JPH04101367A - Bipolar pole plate for layer-built cell - Google Patents

Bipolar pole plate for layer-built cell

Info

Publication number
JPH04101367A
JPH04101367A JP2217314A JP21731490A JPH04101367A JP H04101367 A JPH04101367 A JP H04101367A JP 2217314 A JP2217314 A JP 2217314A JP 21731490 A JP21731490 A JP 21731490A JP H04101367 A JPH04101367 A JP H04101367A
Authority
JP
Japan
Prior art keywords
electrode
insulating frame
frame
synthetic resin
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2217314A
Other languages
Japanese (ja)
Other versions
JP2853296B2 (en
Inventor
Yuji Hashiguchi
橋口 裕司
Yasuo Ando
保雄 安藤
Hiroshi Hosono
寛 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2217314A priority Critical patent/JP2853296B2/en
Publication of JPH04101367A publication Critical patent/JPH04101367A/en
Application granted granted Critical
Publication of JP2853296B2 publication Critical patent/JP2853296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To strenghen binding between a pole main body and each frame and prevent an alternating current of electrolyte by binding an insulating frame body to the pole main body through an intermediate frame. CONSTITUTION:In a bipolar pole plate for layer-built cell which is formed with a pole main body 1 in a flat plate shape and an insulating frame body 3 made of synthetic resin which is formed integratedly on the outer circumferential edge part of the pole 1, the insulating frame body 3 is formed of the resin containing glass fiber in its synthetic resin. In addition, an intermediate frame 2 which is made of the same synthetic resin as the insulating frame body 3 containing no glass fiber is integratedly formed between the insulating frame body 3 and the outer circumferential edge part of the pole main body 1. Thus, binding between the pole main body 1 and the intermediate frame 2 as well as between the insulating frame body 3 and the intermediate frame 2 can be improved and the whole can be strengthened.

Description

【発明の詳細な説明】 A 産業上の利用分野 この発明は積層電極のバイポーラ電極板に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a bipolar electrode plate of laminated electrodes.

B0発明の概要 この発明は積層電池のバイポーラ電極板において、 平板状の電極本体の外周縁部に合成樹脂からなる中間枠
を設けた後、この中間枠の外周縁部にガラスファイバー
を含んだ合成樹脂からなる絶縁枠体を設けたことにより
、 絶縁枠体と電極本体との接着が強固になり、これにより
電解液の交流を防止することができ、電池の性能を長期
にわたって安定保持することかできるようにしたもので
ある。
B0 Summary of the Invention This invention relates to a bipolar electrode plate for a laminated battery, in which an intermediate frame made of synthetic resin is provided at the outer peripheral edge of a flat electrode body, and then a synthetic resin containing glass fiber is provided at the outer peripheral edge of the intermediate frame. By providing an insulating frame made of resin, the adhesion between the insulating frame and the electrode body becomes strong, which prevents exchange of electrolyte and maintains stable battery performance over a long period of time. It has been made possible.

C従来の技術 電力貯蔵用などとして使用される、亜鉛−臭素電池、亜
鉛−塩素電池、さらにレドックスフロー電池等は、電池
のエネルギー密度を高くするため、電極をバイポーラと
した積層構造が採用されている。亜鉛−臭素電池を例に
すると、第2図に例示するような積層電池の要素として
多数のセル積層構造が用いられている。これは、セル積
層体(以下スタックという。)全体を両側端からボルト
C. Conventional technology Zinc-bromine batteries, zinc-chlorine batteries, redox flow batteries, etc. used for power storage use a laminated structure with bipolar electrodes to increase the energy density of the battery. There is. Taking a zinc-bromine battery as an example, a multi-cell stack structure is used as an element in a stacked battery as illustrated in FIG. This bolts the entire cell stack (hereinafter referred to as the stack) from both ends.

