JPH04101152A - Electrophotographic sensitive body and manufacture of same - Google Patents

Electrophotographic sensitive body and manufacture of same

Info

Publication number
JPH04101152A
JPH04101152A JP21972790A JP21972790A JPH04101152A JP H04101152 A JPH04101152 A JP H04101152A JP 21972790 A JP21972790 A JP 21972790A JP 21972790 A JP21972790 A JP 21972790A JP H04101152 A JPH04101152 A JP H04101152A
Authority
JP
Japan
Prior art keywords
charge transport
charge
transport layer
layer
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21972790A
Other languages
Japanese (ja)
Inventor
Toshihiro Ebine
俊裕 海老根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP21972790A priority Critical patent/JPH04101152A/en
Publication of JPH04101152A publication Critical patent/JPH04101152A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable photosensitivity of a photosensitive body to be controlled by rendering concentration of an electric charge transfer material lower on the surface of a charge transfer layer than in its inside. CONSTITUTION:A charge generating layer and the charge transfer layer are successively laminated on a conductive substrate, and the concentration of the charge transfer material on the surface of the charge transfer layer is made lower than that in its inside. When the laminate type photosensitive body is formed by coating, a mixture of the charge generating material and the binder or a mixture of the charge transfer material and the binder is dissolved in a solvent to form a coating fluid, and the solvent for dissolving the binder is made different by the kind of the binder, and it is preferred to use the solvent not disolving the underlayer, thus permitting the photosensitivity of the photosensitive body to be controlled only by adjusting drying temperature of the charge transfer layer and accordingly the electrophotographic sensitive body high in sensitivity to be easily obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複写機、LDプリンタ、LEDプリンタ等に使
用される電子写真感光体及びその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor used in copying machines, LD printers, LED printers, etc., and a method for manufacturing the same.

[従来の技術] 従来、電子写真用感光体の光導電材料にはセレン、硫化
カドミウム、酸化亜鉛等の無機化合物が広く用いられて
いた。しかしながら、これらの無機化合物は多くの長所
を持つ反面、様々な欠点も有する。例えば、セレンでは
製造条件が困難で製造コストが高く温湿度などにより結
晶化が進みやすい。硫化カドミウムでは耐湿性が悪く、
また酸化亜鉛では硬度、耐摩耗性など機械的強度に問題
がある。更に、これらはカルコゲン、重金属を含有する
ため公害問題に発展する危険性もあった。
[Prior Art] Conventionally, inorganic compounds such as selenium, cadmium sulfide, and zinc oxide have been widely used as photoconductive materials for electrophotographic photoreceptors. However, while these inorganic compounds have many advantages, they also have various disadvantages. For example, selenium has difficult manufacturing conditions, high manufacturing costs, and tends to crystallize due to temperature and humidity. Cadmium sulfide has poor moisture resistance;
Furthermore, zinc oxide has problems with mechanical strength such as hardness and wear resistance. Furthermore, since these contain chalcogen and heavy metals, there is a risk of developing a pollution problem.

近年、これらの無機化合物の欠点を克服するためにポリ
−N−ビニルカルバゾールに代表される種々の有機光導
電性化合物を用いた電子写真感光体の開発研究が盛んに
行われている。このような有機化合物系電子写真感光体
は、無機化合物系電子写真感光体に比べて成膜が容易で
あり極めて生産性が高く安価な感光体を提供できるとい
う利点を持っている。しかしながら、例えばポリ−Nビ
ニルカルバゾールのような光導電性ポリマーに関しては
ポリマー単独では被膜性、可撓性、接着性などが不良で
あり、これらの欠点を改良するために可塑剤、バインダ
ーなどが添加されるが、この為に光感度の低下や残留電
位の上昇を招くなどの問題があった。
In recent years, in order to overcome the drawbacks of these inorganic compounds, research and development efforts have been actively conducted to develop electrophotographic photoreceptors using various organic photoconductive compounds such as poly-N-vinylcarbazole. Such an organic compound-based electrophotographic photoreceptor has the advantage that it is easier to form a film than an inorganic compound-based electrophotographic photoreceptor, and can provide a highly productive and inexpensive photoreceptor. However, with regard to photoconductive polymers such as poly-N vinyl carbazole, filmability, flexibility, adhesion, etc. are poor when using the polymer alone, and plasticizers, binders, etc. are added to improve these drawbacks. However, this caused problems such as a decrease in photosensitivity and an increase in residual potential.

最近では、電荷発生機能と電荷輸送機能を分離した機能
分離型積層感光体の開発が盛んに行われ有機化合物系の
低分子光導電性化合物を電荷移動媒体として絶縁性のバ
インダーポリマー中に溶解させて電荷輸送層とするケー
スが多くなってきている。特にヒドラゾン誘導体を媒体
とした良好な感光性を有するものが得られている。この
場合には表面硬度、可撓性、接着性などの性能をバイン
ダーポリマーの選択により向上させることがてきるため
、より性能の優れた感光体を得ることができる。
Recently, there has been active development of functionally separated laminated photoreceptors that separate the charge generation function and charge transport function. Increasingly, the charge transport layer is used as a charge transport layer. In particular, those having good photosensitivity using hydrazone derivatives as a medium have been obtained. In this case, performance such as surface hardness, flexibility, and adhesiveness can be improved by selecting a binder polymer, so a photoreceptor with even better performance can be obtained.

機能分離型感光体の光感度は、 (a)電荷発生層に於
ける光電荷発生能、 (b)電荷発生層から電荷輸送層
への電荷注入効率、及び(C)電荷輸送層での電荷輸送
能の3つの積によって決定され各効率の向上を目標に開
発活動が展開されている。
The photosensitivity of a functionally separated photoreceptor is determined by: (a) photocharge generation ability in the charge generation layer, (b) charge injection efficiency from the charge generation layer to the charge transport layer, and (C) charge in the charge transport layer. It is determined by the product of three transport capacities, and development activities are being carried out with the goal of improving each efficiency.

