JPH04101382A - Induction heating apparatus - Google Patents
Induction heating apparatusInfo
- Publication number
- JPH04101382A JPH04101382A JP21761590A JP21761590A JPH04101382A JP H04101382 A JPH04101382 A JP H04101382A JP 21761590 A JP21761590 A JP 21761590A JP 21761590 A JP21761590 A JP 21761590A JP H04101382 A JPH04101382 A JP H04101382A
- Authority
- JP
- Japan
- Prior art keywords
- heated
- heating
- coil
- temperature
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 69
- 230000006698 induction Effects 0.000 title claims abstract description 18
- 238000012545 processing Methods 0.000 abstract description 22
- 230000007423 decrease Effects 0.000 abstract description 6
- 230000000630 rising effect Effects 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 5
- 238000012937 correction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- General Induction Heating (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、被加熱物を連続的に搬送しながら誘導加熱
する誘導加熱装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an induction heating device that inductively heats an object to be heated while continuously conveying it.
第6区は例えば1989年11月発行、雑誌「工業加熱
JVO1,26、No、 6 、 P、72〜79、論
文「バイポーラパワートランジスタとその応用例」に開
示されたこの種従来の誘導加熱装置を示す回路精成図で
ある0図において、(1)は商用周波3相電源系統に接
続された受電盤、(2)は受電盤(1)の出方側に接続
された変圧器、(3)は変圧器(2)の2次側に接続さ
れた高周波インバータ、(2)は高周波インバータ(3
)の出力側に接続された加熱コイル、(51は加熱コイ
ル(社)と並列に接続されたコンデンサ、(6)は被加
熱物口を矢印の方向に搬送して連続的に加熱コイル(2
)内に送り込むピンチローラである。Section 6 includes, for example, this type of conventional induction heating device disclosed in the magazine "Industrial Heating JVO 1, 26, No. 6, P. 72-79," published in November 1989, and the paper "Bipolar power transistor and its application examples." In Figure 0, which is a complete circuit diagram, (1) is a power receiving board connected to a commercial frequency three-phase power supply system, (2) is a transformer connected to the output side of the power receiving board (1), and ( 3) is a high frequency inverter connected to the secondary side of the transformer (2), and (2) is a high frequency inverter (3) connected to the secondary side of the transformer (2).
), a heating coil (51) is a capacitor connected in parallel with the heating coil (51), and (6) is a heating coil (2
) is a pinch roller.
次に動作について説明する。受電盤(1)にて受電され
た商用周波数の3相電源の電圧は、変圧器(2)により
高周波インバータ(3)に必要な電圧にまで下げられる
。そして、高周波インバータ(3)は、この商用周波電
源を一旦直流にした後誘導加熱に必要な高周波電源に変
換して加熱コイル4に供給する。Next, the operation will be explained. The voltage of the commercial frequency three-phase power source received by the power receiving board (1) is lowered to the voltage required by the high frequency inverter (3) by the transformer (2). Then, the high frequency inverter (3) once converts this commercial frequency power into direct current, converts it into a high frequency power necessary for induction heating, and supplies it to the heating coil 4.
コンデンサ(5)は力率改善用で、高周波インバータ(
3)の出力周波数において加熱コイル(2)のインダク
タンスと共振する容量値に設定されている。The capacitor (5) is for power factor correction and is used for high frequency inverter (
The capacitance value is set to resonate with the inductance of the heating coil (2) at the output frequency of (3).
被加熱物(7)は通常、丸棒上の鋼材で、ピンチローラ
(6)によって連続的に搬送され、加熱コイル(4)内
で発生する交番磁束によって、誘導加熱されて昇温し、
出口部分で所定の温度、例えば1250℃程度になって
取出され、次工程である例えば鍛造処理工程に送られる
。換言すれば被加熱物口を一定時間内に搬送、処理する
重量(以下、処理重量という)と加熱コイル(イ)出口
での最終温度との目標値を満足するように、図示しない
制御装置により高周波インバータ(3)の出力を制御す
る訳である。The object to be heated (7) is usually a steel material on a round bar, which is continuously conveyed by pinch rollers (6), and heated by induction by the alternating magnetic flux generated within the heating coil (4) to raise the temperature.