ナツト等を用いて挟むように押さえるための一対の締付
端板16,16と、そのそれぞれの内側に配置する押さ
え部材である積層端板17,17との間に、例えば30
セル積層して構成する。すなわち、積層電池は一方の外
部電気系と接続するカーボンプラスチックの端板電極1
8の集電メツシュI9の次にパツキン20を介してセパ
レータ板21を重ねた後、所定間隔保持用のスペーサメ
ツシュ22、バイポーラ電極であるカーボンプラスチッ
ク製平板状の中間電極23、およびパツキン20を順次
積層し、最後に他方の外部電気系と接続するカーボンプ
ラスチック製端板電極I8を重ねて、全体で30セル積
層する如く構成する。
For example, a 30 mm
Constructed by stacking cells. That is, the stacked battery has one carbon plastic end plate electrode 1 connected to an external electrical system.
After stacking the separator plate 21 next to the current collecting mesh I9 of No. 8 with a packing 20 interposed therebetween, a spacer mesh 22 for maintaining a predetermined distance, a flat intermediate electrode 23 made of carbon plastic which is a bipolar electrode, and a packing 20 are placed. They are laminated one after another, and finally the carbon plastic end plate electrode I8 connected to the other external electrical system is layered, so that a total of 30 cells are laminated.

このように積層構成した電池には、その四隅角部に流液
孔である正極マニホールド24と負極マニホールド25
とを穿設する。
The stacked battery has a positive electrode manifold 24 and a negative electrode manifold 25, which are liquid flow holes, at the four corners of the battery.
and.

また、各セパレータ板21は、微多孔質膜より成るセパ
レータ2の周囲に枠板21aを一体成形して構成したも
ので、その両年面部上下にはそれぞれ表裏対称形状にマ
イクロチャンネル26を設置して成る。この−側面の実
線で示すマイクロチャンネル26は、それぞれ対角線上
の正極マニホールド24から導入した電解液を均一に広
げてセパレータ2の全面に流し、又はこれより液を回収
する。また、他側面の破線で示すマイクロチャンネル2
6は、負極マニホールド25からの電解液を導入1回収
するものである。
Each separator plate 21 is constructed by integrally molding a frame plate 21a around the separator 2 made of a microporous membrane, and microchannels 26 are installed in a symmetrical shape on both sides of the frame plate 21a. It consists of The microchannels 26 shown by solid lines on the negative side of the microchannels 26 uniformly spread the electrolytic solution introduced from the positive electrode manifold 24 on the diagonal line and flow it over the entire surface of the separator 2, or collect the solution therefrom. In addition, the microchannel 2 shown by the broken line on the other side
6 is for introducing and recovering the electrolytic solution from the negative electrode manifold 25.

このようにして、各セパレータ板21の両側面部にそれ
ぞれ配置された電極との間において、単位電池となるセ
ルを構成し、このセルが30個直列接続されるよう構成
するものである。
In this way, between the electrodes arranged on both side surfaces of each separator plate 21, cells serving as a unit battery are formed, and 30 cells are connected in series.

また上述のような電池の中間電極23は、第3図に例示
するように導電性を有するカーボンプラスチック板27
の周囲にプラスチック製絶縁枠28を射出成形して構成
していた。
Further, the intermediate electrode 23 of the battery as described above is made of a conductive carbon plastic plate 27 as illustrated in FIG.
A plastic insulating frame 28 was injection molded around the periphery.

この中間電極23の製造に当たっては、まずカーボンプ
ラスチック平板材を電極の寸法形状に切断してカーボン
プラスチック板27を形成し、これをインサー)・とじ
て射出成型金型内に入れ、溶融プラスチック材を射出し
、第4図に例示するように、カーボンプラスチック板2
7の周囲が全周均等な幅で絶縁枠28内に入り込む、い
わゆるかみつき部分で結合するようにして、第3図にも
示す如く一体形成するようにしていた。
In manufacturing this intermediate electrode 23, first, a carbon plastic plate 27 is formed by cutting a carbon plastic flat plate material into the size and shape of the electrode, which is then put into an injection mold with an insert, and the molten plastic material is poured into the carbon plastic plate 27. Injection, as illustrated in FIG. 4, the carbon plastic plate 2
As shown in FIG. 3, the periphery of the insulating frame 28 is joined at a so-called biting portion where the periphery of the insulating frame 28 has a uniform width all around, and is integrally formed.

D 発明が解決しようとする課題 上述のような従来の中間電極23では、カーボンプラス
チック板27の周縁部を、絶縁枠28で内包するように
モールドした部分(いわゆるかみつき部分)の溶着かう
まくいかず、このかみつき部分に隙間を生じ易い。
D Problems to be Solved by the Invention In the conventional intermediate electrode 23 as described above, the welding of the molded part (so-called biting part) of the peripheral edge of the carbon plastic plate 27 so as to be enclosed by the insulating frame 28 is not successful. , this biting part tends to create a gap.