[発明が解決しようとする課題] 導電性支持体上に電荷発生層、電荷輸送層を積層した機
能分離型感光体の光感度と電荷輸送層の乾燥温度との相
関関係について今日明確にわかっていない。
[Problems to be Solved by the Invention] Currently, the correlation between the photosensitivity of a functionally separated photoreceptor in which a charge generation layer and a charge transport layer are laminated on a conductive support and the drying temperature of the charge transport layer is not clearly understood. do not have.

そこで本発明者は、この相関関係を明確化すると同時に
感光体の光感度を向上させるための電荷輸送層の乾燥温
度条件について鋭意検討した。
Therefore, the inventors of the present invention have conducted extensive studies on the drying temperature conditions of the charge transport layer in order to clarify this correlation and at the same time improve the photosensitivity of the photoreceptor.

[課題を解決するための手段] その結果、電荷輸送層の乾燥温度を変化することによっ
て電荷輸送層中の電荷輸送物質に濃度勾配が生じること
が判明し、導電性支持体上に電荷発生層、電荷輸送層の
順に積層した感光体に於いては電荷輸送層の表面に於い
て電荷輸送物質の濃度を電荷輸送層の内部に於ける濃度
よりも小さくする乾燥温度条件、また導電性支持体上に
電荷輸送層、電荷発生層の順に積層した感光体では電荷
輸送層と電荷発生層の界面に於いて電荷輸送物質の濃度
を電荷輸送層の内部に於ける濃度よりも大きくする乾燥
温度条件で所期の目的を達成することを見い出し、本発
明が完成するに至った。
[Means for solving the problem] As a result, it was found that by changing the drying temperature of the charge transport layer, a concentration gradient is generated in the charge transport substance in the charge transport layer. , drying temperature conditions that make the concentration of the charge transport substance on the surface of the charge transport layer lower than the concentration inside the charge transport layer in a photoreceptor in which charge transport layers are laminated in this order, and a conductive support. In the case of a photoreceptor in which a charge transport layer and a charge generation layer are laminated in this order, the drying temperature conditions are such that the concentration of the charge transport substance at the interface between the charge transport layer and the charge generation layer is higher than the concentration inside the charge transport layer. It was discovered that the intended purpose could be achieved, and the present invention was completed.

即ち本発明の要旨は、導電性支持体上に電荷発生層、電
荷輸送層の順に積層した積層型電子写真感光体に於いて
電荷輸送層の表面に於いて電荷輸送物質の濃度が電荷輸
送層の内部に於ける濃度よりも小さいことを特徴とする
電子写真感光体、また導電性支持体上に電荷輸送層、電
荷発生層の順に積層した積層型電子写真感光体に於いて
電荷輸送層と電荷発生層の界面に於いて電荷輸送物質の
濃度が電荷輸送層の内部に於ける濃度よりも大きいこと
を特徴とする電子写真感光体、及び積層型電子写真感光
体の製造方法に於いて電荷輸送層の乾燥温度を調節する
ことによって電荷輸送層中の電荷輸送物質に濃度勾配を
もたせ、感光体の光感度を調整することを特徴とする電
子写真感光体の製造方法にある。
That is, the gist of the present invention is that in a laminated electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated in this order on a conductive support, the concentration of a charge transport substance on the surface of the charge transport layer is lower than that of the charge transport layer. An electrophotographic photoreceptor characterized in that the density is lower than that in the interior of the charge transport layer, and a laminated electrophotographic photoreceptor in which a charge transport layer and a charge generation layer are laminated in this order on a conductive support. An electrophotographic photoreceptor characterized in that the concentration of the charge transport substance at the interface of the charge generation layer is higher than the concentration inside the charge transport layer, and a method for producing a laminated electrophotographic photoreceptor, in which the charge is A method for producing an electrophotographic photoreceptor, characterized in that the photosensitivity of the photoreceptor is adjusted by creating a concentration gradient in the charge transport substance in the charge transport layer by adjusting the drying temperature of the transport layer.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

一般に機能分離型積層感光体の光感度は(a)電荷発生
層に於ける光電荷発生能、(b) 電荷発生層から電荷
輸送層への電荷注入効率及び<c>電荷輸送層での電荷
輸送能の3つの積に支配されることが知られている。し
たがって、これら3つの効率(a)、  (b)、  
(C)のうちの1つでも向上すれば感光体の光感度とし
ては大きなものか得られる。
In general, the photosensitivity of a functionally separated laminated photoreceptor depends on (a) the photocharge generation ability in the charge generation layer, (b) the charge injection efficiency from the charge generation layer to the charge transport layer, and <c> the charge in the charge transport layer. It is known that transport capacity is controlled by three products. Therefore, these three efficiencies (a), (b),
If even one of (C) is improved, the photosensitivity of the photoreceptor can be increased.

本発明者は、機能分離型積層感光体の光感度を調整する
ために(b)電荷注入効率と(C)電荷輸送能の2つの
効率を制御する手段について検討し、電荷輸送層の乾燥
温度を調節する方法を見い出した。
In order to adjust the photosensitivity of a function-separated layered photoreceptor, the present inventor investigated means for controlling two efficiencies: (b) charge injection efficiency and (C) charge transport ability, and determined the drying temperature of the charge transport layer. I found a way to adjust it.

