JPH04101102A - Heat radiating and buffering structure of optical submarine repeater - Google Patents

Heat radiating and buffering structure of optical submarine repeater

Info

Publication number
JPH04101102A
JPH04101102A JP21821190A JP21821190A JPH04101102A JP H04101102 A JPH04101102 A JP H04101102A JP 21821190 A JP21821190 A JP 21821190A JP 21821190 A JP21821190 A JP 21821190A JP H04101102 A JPH04101102 A JP H04101102A
Authority
JP
Japan
Prior art keywords
repeater
circuit unit
heat dissipation
spring
optical submarine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21821190A
Other languages
Japanese (ja)
Inventor
Michio Kondo
道雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21821190A priority Critical patent/JPH04101102A/en
Publication of JPH04101102A publication Critical patent/JPH04101102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat radiation characteristics without spoiling buffering characteristics by providing a couple of pressure plates which press both ends of a cylindrically molded spring so that they are inscribed with a watertight metallic cylinder and extend to both ends of a repeater circuit unit, sealing the space part where a metallic formed spring is stored, and charging gaseous helium in the space part. CONSTITUTION:The annular pressure plates 30 which are inscribed with the watertight metallic cylinder 8 and extend over an insulator 6 on the repeater circuit unit 4 are energized in one direction by a disc spring 36 held by a retainer 38 and pressed against the insulator 6 formed on the end surface of the metallic formed spring 12 and the end surface of the repeater circuit unit 4. Then a 1st O ring 32 is interposed in an annular groove 30a and a 2nd O ring 34 is interposed in an annular groove 30b to hermetically seal the space part where the metallic formed spring 12 is stored. The gaseous helium 41 is charged in the space part, whose sealing opening 40 is sealed with a sealing plug 42. Consequently, the heat radiation characteristics can be improved without spoiling the buffer effect of the metallic formed spring.

Description

【発明の詳細な説明】 概要 光海底中継器の放熱性と耐衝撃性とを改善した光海底中
継器の放熱・緩衝構造に関し、緩衝特性を損−二うこと
なく放熱特性を改善するようにした光海底中継器の放熱
・緩衝構造を提供することを目的とし、 中継器回路ユニントの外周と耐水圧金属円筒との間に金
属成形バネを介装した光海底中継器の放熱・緩衝構造に
おいて、前記円筒状成形バネの両端を押さえる一対の押
さえ板を、前記耐水圧金属円筒に内接し且つ該中継器回
路ユニットの両端に延在するように設けるとともに、シ
ール手段により前記金属成形バネの収容された空間部を
封止し、該封止された空間部にヘリウムガスを充填して
構成する。
[Detailed Description of the Invention] Summary Regarding a heat dissipation/buffer structure for an optical submarine repeater that improves the heat dissipation performance and impact resistance of the optical submarine repeater, the present invention aims to improve the heat dissipation property without compromising the buffer property. The purpose of this study is to provide a heat dissipation/buffer structure for an optical submarine repeater in which a metal molded spring is interposed between the outer periphery of a repeater circuit unit and a water pressure resistant metal cylinder. , a pair of pressing plates for pressing both ends of the cylindrical molded spring are provided so as to be inscribed in the water pressure resistant metal cylinder and extend to both ends of the repeater circuit unit, and the metal molded spring is accommodated by a sealing means. The sealed space is sealed, and the sealed space is filled with helium gas.

産業上の利用分野 本発明は光海底中継器の放熱性と耐衝撃性とを改善した
光海底中継器の放熱・緩衝構造に関する。
INDUSTRIAL APPLICATION FIELD The present invention relates to a heat dissipation/buffer structure for an optical submarine repeater that improves the heat dissipation performance and impact resistance of the optical submarine repeater.

光海底中継器は、例えば25年以上の長期間の寿命と信
頼性が要求され、敷設に際し光海底中継器が受ける衝撃
、或いは光海底中継器内の温度上昇に対し十分耐力のあ
る高信頼性部品によってその機能が保証されなければな
らない。中継器の回路構成部品の長期信頼度は、部品実
装部の温度に大きく左右され、温度が低いほど信頼度が
向上するた必、中継器回路部で発生する熱を海水中へ効
率良く放熱することが重要となる。また、光海底中継器
は益々高密度実装化の傾向にあり、高密度実装した場合
同一サイズの中継器での消費電力が大きくなるため、放
熱特性の改善は重要課題である。
Optical submarine repeaters are required to have a long lifespan and reliability of, for example, 25 years or more, and are highly reliable with sufficient resistance to shocks that the repeater receives during installation and temperature rises within the repeater. Parts must ensure their functionality. The long-term reliability of repeater circuit components is greatly influenced by the temperature of the parts where the components are mounted.The lower the temperature, the higher the reliability.The heat generated in the repeater circuit must be efficiently dissipated into the seawater. That is important. Furthermore, optical submarine repeaters are becoming more and more densely packaged, and when they are densely packaged, the power consumption of repeaters of the same size increases, so improving heat dissipation characteristics is an important issue.

一方、光海底中継器の敷設は海底ケーブル敷設船によっ
て行われる。このため、光海底中継器が海底ケーブル敷
設船により敷設されるときに受ける衝撃を緩和させるた
めに、光海底中継器の回路部ユニットはバネを介して耐
水圧性のある堅固な筐体内に収容されている。
On the other hand, the installation of optical submarine repeaters is carried out by submarine cable laying ships. Therefore, in order to reduce the shock that the optical submarine repeater receives when it is laid by a submarine cable-laying ship, the circuit unit of the optical submarine repeater is housed in a rigid housing that is resistant to water pressure via springs. ing.

よって、光海底中継器を保護するために、熱伝導性が良
く緩衝効果のある光海底中継器の放熱・緩衝構造が要望
されている。
Therefore, in order to protect the optical submarine repeater, there is a need for a heat dissipation/buffer structure for the optical submarine repeater that has good thermal conductivity and has a buffering effect.

従来の技術 従来の光海底中継器の放熱・M新構造は、例えば第3図
に示すように構成されている。光海底中継器2の中継器
回路ユニット4の外周は絶縁体6で覆われている。8は
例えばべIJ IJウム銅から形成された耐水圧金属円
筒であり、同じくべIJ IJウム銅から形成された一
対の端面板10.10とにより耐水圧の中継器筐体を構
成している。中継器回路ユニット4の外周に設けられた
絶縁体6と耐水圧金属円筒8との間には金属成形バネ1
2が介装されている。円筒状成形バネ12の端面はリテ
ーナ16により固定された一対の環状押さえ板14によ
り押さえられている。
2. Description of the Related Art A conventional heat dissipation/M new structure of an optical submarine repeater is constructed as shown in FIG. 3, for example. The outer periphery of the repeater circuit unit 4 of the optical submarine repeater 2 is covered with an insulator 6. Reference numeral 8 denotes a water pressure resistant metal cylinder made of, for example, aluminum copper, and together with a pair of end plates 10 and 10 also made of aluminum copper, a water pressure resistant repeater housing is constructed. . A metal molded spring 1 is disposed between an insulator 6 provided on the outer periphery of the repeater circuit unit 4 and a water pressure resistant metal cylinder 8.
2 is interposed. The end surface of the cylindrical molded spring 12 is pressed by a pair of annular pressing plates 14 fixed by a retainer 16.

18は図示しない大径の光海底ケーブルに接続される端
末ケーブルであり、端面板10に設けられた光フアイバ
導入部20を介して中継器筐体内に導入され、端末ケー
ブル18の光ファイノN22及び給電線24が中継器回
路ユニット4に接続される。26は接続リングであり、
この接続リング26により光海底中継器2が図示しない
ケーブル引留部に接続される。
Reference numeral 18 denotes a terminal cable connected to a large-diameter optical submarine cable (not shown), which is introduced into the repeater housing via the optical fiber introduction part 20 provided on the end plate 10, and is connected to the optical fiber N22 and the optical fiber of the terminal cable 18. A power supply line 24 is connected to the repeater circuit unit 4. 26 is a connection ring;
This connection ring 26 connects the optical submarine repeater 2 to a cable retaining section (not shown).

然して、光海底中継器2の中継器回路ユニット4て発生
する熱は金属成形バネ12を介して熱伝導により海水中
に放熱され、また中継器敷設時の衝撃を金属成形バネ1
2で緩衝するようになっている。
Therefore, the heat generated in the repeater circuit unit 4 of the optical submarine repeater 2 is radiated into the seawater by thermal conduction via the metal molded spring 12, and the impact when the repeater is installed is absorbed by the metal molded spring 1.
2 to provide a buffer.

から保護する緩衝特性は十分であるが、放熱は金属成形
バネ12を介して熱伝導により行われており、中継器回
路ユニット4と耐水圧金属円筒8との間の空間のうち金
属成形バネ12が占める割合は約30%であり、残りの
約70%は中継器内に置換される窒素ガスが占有してい
る。二のだ袷、中継器回路ユニットが高密度実装化され
ると、その発熱も大きくなるので、良好なる放熱特性が
要求されるが、従来の放熱・緩衝構造では中継器回路ユ
ニットと耐水圧金属円筒との間の空間のうち約70%を
熱伝導率の悪い窒素ガスが占有しているたt1放熱性が
十分てないという問題がある。
However, heat dissipation is performed by thermal conduction through the metal molded spring 12, and the metal molded spring 12 in the space between the repeater circuit unit 4 and the water pressure resistant metal cylinder 8 is sufficient. The proportion occupied by this gas is approximately 30%, and the remaining approximately 70% is occupied by nitrogen gas which is substituted in the repeater. As repeater circuit units are mounted in high density, their heat generation also increases, so good heat dissipation characteristics are required. However, conventional heat dissipation/buffer structures have There is a problem in that the t1 heat dissipation is not sufficient because about 70% of the space between the cylinder and the cylinder is occupied by nitrogen gas, which has poor thermal conductivity.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、緩衝特性を損なうことなく放熱
特性を改善するようにした光海底中継器の放熱・緩衝構
造を提供することである。
The present invention has been made in view of these points, and its purpose is to provide a heat dissipation/buffer structure for an optical submarine repeater that improves heat dissipation characteristics without impairing the buffer characteristics. It is.

発明が解決しようとする課題           課
題を解決するための手段上述した従来の光海底中継器の
放熱・緩衝構造   中継器回路ユニットの外周と耐水
圧金属円筒とであると、光海底中継器の回路部を敷設時
の衝撃  の間に金属成形バネを介装した光海底中継器
の放熱・緩衝構造において、金属成形バネの両端を押さ
える一対の押さえ板を、耐水圧金属円筒に内接し且つ中
継器回路ユニットの両端に延在するように設ける。そし
て、シール手段により円筒状成形バネの収容された空間
部を封止し、このように封止された空間部にヘリウムガ
スを充填する。
Problems to be Solved by the Invention Means for Solving the Problems Heat dissipation/buffer structure of the conventional optical submarine repeater described above The circuit part of the optical submarine repeater is composed of the outer periphery of the repeater circuit unit and the water pressure resistant metal cylinder. In the heat dissipation/buffer structure of an optical submarine repeater that uses a metal molded spring interposed between the impact when the cable is installed, a pair of holding plates that hold down both ends of the metal molded spring are inscribed in a water pressure resistant metal cylinder, and the repeater circuit is Provided so as to extend to both ends of the unit. Then, the space in which the cylindrical molded spring is accommodated is sealed by the sealing means, and the thus sealed space is filled with helium gas.

作   用 金属成形バネの収容された空間部に従来の窒素ガスの代
わりにヘリウムガスを充填したたt1ヘリウムガスによ
り空間部の熱伝導を従来の約10倍に向上することがで
きる。これにより、中継器回路ユニットからの放熱の大
部分は金属成形バネを介して行われるが、空間部に充填
された比較的熱伝導性の良いヘリウムガスを介しても行
われるため、全体としての放熱特性を従来構造に比較し
て相当向上させることができる。
Function: By filling the space in which the metal molded spring is accommodated with helium gas instead of the conventional nitrogen gas, the heat conduction of the space can be improved about 10 times compared to the conventional one. As a result, most of the heat dissipation from the repeater circuit unit is performed through the metal molded spring, but it is also performed through the helium gas, which has relatively good thermal conductivity, filled in the space, so the overall Heat dissipation characteristics can be significantly improved compared to conventional structures.

中継器内部全体にヘリウムガスを封入することも考えら
れるが、ヘリウムガスは絶縁耐圧性に劣るたt、最大で
=15kVも印加される中継器内部全体にヘリウムガス
を封入することは不可能である。
It is possible to fill the entire interior of the repeater with helium gas, but since helium gas has poor dielectric strength, it is impossible to fill the entire interior of the repeater with helium gas, where a maximum of 15 kV is applied. be.

実施例 以下、本発明の実施例を図面を参照して詳細に説明する
。本実施例の説明において、第3図に示した従来構造と
実質上同一構成部分については同一符号を付し、その説
明の一部を省略する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the description of this embodiment, components that are substantially the same as those of the conventional structure shown in FIG. 3 are denoted by the same reference numerals, and a portion of the description thereof will be omitted.

第1図は本発明実施例の断面図を示しており、中継器回
路ユニット4の外周部に形成された絶縁体6とぺIJ 
IJウム銅から形成された耐水圧金属円筒8との間には
従来構造と同様に金属成形バネ12が介装されている。
FIG. 1 shows a cross-sectional view of an embodiment of the present invention, in which an insulator 6 formed on the outer periphery of a repeater circuit unit 4 and an IJ
Similar to the conventional structure, a metal molded spring 12 is interposed between the water pressure resistant metal cylinder 8 made of IJum copper.

耐水圧金属円筒8に内接し中継器回路ユニット4上の絶
縁体6にわたり延在する環状押さえ板30がリテーナ3
8により保持された皿バネ36により一方向に付勢され
て、金属成形バネ12の端面及び中継器回路ユニット4
の端面に形成された絶縁体6に圧接されている。
The retainer 3 is an annular holding plate 30 that is inscribed in the water pressure-resistant metal cylinder 8 and extends across the insulator 6 on the repeater circuit unit 4.
The end face of the metal molded spring 12 and the repeater circuit unit 4 are biased in one direction by the disc spring 36 held by the spring 8
It is pressed into contact with an insulator 6 formed on the end face of.

環状押さえ板30の中継器回路ユニット側には環状溝3
0aが形成されているとともに、環状押さえ板30の外
周面上にも環状溝30bが形成されている。そして、環
状溝30a中に第一〇−リング32が介装されるととも
に、環状溝30b中に第二〇 −Uフグ34が介装され
て金属成形バネ12が収容された空間部を気密封止して
いる。この空間部には環状押さえ板30に形成されたヘ
リウムガス封入口40を介して後述する方法によりヘリ
ウムガス41が充填されており、封入口40は封止栓4
2により封止されている。
An annular groove 3 is provided on the repeater circuit unit side of the annular holding plate 30.
0a is formed, and an annular groove 30b is also formed on the outer peripheral surface of the annular pressing plate 30. A first 0-ring 32 is interposed in the annular groove 30a, and a 20th-U puffer 34 is interposed in the annular groove 30b to airtightly seal the space in which the metal molded spring 12 is accommodated. It has stopped. This space is filled with helium gas 41 by a method described later through a helium gas filling port 40 formed in the annular pressing plate 30, and the filling port 40 is filled with a sealing plug 4.
It is sealed by 2.

次に第2図を参照して、ヘリウムガスの充填ステップに
ついて説明する。チューブ44をヘリウムガス封入口4
0に接続し、切換弁46を真空ポンプ48側に切り換え
て、真空ポンプ48で矢印Aに示すように真空吸引して
、金属成形バネ12の収容された空間部を排気する。次
いで切換弁46をヘリウムガス封入容器50側に切り換
えて、矢印已に示す如くヘリウムガスを流して排気され
た空間部内にヘリウムガスを充填する。次いで、封入口
40を封止栓42で閉塞することにより、金属成形バネ
12が収容された空間部内にへりラムガスを充填してこ
の空間部内を気密封止する。
Next, the helium gas filling step will be explained with reference to FIG. Connect the tube 44 to the helium gas filling port 4
0, the switching valve 46 is switched to the vacuum pump 48 side, the vacuum pump 48 performs vacuum suction as shown by arrow A, and the space in which the metal molded spring 12 is accommodated is evacuated. Next, the switching valve 46 is switched to the helium gas enclosure 50 side, and helium gas is caused to flow as shown by the arrow to fill the evacuated space with helium gas. Next, by closing the sealing port 40 with the sealing plug 42, the space in which the metal molded spring 12 is accommodated is filled with hem ram gas to airtightly seal the space.

このように構成したことにより、金属性網体から形成し
た円筒状成形バネによる本来の熱伝導に加え、従来の窒
素ガスより約10倍熱伝導性が優れたヘリウムガスの熱
伝導により、中継器回路ユニットからの放熱性を一段と
向上させることができる。
With this configuration, in addition to the original heat conduction by the cylindrical molded spring formed from the metal net, the repeater Heat dissipation from the circuit unit can be further improved.

発明の効果 本発明の光海底中継器の放熱・緩衝構造は以上詳述した
ように構成したので、金属成形バネによる緩衝効果を損
なうことなく、その放熱特性を一段と向上できるという
効果を奏する。放熱性の改善により、部品の信頼度を改
善できるため、今後の開発が予想される中継器回路ユニ
ットの高密度実装に対処可能となる。
Effects of the Invention Since the heat dissipation/buffer structure of the optical submarine repeater of the present invention is configured as detailed above, it has the effect of further improving its heat dissipation characteristics without impairing the buffering effect of the metal molded spring. Improved heat dissipation improves component reliability, making it possible to handle high-density packaging of repeater circuit units, which is expected to be developed in the future.

また、部品の信頼度の確保のためスクリーニングを必ず
実施する必要があるが、放熱性が向上し部品の温度を下
げることが可能であるため、スクリーニング時間を短縮
することが可能となり、製造作業の短縮化が期待できる
In addition, screening must be carried out to ensure the reliability of parts, but as heat dissipation improves and the temperature of parts can be lowered, screening time can be shortened and manufacturing operations can be reduced. It is expected that the time will be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の断面図、 第2図はヘリウムガスの充填ステ 第3図は従来例断面図である。 プ説明図、 中継器回路ユニット、 耐水圧金属円筒、 O・・・端面板、 2・・・金属成形バネ、 8・・・端末ケーブル、 6・・接続リング、 0・・・環状押さえ板、 2・・・第一〇−リンク、 4・・・第二〇−リング、 6・・皿バネ、 1・・ヘリウムガス。 申維器Ij]捧エニ・ノド 耐X圧4L鳥円− 奮Aへw5バ率 捏2L矛反 O−リ゛/2 皿へ子 He力゛ス 1−ミ 方静七イタ′j −臼マロ1コ【?〕第1図 FIG. 1 is a sectional view of an embodiment of the present invention. Figure 2 shows the helium gas filling stage. FIG. 3 is a sectional view of a conventional example. Explanatory diagram, repeater circuit unit, Water pressure resistant metal cylinder, O... end plate, 2...metal molded spring, 8...terminal cable, 6. Connection ring, 0... annular holding plate, 2...10-link, 4...20th ring, 6. disc spring, 1. Helium gas. Shinweiki Ij] Dedicated Any Nodo X pressure resistant 4L Torien- Strive to A w5ba rate Fake 2L contradiction O-ri/2 To the plate He power 1-Mi Hosei7ita'j -1 Usumaro [? ]Figure 1

Claims (1)