このようなかみつき部分に隙間があるような中間電極を
用いて電池を構成すると、この中間電極23で分離隔絶
している正極電解液と、負極電解液とが、第5図に矢印
で示すように、中間電極23の表面側又は裏面側に流れ
込んで混ざり合う液絡を生じ、電池性能が低下してしま
うという問題があった。
When a battery is constructed using such an intermediate electrode with a gap in the biting part, the positive electrode electrolyte and the negative electrode electrolyte, which are separated by the intermediate electrode 23, are separated as shown by the arrows in FIG. Another problem is that a liquid junction is formed in which the liquids flow into the front side or the back side of the intermediate electrode 23 and mix, resulting in a decrease in battery performance.

この発明は、上述の点に鑑み、カーホンプラスチック板
の周側部と絶縁枠とが確実に接着するようにする積層電
池のバイポーラ電極板を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a bipolar electrode plate for a laminated battery that allows the circumferential side of a carphone plastic plate to be reliably bonded to an insulating frame.

E 課題を解決するための手段 この発明は、 平板状の電極板間に必要に応じてセパレータを介在して
、前記電極板を複数積層し、一体化して前記電極板間に
電池反応室を形成して成る積層電池のバイポーラ電極板
であって、 前記バイポーラ電極板を、平板状の電極本体と、該電極
の外周縁部に一体に形成した合成樹脂の絶縁枠体とで形
成してなる積層電池のバイポーラ電極板において、 前記絶縁枠体が合成樹脂中にガラスファイバーを含んだ
樹脂で形成されていると共に、該絶縁枠体と前記電極本
体の外周縁部との間に該絶縁枠体と同一の合成樹脂で、
かつガラスファイバーを含まない合成樹脂から成る中間
枠を前記絶縁枠体および前記電極本体の外周縁部に一体
に形成して構成されて成るものである。
E. Means for Solving the Problems This invention provides the following: A separator is interposed between the flat electrode plates as necessary, and a plurality of the electrode plates are laminated and integrated to form a battery reaction chamber between the electrode plates. A bipolar electrode plate for a laminated battery, the bipolar electrode plate comprising a flat electrode body and a synthetic resin insulating frame integrally formed on the outer periphery of the electrode. In the bipolar electrode plate of a battery, the insulating frame is formed of a resin containing glass fiber in a synthetic resin, and the insulating frame is disposed between the insulating frame and the outer peripheral edge of the electrode body. Made of the same synthetic resin,
In addition, an intermediate frame made of synthetic resin that does not contain glass fibers is integrally formed on the outer periphery of the insulating frame and the electrode body.

F9作用 中間枠がガラスファイバーを含まない合成樹脂で形成さ
れている。このため、電極本体と中間枠体の接着性が良
くなる。また、絶縁枠体と中間枠との接着も同一の樹脂
同志であるため強固になる。
The F9 action intermediate frame is made of synthetic resin that does not contain glass fibers. Therefore, the adhesiveness between the electrode body and the intermediate frame is improved. Furthermore, since the insulating frame and the intermediate frame are bonded to each other using the same resin, they are strong.

G、実施例 以下この発明の一実施例を図面に基づいて説明する。G. Example An embodiment of the present invention will be described below based on the drawings.

第1図A、B、Cにおいて、】は積層電池のバイポーラ
電極板の電極本体で、この電極本体1はカーボンプラス
チック平板材を所定の形状寸法に切断して形成される。
In FIGS. 1A, B, and C, symbol 1 represents an electrode body of a bipolar electrode plate of a laminated battery, and this electrode body 1 is formed by cutting a carbon plastic flat plate material into a predetermined shape and size.