At the exit portion, the temperature reaches a predetermined temperature, for example, about 1250° C., and the material is taken out and sent to the next step, for example, a forging process. In other words, a control device (not shown) is used to ensure that the target value of the weight to be transported and processed at the opening of the heated object within a certain period of time (hereinafter referred to as processing weight) and the final temperature at the exit of the heating coil (A) is satisfied. This is to control the output of the high frequency inverter (3).
従来の誘導加熱装置は以上のように構成されているので
、被加熱物(7)の昇温特性、特に被加熱物(至)の処
理重量が低レベルになった場合の昇温特性が、所望の通
りに得られないという問題点があり、以下、この点を第
7図により説明する。Since the conventional induction heating apparatus is configured as described above, the temperature increase characteristics of the object to be heated (7), especially when the processing weight of the object to be heated (to) becomes a low level, are as follows. There is a problem that the desired result cannot be obtained, and this point will be explained below with reference to FIG.
第7図は被加熱物(至)の昇温特性、即ち、被加熱物(
7)の搬送方向に沿った温度分布と、同じく搬送方向に
沿った被加熱物(7)への供給電力の分布とを示したも
のである。先ず、同図(a)は、目標加熱到達温度が1
250℃で、処理重量を最大とした場合の特性である。Figure 7 shows the temperature rise characteristics of the heated object (to), that is, the heated object (
7) shows the temperature distribution along the transport direction and the distribution of power supplied to the heated object (7) also along the transport direction. First, in the same figure (a), the target heating temperature is 1
These are the characteristics when the processing weight is maximized at 250°C.
図中、斜線で示す部分は、主として輻射熱によって被加
熱m(’71から周囲に放熱される熱損失を電力に換算
したもので、区に示すように、被加熱物mの温度が一定
の値を越えたところから急激に立上っている。この結果
、被加熱物口の加熱に寄与する電力は加熱コイル(イ)
の出口近傍位置から急激に減少し、被加熱物(7)の温
度勾配もこれに応じて急激に小さくなって目標温度に漸
近する特性となっている。逆に、被加熱物(至)の温度
分布が同図(a)に示すようなスムーズなカーブとなる
よう、加熱コイル(2)の巻数や供給する電力が設定さ
れる。In the figure, the shaded area is mainly due to radiant heat (from 1971, the heat loss radiated to the surroundings is converted into electric power, and the temperature of the heated object m is a constant value as shown in As a result, the electric power that contributes to heating the opening of the heated object is transferred to the heating coil (A).
The temperature gradient of the object to be heated (7) decreases rapidly from a position near the exit of the heated object (7), and the temperature gradient of the heated object (7) also decreases rapidly to asymptotically approach the target temperature. On the other hand, the number of turns of the heating coil (2) and the power to be supplied are set so that the temperature distribution of the object to be heated becomes a smooth curve as shown in FIG.
第7図(b)は例えば誘導加熱装置の前工程もしくは後
工程の都合により処理重量がかなり低くなった場合の温
度特性等を示す。この場合も、目標温度は1250°C
と同図(a)の場合と変わらないので、当然、加熱コイ
ル(4)に供給する電力はそれに応じた低減させる必要
がある。しかるに、主として加熱コイル(4)の出口近
傍で生じる前述の放熱損相当電力は、もっばら被加熱物
口の温度でその値が決定されるためこの低処理重量時に
もほぼ同一の特性となる。この結果、加熱コイル(イ)
の出口近傍では放熱損相当電力が供給される電力を上回
り、図に示すようにこの部分での温度勾配が負に逆転す
る。従って、加熱コイル(2)の最終出口での温度が目
標値の1250℃になるように制御すると、その手前の
加熱途中(図のA点)では1250℃を越えることにな
り、被加熱物(至)が一部溶融するという不具合が発生
することになる。FIG. 7(b) shows the temperature characteristics, etc. when the processing weight becomes considerably low due to, for example, the pre-process or post-process of the induction heating apparatus. In this case too, the target temperature is 1250°C
Since this is the same as in the case shown in FIG. 4(a), it is natural that the power supplied to the heating coil (4) must be reduced accordingly. However, the above-mentioned power equivalent to heat radiation loss mainly generated near the outlet of the heating coil (4) has almost the same characteristics even when the processing weight is low because its value is mainly determined by the temperature at the mouth of the object to be heated. As a result, the heating coil (a)
Near the exit, the power equivalent to heat radiation loss exceeds the supplied power, and the temperature gradient in this area reverses to negative as shown in the figure. Therefore, if the temperature at the final outlet of the heating coil (2) is controlled to reach the target value of 1250°C, the temperature will exceed 1250°C in the middle of heating (point A in the figure), and the object to be heated ( This will cause a problem in which some of the parts (to) will melt.