【特許請求の範囲】 1、中継器回路ユニット(4)の外周と耐水圧金属円筒
(8)との間に金属成形バネ(12)を介装した光海底
中継器の放熱・緩衝構造において、 前記金属成形バネ(12)の両端を押さえる一対の押さ
え板(30)を、前記耐水圧金属円筒(8)に内接し且
つ該中継器回路ユニット(4)の両端に延在するように
設けるとともに、 シール手段により前記金属成形バネ(12)の収容され
た空間部を封止し、 該封止された空間部にヘリウムガス(41)を充填した
ことを特徴とする光海底中継器の放熱・緩衝構造。 2、前記シール手段を押さえ板(30)と中継器回路ユ
ニット(4)との間に設けた第一O−リング(32)と
、押さえ板(30)と耐水圧金属円筒(8)との間に設
けた第二O−リング(34)と、押さえ板(30)を中
継器回路ユニット(4)の端面及び円筒状成形バネ(1
2)の端面に圧接するように付勢する付勢手段(36)
とから構成したことを特徴とする請求項1に記載の光海
底中継器の放熱・緩衝構造。
[Claims] 1. A heat dissipation/buffer structure for an optical submarine repeater in which a metal molded spring (12) is interposed between the outer periphery of the repeater circuit unit (4) and a water pressure resistant metal cylinder (8), A pair of pressing plates (30) for pressing both ends of the metal molded spring (12) are provided inscribed in the water pressure resistant metal cylinder (8) and extending to both ends of the repeater circuit unit (4). A heat dissipation system for an optical submarine repeater, characterized in that the space in which the metal molded spring (12) is accommodated is sealed by a sealing means, and the sealed space is filled with helium gas (41). Buffer structure. 2. The sealing means is provided between the first O-ring (32) between the holding plate (30) and the repeater circuit unit (4), and the sealing means between the holding plate (30) and the water pressure resistant metal cylinder (8). The second O-ring (34) provided in between and the presser plate (30) are connected to the end face of the repeater circuit unit (4) and the cylindrical molded spring (1).
2) biasing means (36) that biases the end face of
The heat dissipation/buffer structure for an optical submarine repeater according to claim 1, characterized in that it is comprised of the following.
JP21821190A 1990-08-21 1990-08-21 Heat radiating and buffering structure of optical submarine repeater Pending JPH04101102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21821190A JPH04101102A (en) 1990-08-21 1990-08-21 Heat radiating and buffering structure of optical submarine repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21821190A JPH04101102A (en) 1990-08-21 1990-08-21 Heat radiating and buffering structure of optical submarine repeater

Publications (1)

Publication Number Publication Date
JPH04101102A true JPH04101102A (en) 1992-04-02

Family

ID=16716365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21821190A Pending JPH04101102A (en) 1990-08-21 1990-08-21 Heat radiating and buffering structure of optical submarine repeater

Country Status (1)

Country Link
JP (1) JPH04101102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762872A1 (en) * 2005-09-08 2007-03-14 Tyco Telecommunications (US) Inc. Undersea equipment housing with molded cable terminations

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762872A1 (en) * 2005-09-08 2007-03-14 Tyco Telecommunications (US) Inc. Undersea equipment housing with molded cable terminations
JP2007072469A (en) * 2005-09-08 2007-03-22 Tyco Telecommunications (Us) Inc Undersea equipment housing and repeater
US7278789B2 (en) 2005-09-08 2007-10-09 Tyco Telecommunications (Us) Inc. Undersea equipment housing with molded terminations
AU2006209685B2 (en) * 2005-09-08 2011-12-15 Tyco Electronics Subsea Communications Llc Undersea equipment housing with molded terminations

Similar Documents

Publication Publication Date Title
US3609992A (en) Hermetically sealed box for maintaining a semiconductor radiation detector at a very low temperature
US7325715B2 (en) Unitary vacuum tube incorporating high voltage isolation
JPH064286Y2 (en) Infrared detector
GB2139859A (en) Repeater housing and circuit mounting structure
JP4364276B2 (en) Submarine repeater feedthrough and submarine repeater
US2352158A (en) Deep-sea apparatus housing
JPH04101102A (en) Heat radiating and buffering structure of optical submarine repeater
JP7160448B2 (en) Vacuum-protected flight recorder memory
US3607443A (en) Electrical generator
US2822512A (en) Rectifier assemblies
US4503485A (en) Arrangement for carrying electrical and/or electronic components
US5596210A (en) Light trigger type semiconductor device with reflection prevention film
JPS60173883A (en) Superconductive magnet
US4020368A (en) Electric power generator
JP7203103B2 (en) Thermal insulation of flight recorder memory cores
US2320559A (en) X-ray tube
JP2680140B2 (en) Fuel cell storage container
US5841218A (en) Laser head having a conductively cooled flashlamp
US4870281A (en) Gas-filled X-ray detector
JPH0574473A (en) Output terminal device of molten carbonate fuel cell
CN220208612U (en) Clean energy storage cable
US2164997A (en) X-ray apparatus
JPH06268285A (en) Gas laser tube device
CN219759569U (en) Semiconductor device packaging structure
JPS6128168Y2 (en)