切断された電極本体1はインサートとして図示しない射
出成型金型内に収容して、まず電極本体1の外周部にガ
ラスファイバーを含まない合成樹脂材を射出し、第1図
Bに示す中間枠2を形成する。中間枠2が形成された電
極本体1は中間枠2がガラスファイバーを含まない合成
樹脂で製作されているため、電極本体1と中間枠2との
接着が確実に行われるようになる。
The cut electrode body 1 is placed as an insert in an injection mold (not shown), and a synthetic resin material not containing glass fiber is first injected onto the outer periphery of the electrode body 1 to form an intermediate frame 2 as shown in FIG. 1B. form. Since the electrode body 1 on which the intermediate frame 2 is formed is made of synthetic resin that does not contain glass fiber, the electrode body 1 and the intermediate frame 2 can be reliably bonded.

電極本体1に中間枠2が接着されたなら、次にガラスフ
ァイバーを含んだ合成樹脂を射出して第1図Cに示す絶
縁枠3を形成する。このように形成すると中間枠2と絶
縁枠3との接着が強固に行われる。
After the intermediate frame 2 is adhered to the electrode body 1, a synthetic resin containing glass fiber is injected to form the insulating frame 3 shown in FIG. 1C. When formed in this manner, the intermediate frame 2 and the insulating frame 3 are firmly bonded.

上記のようにして構成されたバイポーラ電極板は単電池
を積層する際の仕切り板としての機能および電池反応室
を構成する部材としての機能を持たせることができる。
The bipolar electrode plate configured as described above can function as a partition plate when stacking unit cells and as a member constituting a battery reaction chamber.

実用的には積層電池の構成を採用している金属ハロゲン
2次電池あるいはしドックスフロ電池のバイポーラ電極
として使用することができる。
Practically speaking, it can be used as a bipolar electrode for a metal halogen secondary battery or a doxflo battery that employs a stacked battery structure.

なお、電極本体1および中間枠2.絶縁枠3の樹脂とし
てはポリオレフィン樹脂であり、特にポリエチレン、ポ
リプロピレン、エチレンプロピレン共重合体が好ましい
Note that the electrode main body 1 and the intermediate frame 2. The resin for the insulating frame 3 is a polyolefin resin, and particularly preferred are polyethylene, polypropylene, and ethylene-propylene copolymers.

H0発明の効果 以上述べたように、この発明によれば、電極本体に中間
枠を介して絶縁枠体を接着するようにしたので、電極本
体と各枠との接着が極めて強固にできるようになり、こ
のため、電解液の交流を防止することができ、電池の性
能を長期にわたって安定保持することができる。
H0 Effects of the Invention As described above, according to this invention, since the insulating frame is bonded to the electrode body through the intermediate frame, the bond between the electrode body and each frame can be extremely strong. Therefore, alternating current of the electrolyte can be prevented, and the performance of the battery can be stably maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、B、Cはこの発明の一実施例の製造手段を示
す構成説明図、第2図は積層電池の要部分解斜視図、第
3図は中間電極の正面図、第4図は第3図の縦断面図、
第5図はその要部の拡大縦断面図である。 1・・・電極本体、2・・・中間枠、3・・・絶縁枠。 (A) 第1図 実施例の製造手段の構成説明図 (B) (C) 第2図 要部分解斜視図 1 電極本体 2 中間枠 3 絶縫枠 1a @3図 電極の正面図 第4図 電極の縦断面図 第5図 要部拡大断面図
1A, B, and C are structural explanatory diagrams showing the manufacturing means of an embodiment of the present invention, FIG. 2 is an exploded perspective view of the main parts of a laminated battery, FIG. 3 is a front view of the intermediate electrode, and FIG. 4 is a longitudinal cross-sectional view of Fig. 3,
FIG. 5 is an enlarged longitudinal sectional view of the main part. 1... Electrode body, 2... Intermediate frame, 3... Insulating frame. (A) Fig. 1: Explanatory diagram of the configuration of the manufacturing means of the embodiment (B) (C) Fig. 2: Disassembled perspective view of essential parts 1 Electrode main body 2 Intermediate frame 3 Seamless frame 1a @ Fig. 3 Front view of electrode Fig. 4 Longitudinal cross-sectional view of electrode Figure 5 Enlarged cross-sectional view of main parts

Claims (1)