このように、従来の誘導加熱装置においては、その被加
熱物の加熱温度特性を一定の許容限度内に収めようとす
ると、例えば高処理レベル時の60%程度の処理重量が
下限とされ、その限度を越えて広い処理重量の範囲での
運転が要求される場合には十分対処することができない
という問題点があった。In this way, in conventional induction heating devices, when trying to keep the heating temperature characteristics of the object to be heated within a certain allowable limit, the lower limit is, for example, about 60% of the processing weight at a high processing level; There has been a problem in that it is not possible to adequately handle cases where operation is required in a wide processing weight range exceeding the limit.
この発明は以上のような問題点を解消するためになされ
たもので、処理重量が広範囲に変動する場合にも常に最
適の昇温特性で被加熱物の誘導加熱が可能となる誘導加
熱装置を得ることを目的とする。This invention was made to solve the above-mentioned problems, and it provides an induction heating device that can always inductively heat the object with optimal temperature rise characteristics even when the processing weight fluctuates over a wide range. The purpose is to obtain.
〔課題を解決するための手段および作用〕この発明に係
る誘導加熱装置は、その加熱コイルを、被加熱物の搬送
方向に沿って配置された複数個の区分コイルで構成し、
上記被加熱物の搬送処理量に応じて上記区分コイルの少
くとも1個に供給する電力を他の区分コイルに供給する
電力と独立に制御するようにしたものである。[Means and effects for solving the problem] The induction heating device according to the present invention includes a heating coil that includes a plurality of segmented coils arranged along the conveying direction of the object to be heated,
The electric power supplied to at least one of the divisional coils is controlled independently of the electric power supplied to the other divisional coils in accordance with the conveyance processing amount of the object to be heated.
そして、加熱コイルを例えば2個の区分コイルで構成し
た場合について説明すると、搬送処理量が高いときは両
区分コイルに供給する電流は同一とし、搬送処理量が低
いときは、入口側の区分コイルに対して出口側の区分コ
イルへ供給する電流を相対的に大きくして放熱損相当電
力による温度低下を防止する。Then, to explain the case where the heating coil is configured with two section coils, for example, when the transfer throughput is high, the current supplied to both section coils is the same, and when the transfer throughput is low, the electric current is supplied to the inlet side section coil. On the other hand, the current supplied to the outlet-side segmented coil is relatively increased to prevent a temperature drop due to power equivalent to heat dissipation loss.
第1図はこの発明の一実施例による誘導加熱装置を示す
回路構成図である。従来と大きく異なるのは、加熱コイ
ルを2個に区分した点、およびそれぞれのコイルに流す
電流を独立に制御することができるようにした点で、以
下、詳細に説明する。FIG. 1 is a circuit diagram showing an induction heating device according to an embodiment of the present invention. The major difference from the conventional method is that the heating coil is divided into two, and that the current flowing through each coil can be independently controlled, which will be explained in detail below.
(11)は変圧器(2)からの商用周波電源を直流電源
に変換する高周波インバータの順変換部、(12)は順
変換部(11)からの出力を平滑するりアクドル、(1
3)は直流電源を誘導加熱に必要な所定の高周波電源に
変換する高周波インバータの第1の逆変換部で、第2図
に示すサイリスタ素子(41)ないしく44)のブリッ
ジで構成されている。(14)は区分コイルとしての低
温域用加熱コイル、(15)は低温域用加熱コイル(1
4)と並列に接続された力率改善用のコンデンサである
。(11) is a forward conversion section of a high frequency inverter that converts the commercial frequency power from the transformer (2) into DC power; (12) is an accelerator for smoothing the output from the forward conversion section (11);
3) is the first inverse conversion section of the high frequency inverter that converts the DC power source into a predetermined high frequency power source necessary for induction heating, and is composed of a bridge of thyristor elements (41) to 44) shown in FIG. . (14) is a heating coil for low temperature range as a divisional coil, (15) is a heating coil for low temperature range (1
4) is a power factor correction capacitor connected in parallel with the power factor correction capacitor.