具体的には積層型感光体の電荷輸送層を塗工によって形
成する際に用いる塗料に含まれる有機溶剤の沸点を電荷
輸送層の乾燥温度設定の指標とするものである。結果的
には電荷輸送層の乾燥温度を塗料中に含有する有機溶剤
の沸点以上及び以下に変化した場合、第1図に示すよう
に電荷輸送層中の電荷輸送物質の濃度勾配に変化が現わ
れ、有機溶剤の沸点以上・以下の乾燥温度に対して電荷
輸送層表面に於ける電荷輸送物質の濃度が異なることが
わかった。これは電荷輸送層の乾燥時に於ける熱エネル
ギーの違いにより電荷輸送物質の移動度が異なるために
生じるものと推定される。電荷輸送層表面に於ける電荷
輸送物質の濃度の検出方法としては第1図に示したES
CA表面分析法の他、FT−IR−ATR法等が挙げら
れる。
Specifically, the boiling point of the organic solvent contained in the paint used when forming the charge transport layer of the multilayer photoreceptor by coating is used as an index for setting the drying temperature of the charge transport layer. As a result, when the drying temperature of the charge transport layer changes to above or below the boiling point of the organic solvent contained in the paint, a change appears in the concentration gradient of the charge transport substance in the charge transport layer, as shown in Figure 1. It was found that the concentration of the charge transport substance on the surface of the charge transport layer differs depending on the drying temperature above or below the boiling point of the organic solvent. This is presumably caused by the difference in the mobility of the charge transport substance due to the difference in thermal energy during drying of the charge transport layer. As a method for detecting the concentration of the charge transport substance on the surface of the charge transport layer, the ES shown in Figure 1 is used.
In addition to the CA surface analysis method, the FT-IR-ATR method and the like can be mentioned.

そこで、積層型感光体の光感度の支配因子である(b)
電荷注入効率及び(C)電荷輸送能について検討を行っ
たところ、このような電荷輸送層の乾燥温度の調節によ
って(b)、  (C)2つの効率に変化が現われた。
Therefore, (b) is the governing factor of photosensitivity of the laminated photoconductor.
When we investigated the charge injection efficiency and (C) charge transport ability, we found that the two efficiencies (b) and (C) changed by adjusting the drying temperature of the charge transport layer.

例えば、導電性支持体上に電荷発生層、電荷輸送層の順
に積層した電子写真感光体では電荷輸送層の乾燥温度が
高くなるに伴って(b)電荷注入効率、(C)電荷輸送
能(第2図)が低下した。これは電荷輸送層中の電荷輸
送物質の濃度勾配の違いに起因するものと推測される。
For example, in an electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated in this order on a conductive support, as the drying temperature of the charge transport layer increases, (b) charge injection efficiency, (C) charge transport ability ( Figure 2) decreased. This is presumed to be due to the difference in the concentration gradient of the charge transport substance in the charge transport layer.

(b)電荷発生層から電荷輸送層への電荷注入効率の測
定方法にはゼログラフインク法、光音響分光(PAS)
法等が挙げられ、(c)電荷輸送層での電荷輸送能の測
定方法にはTOF法(第2図)等がよく知られている。
(b) Methods for measuring charge injection efficiency from the charge generation layer to the charge transport layer include the xerographic ink method and photoacoustic spectroscopy (PAS).
(c) The TOF method (FIG. 2) is well known as a method for measuring the charge transport ability in the charge transport layer.

以上の知見を基にして、導電性支持体上に電荷発生層、
電荷輸送層の順に積層した積層型電子写真感光体に於い
て電荷輸送層の表面に於いて電荷輸送物質の濃度を電荷
輸送層の内部に於ける濃度よりも小さくすることによっ
て感光体の光感度が向上することを特徴とする電子写真
感光体、また導電性支持体上に電荷輸送層、電荷発生層
の順に積層した積層型電子写真感光体に於いて電荷輸送
層と電荷発生層の界面に於いて電荷輸送物質の濃度を電
荷輸送層の内部に於ける濃度よりも大きくすることによ
って感光体の光感度が向上することを特徴とする電子写
真感光体、及び積層型電子写真感光体の製造方法に於い
て電荷輸送層の乾燥温度を調節することによって電荷輸
送層中の電荷輸送物質に濃度勾配をもたせ、感光体の光
感度を調整することを特徴とする電子写真感光体の製造
方法について発明するに至った。
Based on the above knowledge, a charge generation layer on a conductive support,
In a laminated electrophotographic photoreceptor in which charge transport layers are laminated in this order, the photosensitivity of the photoreceptor is improved by making the concentration of the charge transport substance on the surface of the charge transport layer lower than the concentration inside the charge transport layer. An electrophotographic photoreceptor characterized by an improved charge transport layer and a laminated electrophotographic photoreceptor in which a charge transport layer and a charge generation layer are laminated in this order on a conductive support. Production of an electrophotographic photoreceptor and a laminated electrophotographic photoreceptor, characterized in that the photosensitivity of the photoreceptor is improved by making the concentration of a charge transporting substance higher than the concentration inside the charge transport layer. Regarding a method for producing an electrophotographic photoreceptor, the process comprising adjusting the drying temperature of the charge transport layer to create a concentration gradient in the charge transport substance in the charge transport layer, thereby adjusting the photosensitivity of the photoreceptor. I ended up inventing it.

本発明の感光体に用いられる導電性支持体の材料として
は、例えばアルミニウム、銅、亜鉛、ステンレス、クロ
ム、チタン、ニッケル、モリブデン、バナジウム、イン
ジウム、金、白金等の金属またはこれらの合金を用いた
金属板、金属ドラム、あるいは導電性ポリマー、酸化イ
ンジウム等の導電性化合物やアルミニウム、パラジウム
、金等の金属またはこれらの合金を塗布、蒸着、あるい
はラミネートした紙、プラスチックフィルム等が挙げら
れる。
As the material of the conductive support used in the photoreceptor of the present invention, for example, metals such as aluminum, copper, zinc, stainless steel, chromium, titanium, nickel, molybdenum, vanadium, indium, gold, and platinum, or alloys thereof can be used. Examples include paper and plastic films coated with, vapor-deposited, or laminated with conductive polymers, conductive compounds such as indium oxide, metals such as aluminum, palladium, and gold, or alloys thereof.

