能しか期待でき
ないことがわかる。
Furthermore, when the battery according to the present invention was charged and discharged at a constant current to an overcharge region where oxygen generation occurs and then discharged, the charge/discharge cycle never exceeded 100 cycles. Therefore, it can be seen that even the battery according to the present invention can only be expected to have a life performance comparable to that of a normal nickel-zinc battery or silver-zinc battery when charged to a region where oxygen is generated.

さらに本発明の効果を明らかにするためにつぎ
のような実験をおこなつた。
Furthermore, in order to clarify the effects of the present invention, the following experiments were conducted.

実施例3に示した正極板の製法で硝酸コバルト
と硝酸ニツケルとの混合水溶液のコバルト含有量
を種々変えて製作した正極板を比重1.25(20℃)
の水酸化カリウム水溶液を用い50℃、0.1CAで定
電流充電したのち0.2CAで放電して充放電電位特
性を調べた。
The positive electrode plates were manufactured using the positive electrode plate manufacturing method shown in Example 3 by varying the cobalt content of the mixed aqueous solution of cobalt nitrate and nickel nitrate with a specific gravity of 1.25 (20°C).
The charge/discharge potential characteristics were investigated by charging at a constant current of 0.1 CA at 50°C using an aqueous solution of potassium hydroxide, and then discharging at 0.2 CA.

その代表的な充電電位特性を第2図に示す。 The typical charging potential characteristics are shown in FIG.

第2図で示した△Eすなわち充電時の競争反応
である酸素の発生が主として起つている充電終期
の電位と酸素の発生電位に至る前の充電過程の電
位との差が活物質中に含まれるコバルトの含有量
によつてどのように変化するのかを調べたのが第
3図である。図3より50℃の高温下で充電した場
合においてもコバルト含有量が30wt%以上にな
ると△Eが100mVを越えることがわかる。
△E shown in Figure 2, that is, the difference between the potential at the end of charging, where oxygen generation is mainly occurring as a competitive reaction during charging, and the potential during the charging process before reaching the oxygen generation potential is contained in the active material. Figure 3 shows how it changes depending on the cobalt content. It can be seen from FIG. 3 that ΔE exceeds 100 mV when the cobalt content is 30 wt% or more even when charging at a high temperature of 50°C.

また充電過程の酸素発生の状態を注意深く観察
するとコバルトの含有量が30%以上になると主と
して酸素発生がおこる電位にいたる前すなわち活
物質の充電過程ではほとんど酸素の発生が認めら
れないのに対してコバルトの含有量が30%未満の
場合は局部的な酸素の発生が認められた。
In addition, when carefully observing the state of oxygen generation during the charging process, when the cobalt content exceeds 30%, almost no oxygen generation is observed before reaching the potential where oxygen generation occurs, that is, during the charging process of the active material. Localized oxygen generation was observed when the cobalt content was less than 30%.

このことと先に説明した寿命性能の結果とを合
せて考えると、本発明の効果はつぎのように説明
できる。
Considering this together with the above-described results of life performance, the effects of the present invention can be explained as follows.

正極活物質として水酸化コバルトの含有量が
30wt%以上含む水酸化ニツケルを主体とする正
極板と亜鉛負極板からなる本発明による電池は酸
素発生電位が極めて明瞭に検出ができるために、
その電圧を検出して充電を制御する方法を用いて
充電時の酸素の発生を制御すると酸素発生による
セパレーターの劣化を最小限にすることできるば
かりでなく、酸素発生による発熱が抑えられてセ
パレータの熱による劣化も抑制される。このこと
は対極に使用した亜鉛極の致命的な欠陥である亜
鉛のデンドライトの成長によるセパレータの貫通
を著しく抑制する効果があることを意味する。ま
た酸素の発生がほとんどないため酸素ガスが極板
やセパレータに滞留して電流密度が集中すること
による亜鉛のデンドライト成長やシエイプチエン
ジ現象が抑制されることも意味する。さらに従来
のニツケル・亜鉛電池ではニツケル極すなわち水
酸化ニツケル極の充電効率が亜鉛極に比してかな
り低いためにこの電池では充電容量の少なくとも
10〜20%の過充電をしなければ容量低下がおこる
のでこの程度の過充電をサイクル毎にする必要が
ある。そうすると充放電サイクルを続けるといか
に亜鉛居の容量を、正確に言うならば充電可能な
酸化亜鉛等の量を増加させても数10サイクル後に
は放電可能な酸化亜鉛がなくなり充電終了前に亜
鉛極から水素が発生することになる。
The content of cobalt hydroxide as a positive electrode active material
The battery according to the present invention, which consists of a positive electrode plate mainly composed of nickel hydroxide containing 30 wt% or more and a negative electrode plate of zinc, can detect the oxygen evolution potential very clearly.
By controlling the generation of oxygen during charging using a method that detects the voltage and controls charging, it is possible not only to minimize the deterioration of the separator due to oxygen generation, but also to suppress the heat generation caused by oxygen generation and to improve the separator. Deterioration due to heat is also suppressed. This means that it has the effect of significantly suppressing the penetration of the separator due to the growth of zinc dendrites, which is a fatal defect in the zinc electrode used as the counter electrode. Furthermore, since almost no oxygen is generated, dendrite growth and shape change phenomena of zinc due to concentration of current density due to oxygen gas remaining in the electrode plates and separators are suppressed. Furthermore, in conventional nickel-zinc batteries, the charging efficiency of the nickel electrode, that is, the nickel hydroxide electrode, is considerably lower than that of the zinc electrode.
If the battery is not overcharged by 10 to 20%, the capacity will decrease, so it is necessary to overcharge to this extent every cycle. Then, as the charge/discharge cycle continues, no matter how much you increase the capacity of the zinc oxide, or more precisely, the amount of rechargeable zinc oxide, etc., after several 10 cycles, there will be no more dischargeable zinc oxide, and the zinc electrode will disappear before the end of charging. Hydrogen will be generated from.