(+6)、 (17)および(18)は、前述の(13
)ないしく15)と同様のそれぞれ第2の逆変換部、区
分コイルとしての高温域用加熱コイルおよび力率改善用
のコンデンサである。(+6), (17) and (18) are
) to 15), respectively, are a second inverse conversion section, a heating coil for high temperature range as a section coil, and a capacitor for power factor improvement.
(20)は第1の逆変換部(13)のサイリスタ素子(
41)等へゲート信号を送出する制御装置としての第1
のゲート制御回路で、以下の各要素からなる。(20) is the thyristor element (
41) as a control device that sends gate signals to etc.
The gate control circuit consists of the following elements.
即ち、(21)は第1の逆変換部(13)の出力電圧波
形を検出する電圧検出器、(22)は波形整形器、(2
3)はパルス発生器、(24)はゲート信号発生器であ
る。That is, (21) is a voltage detector that detects the output voltage waveform of the first inverse converter (13), (22) is a waveform shaper, and (2
3) is a pulse generator, and (24) is a gate signal generator.
また、(30)は第2の逆変換部(16)のサイリスタ
素子(41)等へゲート信号を送出する制御装置として
の第2のゲート制御回路で、電圧検出器(31)、波形
整形器(32)、パルス発生器(33)、パルス分周器
(35)およびゲート信号発生器(34)がら構成され
ている。Further, (30) is a second gate control circuit as a control device that sends a gate signal to the thyristor element (41) etc. of the second inverse conversion section (16), and includes a voltage detector (31), a waveform shaper, etc. (32), a pulse generator (33), a pulse frequency divider (35) and a gate signal generator (34).
次に動作について説明する。先ず、第3図のタイムチャ
ートにより第1のゲート制御回路(20)の動作を中心
に説明する。同図<a)は第1の逆変換部(13)の出
力電圧波形で、低温域用加熱コイル(14)のインダク
タンスとコンデンサ(15)のキャパシタンスとで定ま
る並列共振周波数に一致した正弦波形となっている。こ
の出力電圧波形は電圧検出器(2])によって検出され
(同図(b))、更に波形整形器(22)によって整形
され出力電圧の正負極性に対応して相互に位相が180
°ずれた2つの信号に変換される(同図(c)および(
d))。次に、この信号をもとにパルス発生器(23)
によりパルス信号が作成される(同図(e)および(f
))。同図(c) (d)の信号との位相差Toffは
一般に逆電圧時間と呼ばれており、サイリスタ素子の転
流に必要な時間である。i&後に、ゲート信号発生器(
24)がこのパルス信号をもとに第1の逆変換部(13
)のサイリスタ素子(41)等を点弧制御するためのゲ
ート信号を作成する(同図(g)および(h))。そし
て、同図<g)の信号はサイリスク素子(41) (4
4)へ、同図(h)の信号はサイリスタ素子(42)
(43)へ送られ、これにより各素子が交互にオンオフ
して所定の高周波電力を低温域用加熱コイル(14)に
供給する。Next, the operation will be explained. First, the operation of the first gate control circuit (20) will be mainly explained using the time chart of FIG. Figure <a) shows the output voltage waveform of the first inverse converter (13), which is a sine waveform that matches the parallel resonance frequency determined by the inductance of the low-temperature heating coil (14) and the capacitance of the capacitor (15). It has become. This output voltage waveform is detected by a voltage detector (2]) (see (b) in the same figure), and further shaped by a waveform shaper (22) so that the phase is 180 degrees with respect to the positive and negative polarities of the output voltage.
It is converted into two signals shifted by ° ((c) and () in the same figure).
d)). Next, based on this signal, a pulse generator (23)
A pulse signal is created by ((e) and (f) in the same figure).
)). The phase difference Toff between the signals shown in (c) and (d) in the figure is generally called the reverse voltage time, and is the time required for commutation of the thyristor element. After i&, gate signal generator (
24) is the first inverse transformer (13) based on this pulse signal.
) A gate signal is created to control the firing of the thyristor element (41), etc. ((g) and (h) in the same figure). The signal of <g) in the same figure is the signal of Cyrisk element (41) (4
4), the signal in (h) of the same figure is the thyristor element (42)
(43), whereby each element is alternately turned on and off to supply a predetermined high frequency power to the low temperature region heating coil (14).
また、供給する電力の大きさは、順変換部(11)を構
成するサイリスク素子の点弧角を調整してその出力直流
電圧Edを変化させ第1の逆変換部(13)の出力電圧
の大きさを変化させることによって調整する。The amount of power to be supplied can be determined by adjusting the firing angle of the thyrisk element constituting the forward conversion section (11) and changing its output DC voltage Ed. Adjust by changing the size.
次に、第4図のタイムチャートにより第2のゲート制御
回路(30)の動作について説明する。もっとも、後述
するように同図(a) (b)の波形が、若干変れるが
、同図(a)ないしくf)に示す波形に係る動作につい
ては第3図の場合と同様であるので説明を省略して重複
を避ける。Next, the operation of the second gate control circuit (30) will be explained with reference to the time chart shown in FIG. However, as will be described later, the waveforms in (a) and (b) of the same figure will change slightly, but the operations related to the waveforms shown in (a) to f) of the same figure are the same as in the case of Fig. 3. Avoid duplication by omitting explanations.
パルス発生器(33)からのパルス信号(第4図(e)
(f))はパルス分周器(35)に入力されるが、この
パルス分周器(35)は分周率1/J (Jは可変の整
数で、第4図の実施例ではJ−2)で上記パルス信号を
分周して同図(g) (h)に示す信号を出力する。Pulse signal from the pulse generator (33) (Fig. 4(e)
(f)) is input to a pulse frequency divider (35), which has a frequency division ratio of 1/J (J is a variable integer, and in the embodiment of FIG. 4, J- In step 2), the frequency of the pulse signal is divided and the signals shown in (g) and (h) of the same figure are output.
ゲート信号発生器(34)はこの分周されたパルス信号
をもとに第2の逆変換部(16)のサイリスタ素子(4
1)等を点弧制御するためのゲート信号を作成する(同
図(i)および(J))。The gate signal generator (34) generates the thyristor element (4) of the second inverse conversion section (16) based on this frequency-divided pulse signal.
1) Create a gate signal to control the ignition ((i) and (J) in the same figure).
そして、同1](i)の信号はサイリスタ素子(41)
(44)へ、同図(j)の信号はサイリスタ素子(42
)(43)へ送られるが、第3図の場合と異なり、ここ
ではゲート信号に休止期(第4図にYで示す)がある。Then, the signal of 1] (i) is sent to the thyristor element (41)
(44), the signal of (j) in the same figure is transmitted to the thyristor element (42
) (43), but unlike the case in FIG. 3, here there is a rest period (indicated by Y in FIG. 4) in the gate signal.
従って、第2の逆変換部(16)から高温域用加熱コイ
ル(17)に電力が供給されるのは第4図のXで示す期
間のみで、Yの休止期間では電力は供給されず高温域用
加熱コイル(17)とコンデンサ(18)との開で自由
振動を行い電圧の振幅は回路の抵抗分によりその分減衰
することになる。Therefore, power is supplied from the second inverse converter (16) to the high-temperature heating coil (17) only during the period indicated by X in FIG. Free vibration occurs when the area heating coil (17) and capacitor (18) are opened, and the amplitude of the voltage is attenuated by the resistance of the circuit.
従って、分周率1/2のパルス分周器(35)を挿入し
たことにより高温域用加熱コイル(17)に供給される
電力は、挿入しない場合(分周率1の場合)のほぼ分周
率1/J倍に低減する。Therefore, by inserting the pulse frequency divider (35) with a frequency division ratio of 1/2, the power supplied to the high-temperature range heating coil (17) is approximately equal to that when the pulse frequency divider (35) is not inserted (in the case of a frequency division ratio of 1). The circumference rate is reduced to 1/J times.
次に、以上のような誘導加熱装置を使用して処理重量が
広範囲に変動する場合の加熱操作を行う要領について説
明する。第5図は被加熱物口の搬送方向に沿う温度およ
び電力の分布特性を示すもので、従来の第7図に相当す
るものである。先ず、パルス分周器(35)の分周比を
1/2に設定しておき、高処理重量時に第5図(a)に
示す良好な温度分布が得られるよう、各コイルの巻数等
を設定する。Next, a description will be given of how to perform a heating operation when the processing weight varies over a wide range using the induction heating apparatus as described above. FIG. 5 shows the temperature and power distribution characteristics along the conveyance direction of the object to be heated, and corresponds to the conventional FIG. 7. First, the frequency division ratio of the pulse frequency divider (35) is set to 1/2, and the number of turns of each coil is adjusted so that a good temperature distribution as shown in Fig. 5(a) is obtained during high processing weight. Set.
即ち、この場合、放熱損相当電力は主として高温域用加
熱コイル(17)内に位置する被加熱物(7)の部分で
発生することになるが、第2の逆変換部(16)および
高温域用加熱コイル(17)によって被加熱物(至)の
同部分に供給される加熱電力が上記放熱損相当電力を上
回わっており、スムーズな温度分布特性となっている。That is, in this case, the power equivalent to heat radiation loss is mainly generated in the part of the object to be heated (7) located in the heating coil for high temperature range (17), but in the second inverse conversion part (16) and The heating power supplied to the same part of the object to be heated by the area heating coil (17) exceeds the power equivalent to the heat radiation loss, resulting in smooth temperature distribution characteristics.
次に、処理重量が大幅に低下した場合、この処理重量の
低下に応じて順変換部(11)の出力電圧Edを低下さ
せ両コイル(14) (17)への供給電力を全体的に
低減させると同時に、パルス分周器(35)の分周率を
1/2から1に設定変更する。この結果、被加熱物(7
)への供給電力が平均的に低下する中で、高温域用加熱
コイル(17)の部分の電力は相対的に増大し、同図(
h)に示すように、放熱損相当電力が供給電力を上回わ
るという現象が回避され、高処理重量時に近い良好な温
度特性が得られる。即ち、加熱途中に目標温度の125
0℃を越える部分が存在しないスムーズな昇温カーブが
得られる訳である。Next, when the processing weight decreases significantly, the output voltage Ed of the forward conversion section (11) is lowered in accordance with this reduction in the processing weight, and the power supplied to both coils (14) and (17) is reduced overall. At the same time, the frequency division ratio of the pulse frequency divider (35) is changed from 1/2 to 1. As a result, the object to be heated (7
), while the power supplied to the heating coil (17) for high temperature range increases relatively, as shown in the figure (
As shown in h), the phenomenon in which the power equivalent to heat dissipation loss exceeds the supplied power is avoided, and good temperature characteristics similar to those obtained when processing heavy weights are obtained. In other words, the target temperature of 125
This results in a smooth temperature increase curve with no portion exceeding 0°C.
なお、上記実施例ではパルス分周器(35)の分周比の
整数Jを2と1との2段階に設定するものとしたが、例
えば、J=4〜1の範囲に設定できるものとし、J=4
の高処理重量時から処理重量が低下していくにつれJ=
3.2.1と順次設定を多段階で切換えていくようにす
れば、より木目の細かい温度制御が可能となり、可能処
理重量の下限を一層広げることができる。In addition, in the above embodiment, the integer J of the frequency division ratio of the pulse frequency divider (35) is set in two stages, 2 and 1, but it is possible to set it in the range of J = 4 to 1, for example. , J=4
As the processing weight decreases from the high processing weight of
By sequentially changing the settings in multiple stages as shown in 3.2.1, it becomes possible to control the temperature of the wood more precisely, and the lower limit of the possible processing weight can be further expanded.
また、上記実施例では高温域用加熱コイル(17)への
電源を制御する第2のゲート制御回iM(30)にパル
ス分周器を設けたが、低温域用加熱コイル(14)への
電流を制御する第1のゲート制御回路(20)に設ける
ようにしてもよい。但し、この場合は、高処理重量時に
分周比の整数Jを1とし、処理重量が低下するに従って
J=2.3・・・・・・と変化させ、低温域用加熱コイ
ル(14)への供給電力を相対的に低下させていく。Further, in the above embodiment, a pulse frequency divider is provided in the second gate control circuit iM (30) that controls the power supply to the heating coil (17) for high temperature range, but the pulse frequency divider is provided to the heating coil (14) for low temperature range. It may also be provided in the first gate control circuit (20) that controls the current. However, in this case, the integer J of the frequency division ratio is set to 1 when the processing weight is high, and as the processing weight decreases, it is changed to J = 2.3... The power supply will be relatively reduced.
更に、再制御回路(20)(30)にパルス分周器を設
けてより微細な制御を行うようにすることができる。Furthermore, a pulse frequency divider can be provided in the recontrol circuits (20) and (30) to perform more fine control.
また、上記実施例では加熱コイルを2個の区分コイルで
構成したが、3個以上のもので構成するようにしてもよ
い。この場合、各区分コイルへの電流を制御するゲート
制御回路の少くとも1つにパルス分周器を設けて他と独
立に電流を制御するようにすればよい。Further, in the above embodiment, the heating coil is composed of two segmented coils, but it may be composed of three or more. In this case, at least one of the gate control circuits that control the current to each section coil may be provided with a pulse frequency divider to control the current independently of the others.
また、上記実施例ではゲート信号発生器へのパルス信号
の分周比を調整して各コイルへの供給電力を制御するよ
うにしたが、例えば第2の逆変換部(16)の出力電圧
を調整する方式、各コイル毎に順変換部を設けてその出
力電圧を調整する方式等、他の方式を採用して制御する
ようにしてもよい。Furthermore, in the above embodiment, the power supplied to each coil is controlled by adjusting the division ratio of the pulse signal to the gate signal generator, but for example, the output voltage of the second inverse converter (16) is It is also possible to adopt other methods for control, such as a method of adjusting the output voltage, a method of providing a forward converter for each coil, and adjusting the output voltage thereof.
更に、第1の逆変換部(13)等で採用したサイリスタ
素子に替ってトランジスタ素子等の他のスイッチング素
子を使用するようにしてもよい。Furthermore, other switching elements such as transistor elements may be used instead of the thyristor elements employed in the first inverse conversion section (13) and the like.
この発明は以上のように構成されているのて、加熱コイ
ル出口近傍における被加熱物への供給電力が常に放熱損
相当電力を下回わらないよう各区分コイルへの供給電力
を制御することにより、加熱途中で目標加熱温度を越え
ることがない良好な昇温特性が得られる。This invention is configured as described above, and by controlling the power supplied to each section coil so that the power supplied to the heated object near the heating coil outlet does not always fall below the power equivalent to heat radiation loss. , good temperature increase characteristics can be obtained without exceeding the target heating temperature during heating.
第1図はこの発明の一実施例による誘導加熱装置を示す
回路構成図、第2図はその逆変換部を示す回路構成図、
第3図および第4図はそれぞれ第1および第2のゲート
制御回路の動作を説明するためのタイムチャート、第5
図はこの発明による加熱温度、供給電力の分布を示す特
性図、第6図は従来の誘導加熱装置を示す回路構成図、
第7図は従来の場合の加熱温度、供給電力の分布を示す
特性図である。
図において、(至)は被加熱物、(13)および(16
)はそれぞれ第1および第2の逆変換部、(14)およ
び(17)は区分コイルとしてのそれぞれ低温域用加熱
コイルおよび高温域用加熱コイル、(20)および(3
0)は制御装置としてのそれぞれ第1および第2のゲー
ト制御回路、(35)はパルス分周器である。
なお、各図中同一符号は同一または相当部分を示す。
代理人 弁理士 大 岩 増 雄
第2図
pc仏)
第3図
第1図
第4図
第5図
yh品Aフィル
1衛2蚤ぢ\コ4ル
第7図
↓FIG. 1 is a circuit diagram showing an induction heating device according to an embodiment of the present invention, and FIG. 2 is a circuit diagram showing an inverse conversion section thereof.
3 and 4 are time charts for explaining the operations of the first and second gate control circuits, respectively, and FIG.
FIG. 6 is a characteristic diagram showing the distribution of heating temperature and supplied power according to the present invention, FIG. 6 is a circuit configuration diagram showing a conventional induction heating device,
FIG. 7 is a characteristic diagram showing the distribution of heating temperature and supplied power in the conventional case. In the figure, (to) is the object to be heated, (13) and (16)
) are the first and second inverse converters, respectively, (14) and (17) are the heating coil for the low temperature range and the heating coil for the high temperature range, respectively, as segmented coils, (20) and (3
0) are first and second gate control circuits as control devices, respectively, and (35) is a pulse frequency divider. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Patent Attorney Masuo Oiwa (Figure 2 PC Buddha) Figure 3 Figure 1 Figure 4 Figure 5
Claims (1)
制御装置とを備え、被加熱物を上記加熱コイル内に連続
的に送り込んで誘導加熱し所定の温度で取出すものにお
いて、 上記加熱コイルを、上記被加熱物の搬送方向に沿って配
置された複数個の区分コイルで構成し、上記被加熱物の
搬送処理量に応じて上記区分コイルの少くとも1個に供
給する電力を他の区分コイルに供給する電力と独立に制
御することにより、上記被加熱物の温度がその加熱途中
で上記所定の温度を越えないようにしたことを特徴とす
る誘導加熱装置。[Scope of Claims] A device comprising a heating coil and a control device for controlling electric power supplied to the heating coil, wherein an object to be heated is continuously fed into the heating coil, heated by induction, and taken out at a predetermined temperature, The heating coil is configured with a plurality of segmented coils arranged along the conveying direction of the heated object, and electric power is supplied to at least one of the segmented coils according to the amount of conveyance of the heated object. An induction heating device characterized in that the temperature of the object to be heated does not exceed the predetermined temperature during heating by controlling the power independently of the electric power supplied to other section coils.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21761590A JPH04101382A (en) | 1990-08-18 | 1990-08-18 | Induction heating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21761590A JPH04101382A (en) | 1990-08-18 | 1990-08-18 | Induction heating apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04101382A true JPH04101382A (en) | 1992-04-02 |
Family
ID=16707071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21761590A Pending JPH04101382A (en) | 1990-08-18 | 1990-08-18 | Induction heating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04101382A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5857864A (en) * | 1996-02-28 | 1999-01-12 | Yazaki Corporation | Waterproof connector with guide portion for aligning connector during engagement |
-
1990
- 1990-08-18 JP JP21761590A patent/JPH04101382A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5857864A (en) * | 1996-02-28 | 1999-01-12 | Yazaki Corporation | Waterproof connector with guide portion for aligning connector during engagement |
US5941721A (en) * | 1996-02-28 | 1999-08-24 | Yazaki Corporation | Waterproof connector with guide portion for aligning connector during engagement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6163019A (en) | Resonant frequency induction furnace system using capacitive voltage division | |
US7432481B2 (en) | Induction heating method and unit | |
US6141227A (en) | Power supply with reduced second harmonic | |
US4755648A (en) | Cyclical, multiple frequency high-frequency induction heating apparatus | |
US5267137A (en) | High-power power supply | |
AU2022228217B2 (en) | High frequency power supply system with closely regulated output for heating a workpiece | |
JPS5827755B2 (en) | Kouritsu no Yoiden Riyokuhenkansouchi | |
JP2002313547A (en) | Induction heating device for plate | |
US5214258A (en) | Apparatus and method of ultra rapid annealing by induction heating of thin steel strip | |
JPH04101382A (en) | Induction heating apparatus | |
US4532583A (en) | Method and apparatus for controlling an inverter | |
JP2000252094A (en) | Inverter type x-ray high-voltage device | |
JPH031793B2 (en) | ||
JPS6030077A (en) | Method of supplyig power to high frequency induction heating power source | |
JPS6266593A (en) | Controlling method for induction heat | |
US5475582A (en) | Stepless control of a load guided parallel resonant inverter | |
US4314324A (en) | Transformer power supply having an inductively loaded full wave rectifier in the primary | |
JP2007157494A (en) | Induction heating device | |
JPS639352B2 (en) | ||
JPS6180797A (en) | X-ray device | |
JPS62290093A (en) | Heating control of continuous shifting type induction heater | |
JP3054147B1 (en) | Load power control device | |
JPH0374094A (en) | Inverter x-ray device | |
JPS5851396B2 (en) | Method and device for obtaining constant power in induction heating/melting furnace | |
JPH09140135A (en) | Load power controller |