感光層に用いられる電荷発生材料としては、例えば、ア
ゾ系顔料、キノン系顔料、ペリレン系顔料、インジゴ系
顔料、チオインジゴ系顔料、ヒスベンゾイミダゾール系
顔料、フタロシアニン系顔料、キナクリドン系顔料、キ
ノリン系顔料、レーキ顔料、アゾレーキ顔料、アントラ
キノン系顔料、オキサジン系顔料、ジオキサジン系顔料
、トリフェニルメタン系顔料、アズレニウム染料、スフ
ウニアリウム染料、ピリリウム系染料、トリアリルメタ
ン染料、キサンチン染料、チアジン染料、ンアニン系染
料等の種々の有機顔料、染料や、更にアモルファスシリ
コン、アモルファスセレン、テルル、セレン−テルル合
金、硫化カドミウム、硫化アンチモン、酸化亜鉛、硫化
亜鉛等の無機材料を挙げることが出来る。これらの材料
は導電性支持体上にバインダー樹脂に分散され塗布され
るが、真空蒸着、スパッタリング、CVD法等の手段に
より成膜されて用いられる。
Examples of charge-generating materials used in the photosensitive layer include azo pigments, quinone pigments, perylene pigments, indigo pigments, thioindigo pigments, hisbenzimidazole pigments, phthalocyanine pigments, quinacridone pigments, and quinoline pigments. , lake pigments, azo lake pigments, anthraquinone pigments, oxazine pigments, dioxazine pigments, triphenylmethane pigments, azulenium dyes, sufuniarium dyes, pyrylium dyes, triallylmethane dyes, xanthine dyes, thiazine dyes, n-anine dyes, etc. Examples include various organic pigments and dyes, as well as inorganic materials such as amorphous silicon, amorphous selenium, tellurium, selenium-tellurium alloys, cadmium sulfide, antimony sulfide, zinc oxide, and zinc sulfide. These materials are dispersed in a binder resin and applied onto a conductive support, and are used after being formed into a film by means such as vacuum evaporation, sputtering, and CVD.

電荷発生物質はここに挙げたものに限定されるものでは
な(、その使用に際しては単独、あるいは2種類以上混
合して用いることが出来る。
The charge-generating substance is not limited to those listed here (but can be used alone or in combination of two or more types).

また、電荷輸送物質としては一般に電子を輸送する物質
と正孔を輸送する物質の2種類に分類されるが、本発明
の感光体には両者とも使用することができる。
Further, charge transport materials are generally classified into two types: materials that transport electrons and materials that transport holes, and both can be used in the photoreceptor of the present invention.

電子輸送物質としては、例えばクロラニル、ブロモアニ
ル、テトラシアノエチレン、テトラシアノキノジメタン
、2. 4. 7−ト’)ニトロ−9フルオレノン、2
. 4. 5. 7−テトラニトロ9−フルオレノン、
9−ジシアノメチレン−2゜4.7−トリニトロフルオ
レノン、9−ジシアノメチレン−2,4,5,7−テト
ラニトロフルオレノン、2. 4. 5. 7−テトラ
ニトロキサントン、2. 4. 8−トリニドロチオキ
サントン、テトラニトロカルバゾール、2,3−ジクロ
ロ−5゜6−ジシアノベンゾキノン、2. 4. 7−
ドリニトo−9,10−フェナントレンキノン、テトラ
クロロ無水フタール酸、ジフェノキノン誘導体等の有機
化合物が挙げられる。
Examples of electron transport substances include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, 2. 4. 7-t') Nitro-9 fluorenone, 2
.. 4. 5. 7-tetranitro 9-fluorenone,
9-dicyanomethylene-2゜4.7-trinitrofluorenone, 9-dicyanomethylene-2,4,5,7-tetranitrofluorenone, 2. 4. 5. 7-tetranitroxanthone, 2. 4. 8-trinidrothioxanthone, tetranitrocarbazole, 2,3-dichloro-5°6-dicyanobenzoquinone, 2. 4. 7-
Examples thereof include organic compounds such as dolinito-o-9,10-phenanthrenequinone, tetrachlorophthalic anhydride, and diphenoquinone derivatives.

正孔輸送物質としては、例えばピレン、N−エチルカル
バゾール、N−イソプロピルカルバゾール、N−フェニ
ルカルバゾール、あるいはN−メチル−2−フェニルヒ
ドラジノ−3−メチリデン9−エチルカルバゾール、N
、  N−ジフェニルヒドラジノ−3−メチリデン−9
−エチルカルバゾール、p−N、N−ジメチルアミノベ
ンズアルデヒドジフェニルヒドラゾン、p−N、N−ジ
メチルアミノベンズアルデヒドジフェニルヒドラゾン、
p−N、N−ジフェニルアミノベンズアルデヒドジフェ
ニルヒドラゾン、等のヒドラゾン類、2.5−ビス(p
−ジエチルアミノフェニル)1、 3. 4−オキサジ
アゾール、1−フェニル3−(p−ジエチルアミノスチ
リル) −5−(p=ニジエチルアミノフェニルピラゾ
リン等のピラゾリン類、トリフェニルアミン、N、  
N、  N′N′−テトラフェニル−1,1′ −ジフ
ェニル−4,4′−ジアミン、N、  N’  −ジフ
ェニル−N。
Examples of the hole transport substance include pyrene, N-ethylcarbazole, N-isopropylcarbazole, N-phenylcarbazole, N-methyl-2-phenylhydrazino-3-methylidene-9-ethylcarbazole, N-
, N-diphenylhydrazino-3-methylidene-9
-ethylcarbazole, p-N,N-dimethylaminobenzaldehyde diphenylhydrazone, p-N,N-dimethylaminobenzaldehyde diphenylhydrazone,
hydrazones such as p-N, N-diphenylaminobenzaldehyde diphenylhydrazone, 2.5-bis(p
-diethylaminophenyl) 1, 3. 4-oxadiazole, 1-phenyl 3-(p-diethylaminostyryl)-5-(p=nidiethylaminophenylpyrazoline and other pyrazolines, triphenylamine, N,
N, N'N'-tetraphenyl-1,1'-diphenyl-4,4'-diamine, N, N'-diphenyl-N.

N′−ビス(3−メチルフェニル)−1,1’ビフェニ
ル−4,4′ −ジアミン等が挙げられる。
Examples include N'-bis(3-methylphenyl)-1,1'biphenyl-4,4'-diamine.

電荷輸送物質はここに挙げたものに限定されるものでは
なく、その使用に際しては単独、あるいは2種類以上混
合して用いることが出来る。
The charge transport materials are not limited to those listed here, and can be used alone or in combination of two or more kinds.

バインダーとしては、疎水性で、電気絶縁性のフィルム
形成可能な高分子重合体を用いるのが好ましい。このよ
うな高分子重合体としては、例えばポリカーボネート、
ポリエステル、メタクリル樹脂、アクリル樹脂、ポリ塩
化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリビ
ニルアセテート、スチレン−ブタジェン共重合体、塩化
ビニリデン−アクリロニトリル重合体、塩化ビニル−酢
酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレ
イン酸共重合体、シリコン樹脂、シリコン−アルキッド
樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−
アルキッド樹脂、ポリ−N−ビニルカルバゾール、ポリ
ビニルブチラール、ポリビニルフォルマール、ポリスル
ホン等が挙げられるが、これらに限定されるものではな
い。これらのバインダーは、単独または2種類以上混合
して用いられる。
As the binder, it is preferable to use a hydrophobic polymer capable of forming an electrically insulating film. Examples of such high molecular weight polymers include polycarbonate,
Polyester, methacrylic resin, acrylic resin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, styrene-butadiene copolymer, vinylidene chloride-acrylonitrile polymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate- Maleic anhydride copolymer, silicone resin, silicone-alkyd resin, phenol-formaldehyde resin, styrene-
Examples include, but are not limited to, alkyd resins, poly-N-vinylcarbazole, polyvinyl butyral, polyvinyl formal, and polysulfone. These binders may be used alone or in combination of two or more.

また、これらのバインダーとともに可塑剤、増感剤、表
面改質剤等の添加剤を使用することもできる。
Moreover, additives such as plasticizers, sensitizers, and surface modifiers can also be used together with these binders.

可塑剤としては、例えばビフェニル、塩化ビフェニル、
0−ターフェニル、ジブチルフタレート、ジエチレング
リコールフタレート、ジオクチルフタレート、トリフェ
ニル燐酸、メチルナフタレン、ベンゾフェノン、塩素化
パラフィン、ポリフロピレン、ポリスチレン、各種フル
オロ炭化水素等が挙げられる。
Examples of plasticizers include biphenyl, chlorinated biphenyl,
Examples include 0-terphenyl, dibutyl phthalate, diethylene glycol phthalate, dioctyl phthalate, triphenyl phosphoric acid, methylnaphthalene, benzophenone, chlorinated paraffin, polypropylene, polystyrene, and various fluorohydrocarbons.

増感剤としては、例えばクロラニル、テトラシアノエチ
レン、メチルバイオレット、ローダミンB1  シアニ
ン染料、メロシアニン染料、ビリリウム染料、チアピリ
リウム染料等が挙げられる。
Examples of the sensitizer include chloranil, tetracyanoethylene, methyl violet, rhodamine B1 cyanine dye, merocyanine dye, biryllium dye, and thiapyrylium dye.

表面改質剤としては、例えばシリコンオイル、フッ素樹
脂等が挙げられる。
Examples of the surface modifier include silicone oil and fluororesin.

更に本発明においては、導電性支持体と感光層との接着
性を向上させたり、支持体から感光層への自由電荷の注
入を阻止するため、導電性支持体と感光層の間に、必要
に応じて接着剤層あるいはバリヤー層を設けることもで
きる。これらの層に用いられる材料としては、前記バイ
ンダーに用いられる高分子化合物の他、カゼイン、ゼラ
チン、ポリビニルアルコール、エチルセルロース、フェ
ノール樹脂、ポリアミド、カルボキシ−メチルセルロー
ス、塩化ビニリデン系ポリマーラテックス、ポリウレタ
ン、酸化アルミニウム、酸化錫、酸化チタン等が挙げら
れる。
Furthermore, in the present invention, in order to improve the adhesion between the conductive support and the photosensitive layer and to prevent the injection of free charges from the support to the photosensitive layer, it is necessary to add a layer between the conductive support and the photosensitive layer. An adhesive layer or barrier layer can also be provided depending on the requirements. Materials used for these layers include, in addition to the polymer compound used in the binder, casein, gelatin, polyvinyl alcohol, ethyl cellulose, phenolic resin, polyamide, carboxy-methyl cellulose, vinylidene chloride polymer latex, polyurethane, aluminum oxide, Examples include tin oxide and titanium oxide.

積層型感光体を塗工によって形成する場合、上記の電荷
発生剤や電荷輸送物質をバインダー等に混合したものを
溶剤に溶解した塗料を用いるが、バインダーを溶解する
溶剤は、バインダーの種類によって異なるが、下層を溶
解しないものの中から選択することが好ましい。具体的
な有機溶剤の例としては、例えばメタノール、エタノー
ル、n−プロパツール等のアルコール類:アセトン、メ
チルエチルケトン、シクロヘキサノン等のケトン類:N
、N−ジメチルホルムアミド、N、  N−ジメチルア
セトアミド等のアミド類;テトラヒドロフラン、ジオキ
サン、メチルセロソルブ等のエーテル類;酢酸メチル、
酢酸エチル等のエステル類;ジメチルスルホキシド、ス
ルホラン等のスルホキシド及びスルホン類;塩化メチレ
ン、クロロホルム、四塩化炭素、トリクロロエタン等の
脂肪族ハロゲン化炭化水素;ベンゼン、トルエン、キシ
レン、モノクロルベンゼン、ジクロルベンゼン等の芳香
族類などが挙げられる。
When forming a laminated photoreceptor by coating, a paint is used in which a mixture of the charge generating agent and charge transporting substance described above in a binder is dissolved in a solvent, but the solvent used to dissolve the binder varies depending on the type of binder. However, it is preferable to select one from among those that do not dissolve the lower layer. Specific examples of organic solvents include alcohols such as methanol, ethanol, and n-propanol; ketones such as acetone, methyl ethyl ketone, and cyclohexanone;
, N-dimethylformamide, N,N-dimethylacetamide, and other amides; tetrahydrofuran, dioxane, methyl cellosolve, and other ethers; methyl acetate,
Esters such as ethyl acetate; sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane; aliphatic halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, and trichloroethane; benzene, toluene, xylene, monochlorobenzene, dichlorobenzene, etc. Examples include aromatics.

塗工法としては、例えば浸積コーティング法、スプレー
コーティング法、スピナーコーティング法、ビードコー
ティング法、ワイヤーバーコーティング法、ブレードコ
ーティング法、ローラコーティング法、カーテンコーテ
ィング法等のコーティング法を用いることが出来る。
As the coating method, coating methods such as dip coating, spray coating, spinner coating, bead coating, wire bar coating, blade coating, roller coating, and curtain coating can be used.

[実施例] 以下、実施例により本発明を更に具体的に説明するが、
これにより本発明が実施例に限定されるものではない。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.
Therefore, the present invention is not limited to the examples.

尚、実施例中「部」とあるのは「重量部」を示す。In addition, "parts" in the examples indicate "parts by weight."

布し電荷発生層を形成した。A charge generation layer was formed.

実施例1 市販の可溶性ナイロン(商品名rCM−4000」東し
■製)2部をメタノール75部、トルエン20部、n−
ブタノール5部に溶解し、アルミニウムドラム面上に乾
燥後の膜厚が800Aになるように塗布し下地層を形成
した。
Example 1 Two parts of commercially available soluble nylon (trade name: rCM-4000 manufactured by Toshi) were mixed with 75 parts of methanol, 20 parts of toluene, and n-
It was dissolved in 5 parts of butanol and coated on the surface of an aluminum drum to a film thickness of 800A after drying to form a base layer.

次にチタニルフタロシアニン顔料8部と市販のブチラー
ル樹脂(商品名「エスレックBH−3J積水化学工業■
製)4部を1. 1. 2−1Jクロロ工タン300部
とジクロロメタン200部に加え、サンドミルで分散し
て得られた塗料を上記下地層上に乾燥後2000Aの膜
厚となるように塗t 構造式(1) 更に正孔輸送物質である、構造式(1)のヒドラゾン化
合物17部と市販のポリカーボネート樹脂(商品名「ニ
ーピロンZ−200J三菱瓦斯化学■製)19部とビス
t−ブチルヒドロキシトルエン(BIT)0.85部を
ジオキサン(沸点:101℃)60部とジクロロメタン
(沸点: 40℃)40部に溶解して得られた塗料を上
記電荷発生層上に塗布し、高沸点溶剤であるジオキサン
の沸点101°Cよりも低い温度(70°C)で1時間
乾燥して膜厚18μmの電荷輸送層を形成することによ
って感光体を作製した。
Next, 8 parts of titanyl phthalocyanine pigment and commercially available butyral resin (product name: "S-LEC BH-3J Sekisui Chemical Co., Ltd."
1. 1. 2-1 In addition to 300 parts of chlorothane and 200 parts of dichloromethane, a paint obtained by dispersing it in a sand mill is applied on the base layer to a film thickness of 2000 A after drying. 17 parts of a hydrazone compound of structural formula (1), which is a transport substance, 19 parts of a commercially available polycarbonate resin (trade name: "Nipilon Z-200J manufactured by Mitsubishi Gas Chemical Company Ltd."), and 0.85 parts of bis-t-butylhydroxytoluene (BIT). was dissolved in 60 parts of dioxane (boiling point: 101°C) and 40 parts of dichloromethane (boiling point: 40°C), and the resulting paint was applied onto the charge generation layer, and the mixture was heated to a temperature higher than the boiling point of dioxane (101°C), which is a high boiling point solvent. A photoreceptor was prepared by drying at a low temperature (70° C.) for 1 hour to form a charge transport layer with a thickness of 18 μm.

次に、電荷輸送層の乾燥温度がジオキサンの沸点101
°Cよりも高い温度(130°C)であることを除いて
は全く同様の条件で感光体を作製した。
Next, the drying temperature of the charge transport layer is 101, which is the boiling point of dioxane.
A photoreceptor was produced under exactly the same conditions except that the temperature was higher than 130°C.

ここで、低温乾燥で得られた感光体を実施例1、高温乾
燥のものを比較例1とした。
Here, a photoreceptor obtained by drying at a low temperature was designated as Example 1, and a photoreceptor obtained by drying at a high temperature was designated as Comparative Example 1.

こうして作製した感光体の電子写真特性をプロセス・ス
ピードが、6786 mm/m i n、のLDプリン
タで低温低湿(5°C/20%RH)、常温常湿(23
°C150%RH)、高温高湿(40’C/80%RH
)の3環境下で測定した。但し、光感度測定のための露
光は波長780nmの半導体レーザを0.7mW/cm
’(感光体表面に於いて0 、6 mW/ c m”)
の強度で行った。この結果を表1に示した。ここで■。
The electrophotographic properties of the photoreceptor thus prepared were tested using an LD printer with a process speed of 6786 mm/min at low temperature and low humidity (5°C/20% RH) and at room temperature and normal humidity (23°C/min).
°C150%RH), high temperature and high humidity (40'C/80%RH)
) Measurements were made under three environments. However, the exposure for photosensitivity measurement was performed using a semiconductor laser with a wavelength of 780 nm at 0.7 mW/cm.
'(0,6 mW/cm" at the photoreceptor surface)
It was performed with the intensity of The results are shown in Table 1. Here ■.

は帯電能、■、は感度電位、]■。−V L lは光感
度を表す。
is chargeability, ■ is sensitivity potential, ]■. -V L l represents photosensitivity.

表から明らかなように高沸点溶剤であるジオキサンの沸
点よりも低い温度で乾燥して得られた感光体は高温で乾
燥した感光体に比べ光感度が向上した。
As is clear from the table, the photoreceptor obtained by drying at a temperature lower than the boiling point of dioxane, which is a high boiling point solvent, had improved photosensitivity compared to the photoreceptor dried at a high temperature.

表1 実施例2 構造式(2) 実施例1と同一の方法で下地層及び電荷発生層を形成し
、その上に正孔輸送物質である、構造式(2)のヒドラ
ゾン化合物17部と市販のポリカーボネート樹脂(商品
名「ニーピロンZ−200J三菱瓦斯化学■製)19部
とビスt−ブチルヒドロキシトルエン(BIT)0.8
5部をモノクロロヘンセン(沸点:132℃)60部と
ジクロロメタン(沸点:40°C)40部に溶解して得
られた塗料を上記電荷発生層上に塗布し、高沸点溶剤で
あるモノクロロベンゼンの沸点132℃よりも低い温度
(110°C)で1時間乾燥して膜厚17μmの電荷輸
送層を形成することによって感光体を作製した。この感
光体を実施例2とする。
Table 1 Example 2 Structural Formula (2) A base layer and a charge generation layer were formed by the same method as in Example 1, and 17 parts of a hydrazone compound of Structural Formula (2), which is a hole transport material, was added on top of the base layer and a charge generation layer by the same method as in Example 1. 19 parts of polycarbonate resin (trade name: "Nipiron Z-200J" manufactured by Mitsubishi Gas Chemical) and 0.8 parts of bis-t-butylhydroxytoluene (BIT).
A coating obtained by dissolving 5 parts of monochlorobenzene (boiling point: 132°C) in 60 parts of monochlorobenzene (boiling point: 132°C) and 40 parts of dichloromethane (boiling point: 40°C) was applied on the charge generation layer, and a coating material obtained by dissolving 5 parts of monochlorobenzene (boiling point: 132°C) was applied onto the charge generation layer. A photoreceptor was prepared by drying for 1 hour at a temperature (110°C) lower than the boiling point of 132°C to form a charge transport layer with a thickness of 17 μm. This photoreceptor will be referred to as Example 2.

次に、電荷輸送層の乾燥温度がモノクロロベンゼンの沸
点132°Cよりも高い温度(140°C)であること
を除いては全く同様の条件で感光体を作製した。この感
光体を比較例2とする。
Next, a photoreceptor was produced under exactly the same conditions except that the drying temperature of the charge transport layer was higher (140°C) than the boiling point of monochlorobenzene, 132°C. This photoreceptor is referred to as Comparative Example 2.

こうして得られた感光体に対して実施例1と同様な方法
で電子写真特性の測定を行った。この結果を表2に示し
た。
The electrophotographic properties of the thus obtained photoreceptor were measured in the same manner as in Example 1. The results are shown in Table 2.

この結果についても、高沸点溶剤であるモノクロロベン
ゼンの沸点よりも低い温度で乾燥した感光体の方が高温
乾燥のものに比し高い光感度が得られた。
Regarding this result as well, the photoreceptor dried at a temperature lower than the boiling point of monochlorobenzene, which is a high boiling point solvent, had higher photosensitivity than the one dried at a high temperature.

表2 [発明の効果コ 本発明によれば、導電性支持体上に電荷発生層、電荷輸
送層を積層した機能分離型電子写真感光体に於いて電荷
輸送層の乾燥温度を調節するだけで感光体の光感度の調
整が可能となり、極めて容易な手段で高感度な電子写真
感光体及びその製造方法を提供することができる。
Table 2 [Effects of the Invention] According to the present invention, in a function-separated electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated on a conductive support, the drying temperature of the charge transport layer can be adjusted. The photosensitivity of the photoreceptor can be adjusted, and a highly sensitive electrophotographic photoreceptor and a method for manufacturing the same can be provided by extremely easy means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電子写真感光体の電荷輸送層に於ける電荷輸送
物質濃度のdepth−prof i 1 eを示すグ
ラフであり、第2図は導電性支持体上に電荷発生層、電
荷輸送層の順に積層した電子写真感光体に於ける電荷輸
送層の乾燥温度(°C)と電荷のドリフト移動度(cm
”/ s e c −V)の関係を示すグラフである。 代理人  弁理士 高 橋  勝 利 手続補正書(自発) 平成3年2月27日 特許庁長官 植  松   敏  殿 l 事件の表示 平成2年特 許 廓 第219727号2、発明の名称 電子写真感光体及びその製造方法 3、補正をする者 事件との関係   特許出願人 東京都板橋区坂下三丁目35番58号 (288)犬日本インキ化学工業株式会社代表者   
 川 村 茂 邦 4、代理人 〒103東京都中央区日本橋三丁目7番20号6、補正
の内容 明細書第19貞節1 貞節13行における [mW/cm2籾 を 「mWJ に補正する。 2行及び明細書第1 5、補正の対象 明細書の1発明の詳細な説明−〇欄 手続補正書(自発) 平成3年3月5日 特許庁長官 植  松   敏  殿 1、事件の表示 平成2年特 許 靜 第219727号2、発明の名称 電子写真感光体及びその製造方法 3、補正をする者 事件との関係   特許出願人 東京都板橋区坂下三丁目35番58号 (288>犬日本インキ化学工業株式会社代表者   
 川 村 茂 邦 4、代理人 〒103東京都中央区日本橋三丁目7番20号6、補正
の内容 別紙の通り。 第 図 平成3年5月2ρ日
FIG. 1 is a graph showing the depth-profi of the charge transport material concentration in the charge transport layer of an electrophotographic photoreceptor, and FIG. Drying temperature (°C) of charge transport layer and charge drift mobility (cm) in sequentially laminated electrophotographic photoreceptor
” / sec -V). Agent Patent Attorney Katsutoshi Takahashi Procedural Amendment (Voluntary) February 27, 1991 Commissioner of the Patent Office Toshi Uematsu Toshiaki Uematsu Display of the Case 1990 Patent No. 219727 2, Name of the invention Electrophotographic photoreceptor and its manufacturing method 3, Relationship with the person making the amendment Patent applicant No. 35-58 Sakashita 3-chome, Itabashi-ku, Tokyo (288) Inu Nippon Ink Representative of Kagaku Kogyo Co., Ltd.
Shigeru Kuni Kawamura 4, Agent 6-20-3 Nihonbashi, Chuo-ku, Tokyo 103, Statement of Contents of Amendment No. 19 Jisetsu 1 Revise [mW/cm2 paddy in line 13 to "mWJ". Line 2 and Specification No. 1 5. Detailed explanation of one invention in the specification to be amended - ○ Column procedural amendment (voluntary) March 5, 1991 Commissioner of the Patent Office Toshi Uematsu Toshi 1. Indication of the case 1990 Patent No. 219727 No. 2, Name of the invention Electrophotographic photoreceptor and its manufacturing method 3, Relationship with the person making the amendment Patent applicant No. 35-58 Sakashita, Itabashi-ku, Tokyo (288> Inu Nippon Ink Chemical Representative of Kogyo Co., Ltd.
Shigeru Kuni Kawamura 4, Agent: 3-7-20-6, Nihonbashi, Chuo-ku, Tokyo 103, details of the amendment as per the attached sheet. Figure May 2nd, 1991

Claims (1)

【特許請求の範囲】 1、導電性支持体上に電荷発生層、電荷輸送層の順に積
層した電子写真感光体に於いて、電荷輸送層の表面に於
いて電荷輸送物質の濃度が電荷輸送層の内部に於ける濃
度よりも小さいことを特徴とする電子写真感光体。 2、導電性支持体上に電荷輸送層、電荷発生層の順に積
層した電子写真感光体に於いて、電荷輸送層と電荷発生
層の界面に於いて電荷輸送物質の濃度が電荷輸送層の内
部に於ける濃度よりも大きいことを特徴とする電子写真
感光体。 3、導電性支持体上に電荷発生層、電荷輸送層を積層し
た電子写真感光体の製造方法に於いて、電荷輸送層の乾
燥温度を調節することによって電荷輸送層中の電荷輸送
物質に濃度勾配をもたせ、感光体の光感度を調整するこ
とを特徴とする電子写真感光体の製造方法。
[Scope of Claims] 1. In an electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated in this order on a conductive support, the concentration of a charge transport substance on the surface of the charge transport layer is lower than that of the charge transport layer. An electrophotographic photoreceptor characterized in that the density is lower than that inside the electrophotographic photoreceptor. 2. In an electrophotographic photoreceptor in which a charge transport layer and a charge generation layer are laminated in this order on a conductive support, the concentration of the charge transport substance at the interface between the charge transport layer and the charge generation layer is lower than that inside the charge transport layer. An electrophotographic photoreceptor characterized by having a density greater than that at . 3. In a method for manufacturing an electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated on a conductive support, the concentration of the charge transport substance in the charge transport layer is adjusted by adjusting the drying temperature of the charge transport layer. 1. A method for producing an electrophotographic photoreceptor, the method comprising providing a gradient to adjust the photosensitivity of the photoreceptor.
JP21972790A 1990-08-21 1990-08-21 Electrophotographic sensitive body and manufacture of same Pending JPH04101152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21972790A JPH04101152A (en) 1990-08-21 1990-08-21 Electrophotographic sensitive body and manufacture of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21972790A JPH04101152A (en) 1990-08-21 1990-08-21 Electrophotographic sensitive body and manufacture of same

Publications (1)

Publication Number Publication Date
JPH04101152A true JPH04101152A (en) 1992-04-02

Family

ID=16740028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21972790A Pending JPH04101152A (en) 1990-08-21 1990-08-21 Electrophotographic sensitive body and manufacture of same

Country Status (1)

Country Link
JP (1) JPH04101152A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040682A (en) * 2000-07-31 2002-02-06 Minolta Co Ltd Method for manufacturing electrophotographic photoreceptor
US7560204B2 (en) 2005-09-12 2009-07-14 Ricoh Company, Ltd. Latent electrostatic image bearing member, and the method for producing the same, image forming method, image forming apparatus, and process cartridge
JP2011022425A (en) * 2009-07-16 2011-02-03 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2014160239A (en) * 2013-01-28 2014-09-04 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040682A (en) * 2000-07-31 2002-02-06 Minolta Co Ltd Method for manufacturing electrophotographic photoreceptor
US7560204B2 (en) 2005-09-12 2009-07-14 Ricoh Company, Ltd. Latent electrostatic image bearing member, and the method for producing the same, image forming method, image forming apparatus, and process cartridge
JP2011022425A (en) * 2009-07-16 2011-02-03 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2014160239A (en) * 2013-01-28 2014-09-04 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic device

Similar Documents

Publication Publication Date Title
JP5866188B2 (en) Electrophotographic photoreceptor, image forming apparatus using the same, and method for producing electrophotographic photoreceptor
JPH04101152A (en) Electrophotographic sensitive body and manufacture of same
JPH0736203A (en) Electrophotographic photoreceptor
JPH0540350A (en) Electrophotographic sensitive material
JP3903552B2 (en) Electrophotographic photoreceptor
JPH05297601A (en) Electrophotographic sensitive body
JP2976533B2 (en) Electrophotographic photoreceptor
JPH0540355A (en) Electrophotographic sensitive body
JPH086267A (en) Resin composition for forming photoconductive layer and electrophotographic photoreceptor using same
JPH05341539A (en) Electrophotographic sensitive body
JP2008281782A (en) Electrophotographic photoreceptor and image forming apparatus
JPH07281456A (en) Electrophotographic photoreceptor
JPH05216250A (en) Electrophotographic sensitive body and apparatus
JPH09325508A (en) Electrophotographic photoreceptor
JPH0511460A (en) Electrophotographic sensitive body
JP2001215741A (en) Electrophotographic photoreceptor
JPH04335648A (en) Electrophotographic sensitive body
JPS61177462A (en) Electrophotographic sensitive body
JPH04102858A (en) Production of electrophotographic sensitive body
JPH05224447A (en) Electrophotographic sensitive body
JPH04267259A (en) Electrophotographic photosensitive body for reverse development
JPH0364761A (en) Electrophotographic sensitive body
JPH04368957A (en) Electrophotographic endlessbelt-shaped photosensitive body
JP2000171991A (en) Method for preserving photosensitive layer coating fluid for electrophotographic photoreceptor, production of electrophotographic photoreceptor and electrophotographic photoreceptor obtained by the method
JPH06295084A (en) Production of electrophotographic sensitive body