このように亜鉛極から水素が発生すると熱の発
生が多くなるばかりでなく亜鉛極の過電圧が大き
くなることによつて亜鉛のデンドライト成長が著
しく加速されてセパレータの貫通による電池の短
絡がおこりやすいという致命的な欠陥となる。
When hydrogen is generated from the zinc electrode in this way, not only does it generate more heat, but also the overvoltage of the zinc electrode becomes large, which significantly accelerates the growth of zinc dendrites, making it easy for the battery to short-circuit due to penetration of the separator. This is a fatal flaw.

本発明による正極板の充電効率は極めて高く対
極である亜鉛極とほぼ同程度である。したがつて
従来のニツケル・亜鉛電池が根本的に必要とする
過充電の必要性がない。すなわち放電容量に相当
する電気量だけ充電してやればよい。このことは
負極板の容量が正極板の容量に相当する分だけあ
れがよく、従来のニツケル亜鉛電池の負極のよう
に余分の活物質が必要でなくなり高エネルギー密
度化が可能である。
The charging efficiency of the positive electrode plate according to the present invention is extremely high and approximately the same as that of the zinc electrode serving as the counter electrode. Therefore, there is no need for overcharging, which is fundamentally necessary for conventional nickel-zinc batteries. In other words, it is sufficient to charge only the amount of electricity corresponding to the discharge capacity. This is good because the capacity of the negative electrode plate is equivalent to the capacity of the positive electrode plate, and unlike the negative electrode of a conventional nickel-zinc battery, an extra active material is not required, making it possible to achieve high energy density.

そのうえ充電制御としては正極の酸素発生過電
圧が極めて高いことを利用でき、その電圧検出が
容易であるという利点の他、亜鉛デントライト成
長を促進させる水素発生電位を検出する充電方式
を取る必要がないという有利性もある。
In addition, charging control can utilize the extremely high oxygen evolution overvoltage of the positive electrode, which has the advantage of being easy to detect, and there is no need to use a charging method that detects the hydrogen evolution potential that promotes zinc dentrite growth. There is also an advantage.

以上のように本発明は正極活物質として水酸化
コバルト含有量が30wt%以上含む水酸化ニツケ
ルを主体とする極めて充電効率の高い正極板を用
いかつ対極に亜鉛負極を用いた電池を正極から酸
素の発生がおこりにくい充電制御、例えば酸素の
発生電位にいたる電位の立上がりを検出する方法
を取ることにより寿命性能のすぐれた亜鉛負極を
用いた二次電池を初めて具体化したものである。
本発明による二次電池Gの特徴をさらに明確にす
るために、従来からの電池である普通の乾電池
H、充電式アルカリマンガン電池Iおよびニツケ
ル・カドミウム電池Jの放電特性と比較して第4
図に示す。図より本発明による電池の電圧は従来
のニツケル・亜鉛電池より0.1V程度低いものの
約1.5V程度を示し、従来の乾電池の軽負荷放電
時の放電電圧とほぼ等しい。したがつて乾電池と
の互換性があり、その適用される用途も多いと考
えられ工業的価値が極めて高いものである。
As described above, the present invention uses a positive electrode plate with extremely high charging efficiency, which is mainly made of nickel hydroxide containing 30 wt% or more of cobalt hydroxide as the positive electrode active material, and a zinc negative electrode as the counter electrode. This is the first time that a secondary battery using a zinc negative electrode with excellent longevity performance has been realized by using charge control that prevents the occurrence of oxygen, for example, by detecting the rise in potential that reaches the potential for oxygen generation.
In order to further clarify the characteristics of the secondary battery G according to the present invention, the discharge characteristics of the conventional batteries H, a rechargeable alkaline manganese battery I, and a nickel-cadmium battery J are compared with those of the fourth battery.
As shown in the figure. The figure shows that the voltage of the battery according to the present invention is about 1.5V, which is about 0.1V lower than the conventional nickel-zinc battery, and is almost equal to the discharge voltage of a conventional dry battery during light load discharge. Therefore, it is compatible with dry batteries, has many applications, and has extremely high industrial value.