【特許請求の範囲】[Claims] (1)平板状の電極板間に必要に応じてセパレータを介
在して、前記電極板を複数積層し、一体化して前記電極
板間に電池反応室を形成して成る積層電池のバイポーラ
電極板であって、 前記バイポーラ電極板を、平板状の電極本体と、該電極
の外周縁部に一体に形成した合成樹脂の絶縁枠体とで形
成してなる積層電池のバイポーラ電極板において、 前記絶縁枠体が合成樹脂中にガラスファイバーを含んだ
樹脂で形成されていると共に、該絶縁枠体と前記電極本
体の外周縁部との間に該絶縁枠体と同一の合成樹脂で、
かつガラスファイバーを含まない合成樹脂から成る中間
枠を前記絶縁枠体および前記電極本体の外周縁部に一体
に形成して構成されて成る積層電池のバイポーラ電極板
(1) A bipolar electrode plate for a stacked battery in which a plurality of flat electrode plates are laminated, with a separator interposed between them as necessary, and then integrated to form a battery reaction chamber between the electrode plates. In the bipolar electrode plate of a laminated battery, the bipolar electrode plate is formed of a flat electrode body and an insulating frame made of synthetic resin integrally formed on the outer peripheral edge of the electrode, wherein the insulating The frame is made of a resin containing glass fiber in a synthetic resin, and the same synthetic resin as the insulating frame is formed between the insulating frame and the outer peripheral edge of the electrode body,
A bipolar electrode plate for a laminated battery, wherein an intermediate frame made of a synthetic resin not containing glass fiber is integrally formed on the outer peripheral edge of the insulating frame and the electrode body.
JP2217314A 1990-08-17 1990-08-17 Bipolar electrode plate for stacked batteries Expired - Lifetime JP2853296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2217314A JP2853296B2 (en) 1990-08-17 1990-08-17 Bipolar electrode plate for stacked batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2217314A JP2853296B2 (en) 1990-08-17 1990-08-17 Bipolar electrode plate for stacked batteries

Publications (2)

Publication Number Publication Date
JPH04101367A true JPH04101367A (en) 1992-04-02
JP2853296B2 JP2853296B2 (en) 1999-02-03

Family

ID=16702223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2217314A Expired - Lifetime JP2853296B2 (en) 1990-08-17 1990-08-17 Bipolar electrode plate for stacked batteries

Country Status (1)

Country Link
JP (1) JP2853296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538666A (en) * 2015-11-18 2018-12-27 アヴァロン バッテリー(カナダ)コーポレイションAvalon Battery(Canada)Corporation Electrode assembly and flow battery with improved electrolyte dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538666A (en) * 2015-11-18 2018-12-27 アヴァロン バッテリー(カナダ)コーポレイションAvalon Battery(Canada)Corporation Electrode assembly and flow battery with improved electrolyte dispersion

Also Published As

Publication number Publication date
JP2853296B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
US4164068A (en) Method of making bipolar carbon-plastic electrode structure-containing multicell electrochemical device
US4125680A (en) Bipolar carbon-plastic electrode structure-containing multicell electrochemical device and method of making same
KR0136040B1 (en) Bipolar battery and assembling method
US5308718A (en) End block constructions for batteries
KR20130119457A (en) Lithium secondary battery having multi-directional lead-tab structure
CA2110770A1 (en) Support extension for flat pack rechargeable batteries
CA2111727A1 (en) Thermal management of rechargeable batteries
US5512065A (en) Methods for assembling lead-acid batteries
KR20220004698A (en) Battery Assemblies with Integrated Edge Seals and Methods of Forming the Seals
JPH0757767A (en) Double-pole battery
US20150111125A1 (en) Alignment feature and method for alignment in fuel cell stacks
US20200243809A1 (en) A battery module casing, a battery module and a battery
JP2001210303A (en) Electrode group for battery
JPH01195673A (en) Cell
JPH04101367A (en) Bipolar pole plate for layer-built cell
CN207967197U (en) The polymer Li-ion battery of monomer vast capacity
KR102017781B1 (en) Battery pack improved in fixing structure of cell lead
JPS6158159A (en) Secondary battery
KR101666433B1 (en) Secondary battery and manufacturing method thereof
JP2505007Y2 (en) Electrolyte circulation type laminated battery
JPS62219458A (en) Sealed lead-acid battery
JPS58197669A (en) Electrode for layer-built cell
JPH02299170A (en) Sealed lead-acid battery
KR930015168A (en) Chemical Cells and Batteries with New Grid, Strap, and Intercell Welding Array
JPH0537425Y2 (en)