なお本発明の電池の充電には定電圧充電制御方
式を用いたが、準定電圧方式でもよく、また放電
容量に相当するだけの電気量を定電流で充電して
もよいことは上述した効果の説明から容易にわか
る。
Note that although a constant voltage charging control method was used to charge the battery of the present invention, a quasi-constant voltage method may also be used, and the above-mentioned effects may also be achieved by charging the battery with a constant current equivalent to the discharge capacity. It can be easily understood from the explanation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電池A,B,CおよびD
と従来のニツケル・亜鉛電池Eおよび銀亜鉛電池
Fの寿命性能を比較したものである。第2図は本
発明による正極板の充電電位特性で、第3図は充
電終期の電位と充電過程の電位との差とコバルト
の含有量との関係を示したものである。第4図は
本発明による電池Gと従来の乾電池H、充電式ア
ルカリマンガン電池Iおよびニツケル・カドミウ
ム電池Jとの放電特性比較図である。
FIG. 1 shows batteries A, B, C and D according to the invention.
This is a comparison of the life performance of conventional nickel-zinc battery E and silver-zinc battery F. FIG. 2 shows the charging potential characteristics of the positive electrode plate according to the present invention, and FIG. 3 shows the relationship between the difference between the potential at the end of charging and the potential during the charging process and the cobalt content. FIG. 4 is a comparison diagram of discharge characteristics between battery G according to the present invention and conventional dry battery H, rechargeable alkaline manganese battery I, and nickel-cadmium battery J.

Claims (1)

【特許請求の範囲】[Claims] 1 正極活物質として水酸化コバルトを30wt%
以上含む水酸化ニツケルを主体とする正極板と負
極活物質として亜鉛あるいは酸化亜鉛を主体とす
る負極板とを備えたアルカリ蓄電池。
1 30wt% cobalt hydroxide as positive electrode active material
An alkaline storage battery comprising a positive electrode plate mainly composed of nickel hydroxide containing the above and a negative electrode plate mainly composed of zinc or zinc oxide as a negative electrode active material.
JP58122779A 1983-07-05 1983-07-05 Alkaline battery Granted JPS6014760A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58122779A JPS6014760A (en) 1983-07-05 1983-07-05 Alkaline battery
US06/628,083 US4603094A (en) 1983-07-05 1984-07-05 Alkaline storage battery
EP84107880A EP0130627B1 (en) 1983-07-05 1984-07-05 Alkaline storage battery
DE84107880T DE3486180T2 (en) 1983-07-05 1984-07-05 Alkaline collector battery.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122779A JPS6014760A (en) 1983-07-05 1983-07-05 Alkaline battery

Publications (2)

Publication Number Publication Date
JPS6014760A JPS6014760A (en) 1985-01-25
JPH0410183B2 true JPH0410183B2 (en) 1992-02-24

Family

ID=14844400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122779A Granted JPS6014760A (en) 1983-07-05 1983-07-05 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS6014760A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132441A (en) * 1974-04-08 1975-10-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132441A (en) * 1974-04-08 1975-10-20

Also Published As

Publication number Publication date
JPS6014760A (en) 1985-01-25

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP3216592B2 (en) Alkaline storage battery
CA2272386C (en) Alkaline storage battery and method for charging battery
US5840442A (en) Method for activating an alkaline rechargeable battery
JPH0410183B2 (en)
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP2926732B2 (en) Alkaline secondary battery
JP2884570B2 (en) Sealed alkaline secondary battery
JPH07161357A (en) Alkaline zinc secondary battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP3558082B2 (en) Nickel-cadmium secondary battery
JP3456217B2 (en) Nickel-based secondary battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JP2926288B2 (en) Nickel-cadmium battery
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
KR19990026737A (en) How to Form a Cathode Conductive Network for Nickel-based Batteries
JPH08236094A (en) Separator for alkaline storage battery
JP2003257474A (en) Secondary battery
JP3208246B2 (en) Non-aqueous electrolyte secondary battery
JP3070081B2 (en) Sealed alkaline storage battery
JP2952272B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
KR100287123B1 (en) Alkali-zinc secondary battery
JP4999309B2 (en) Alkaline storage battery
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate