JPH04100897A - Electroviscous fluid - Google Patents

Electroviscous fluid

Info

Publication number
JPH04100897A
JPH04100897A JP21972490A JP21972490A JPH04100897A JP H04100897 A JPH04100897 A JP H04100897A JP 21972490 A JP21972490 A JP 21972490A JP 21972490 A JP21972490 A JP 21972490A JP H04100897 A JPH04100897 A JP H04100897A
Authority
JP
Japan
Prior art keywords
fine particles
electrically insulating
dielectric
electrorheological
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21972490A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tokuda
博之 徳田
Kazunari Sakai
一成 酒井
Atsushi Hosoda
篤 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP21972490A priority Critical patent/JPH04100897A/en
Publication of JPH04100897A publication Critical patent/JPH04100897A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the shearing force when an external voltage is applied at high temp. and reduce the consumption of electricity by dispersing fine particles of a specified dielectric in an electrically insulating oily liq. CONSTITUTION:A particulate dielectric is prepd, by coating the surface of a spherical or ellipsoidal polymeric substance having ionically dissociating groups, a particle size of 1-200mum and a water content of 0.05-20wt.% (e.g. strongly acidic ion exchange resin of styrene-divinylbenzene-sulfonic acid type) with an electrically insulating thin film having a volume resistivity or surface resistivity of 10<6> OMEGA.cm or above and a thickness of 2mum or below. Then, 1-60vol.% this dielectric is dispersed in 99-40vol.% electrically insulating oily liq. (e.g. chlorodiphenyl).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、外部電圧の印加によって粘性を増大し、大き
なせん断芯力を誘起する電気粘性流体に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an electrorheological fluid whose viscosity is increased by application of an external voltage to induce a large shear core force.

(従来の技術) 電気粘性流体とは、絶縁性の油状液体に固体粒子を分散
させてなり、外部電界により粘度が著しく増大する懸濁
液、すなわちウィンズロウ効果を生じる懸濁液を言う。
(Prior Art) An electrorheological fluid is a suspension in which solid particles are dispersed in an insulating oily liquid, and whose viscosity increases significantly by an external electric field, that is, a suspension that causes the Winslow effect.

この電気粘性流体は、少ない電力によって流体の粘性を
大きく増大させ、またその応答性が非常に速いという特
徴を有し、クラッチ、ダンパー ブレーキ、ショックア
ブソーバ−アクチュエーターなどへの応用が試みられて
いる。
This electrorheological fluid greatly increases the viscosity of the fluid with a small amount of electric power, and its response is extremely fast. Applications to clutches, damper brakes, shock absorber actuators, etc. are being attempted.

従来、電気粘性流体としては、ンソコーン系オイル、塩
化ジフェニノペ トランス油等の絶縁油に、表面に水分
を吸着させたセルロース、デンプン、シリカゲル、イオ
ン交換樹脂などを分散させたものが知られている。
Conventionally, known electrorheological fluids include those in which cellulose, starch, silica gel, ion exchange resin, etc. with water adsorbed on the surface are dispersed in an insulating oil such as chlorinated oil or chlorinated dipheninope trans oil.

電気粘性流体を応用する際に求められる重要な特性の1
つとして、電場をがけた際に少ない消費電力で大きな電
気粘性効果を発現させる点が挙げられる。
One of the important properties required when applying electrorheological fluids
One of the advantages is that it produces a large electrorheological effect with low power consumption when an electric field is applied.

従来提案されてきた電気粘性流体の内、澱粉、セルロー
ズ、シリカゲルなどの粉体を絶縁油に分散させた系にお
いては、一般に吸着水分が多いぼ″ど大きな電気粘性効
果が得られることが知られている(林雷次部、大石嘉雄
、応用物理 42゜1107 (1973))。
Among the electrorheological fluids that have been proposed in the past, it is known that in systems in which powders such as starch, cellulose, and silica gel are dispersed in insulating oil, large electrorheological effects are generally obtained when there is a large amount of adsorbed water. (Raijibe Hayashi, Yoshio Oishi, Applied Physics 42°1107 (1973)).

ところが、多量の水分は急激な電流値の増加を招き、消
費電力が大きくなるばかりでなく液体中に放電が生じ易
くなり、電気粘性流体としての特性を利用しにくいとい
う問題があった。
However, a large amount of water causes a rapid increase in current value, which not only increases power consumption but also makes it easier for discharge to occur in the liquid, making it difficult to utilize the characteristics of an electrorheological fluid.

これらの問題に対する解決策として、水又は極性の大き
い水溶液を含有させたこれらの粒子の表面を分散媒に安
定な高分子物質で被覆する方法が提案されている(特開
昭47−17674号公報)しかし、この方法で得られ
る電気粘性効果は、非常に小さい。
As a solution to these problems, a method has been proposed in which the surface of these particles containing water or a highly polar aqueous solution is coated with a polymeric substance that is stable in the dispersion medium (Japanese Patent Application Laid-open No. 17674/1983). ) However, the electrorheological effect obtained with this method is very small.

また従来提案されてきた電気粘性流体の内、いわゆる電
気2重層説に基づく自由イオンの移動を利用したもの、
例えば、含水させた強酸性あるいは強塩基性のイオン交
換樹脂の微粒子を芳香族カルボン酸の高級アルキルエス
テル中に分散させたもの(特公昭52−30274号公
報)、ハロゲン化ジアリール化合物あるいはシリコーン
オイルに含水させた親水性固体微粒子を分散させたもの
(特開昭58−501178号公報)等は、セルローズ
やシリカゲルなどと比べ少ない水分■で大きな優れた電
気粘性効果を示すことが知られている。
Also, among the electrorheological fluids that have been proposed so far, those that utilize the movement of free ions based on the so-called electric double layer theory,
For example, fine particles of a hydrated strongly acidic or strongly basic ion exchange resin are dispersed in a higher alkyl ester of an aromatic carboxylic acid (Japanese Patent Publication No. 30274/1983), a halogenated diaryl compound, or a silicone oil. It is known that materials in which hydrophilic solid fine particles containing water are dispersed (Japanese Patent Application Laid-open No. 58-501178) exhibit excellent electrorheological effects with less water than cellulose, silica gel, and the like.

しかし、これら含水粒子を用いる電気粘性流体は、10
0°Cを越えるような高温環境での使用や、大きな摩擦
熱を発生する高ズリ速度下での使用時などにおいて過大
な電流が流れてしまうため、電力消費の面で大きな問題
があった。
However, the electrorheological fluid using these water-containing particles is
When used in high-temperature environments exceeding 0°C or at high shear speeds that generate large amounts of frictional heat, an excessive amount of current flows, posing a major problem in terms of power consumption.

これらの問題に対する解決法として、電気絶縁油にキレ
ート樹脂微粉末を分散させる方法(特開平1−2998
94号公報)が提案されている。
As a solution to these problems, a method of dispersing fine chelate resin powder in electrical insulating oil (Japanese Patent Laid-Open No. 1-2998
No. 94) has been proposed.

しかし、この方法は高温においては少ない消費電力で電
気粘性効果を示すものの、室温付近ではほとんど電気粘
性効果を示さない欠点を有する。
However, although this method exhibits an electrorheological effect with low power consumption at high temperatures, it has the drawback that it hardly exhibits an electrorheological effect near room temperature.

また別の解決法として、自由イオンの移動を利用せず電
子及びホールの移動を利用する試みが提案されている。
As another solution, an attempt has been proposed to utilize the movement of electrons and holes instead of the movement of free ions.

例えば、有機半導体を絶縁油中に分散させる方法(特開
昭61−216202号公報)、あるいは絶縁被覆した
導電性粒子を絶縁油中に分散させる方法(特開昭64−
6093号公報)などがある。
For example, a method in which organic semiconductors are dispersed in insulating oil (Japanese Patent Laid-Open No. 61-216202), or a method in which conductive particles coated with insulation are dispersed in insulating oil (Japanese Patent Laid-Open No. 64-1989)
6093).

しかしこれらの方法は、高温の環境での使用や大きな摩
擦熱を発生する高ズリ速度下での使用時などには安定し
た電気粘性効果を示すものの、自白イオンの移動を利用
したものと比較して、ウィンズロウ効果が小さく実用に
は問題がある。
However, although these methods show a stable electrorheological effect when used in high-temperature environments or at high shear speeds that generate large amounts of frictional heat, they are not as effective as those using ion movement. However, the Winslow effect is small and there is a problem in practical use.

(発明が解決しようとする課題) 本発明の目的は、外部電圧を印加した際に高いウィンズ
ロウ効果を示し、かつ高温の環境での使用や大きな摩擦
熱を発生する高ズリ速度下での使用時などにも安定した
電気粘性効果を示し、かつ電力消費量の少ない電気粘性
流体を提供することである。
(Problems to be Solved by the Invention) The purpose of the present invention is to exhibit a high Winslow effect when an external voltage is applied, and to be used in high-temperature environments or under high shear speeds that generate large frictional heat. It is an object of the present invention to provide an electrorheological fluid that exhibits a stable electrorheological effect even under certain conditions and consumes less power.

(問題を解決するための手段) 上記問題点を解決するために、本発明者等は鋭意研究し
た結果、イオン性解離基を有する物質からなる誘電体微
粒子の表面を電気絶縁性薄膜で被覆することにより、電
流密度が小さく安定した電気粘性効果を示すことを見い
だし本発明を完成させるに至った。
(Means for Solving the Problems) In order to solve the above problems, the inventors of the present invention have conducted intensive research and have found that the surfaces of dielectric fine particles made of a substance having an ionic dissociative group are coated with an electrically insulating thin film. As a result, the present invention was completed by discovering that a stable electrorheological effect was exhibited with a low current density.

すなわち本発明は、電気絶縁性の油状液体中に誘電体微
粒子を分散せしめた電気粘性流体において、誘電体微粒
子がイオン性解離基を有する物質であり、かつその表面
が電気絶縁性薄膜で被覆されていることを特徴とする電
気粘性流体である。
That is, the present invention provides an electrorheological fluid in which dielectric fine particles are dispersed in an electrically insulating oily liquid, in which the dielectric fine particles are a substance having an ionic dissociative group, and the surface thereof is coated with an electrically insulating thin film. It is an electrorheological fluid characterized by

本発明に使用される誘電体微粒子に含まれるイオン性解
離基は、解離することによりイオンとなりうる基であれ
ばどのような種類のものでも良いが、特にアミン基、第
4級アンモニウム塩基、遊離もしくは中和されたカルボ
ン酸基、遊離もしくは中和された含硫酸基(例えば硫酸
基、スルホン酸基、スルフィン酸基)、および遊離もし
くは中和されたアルミノ珪酸基などが好ましい。
The ionic dissociative group contained in the dielectric fine particles used in the present invention may be any type of group as long as it can become an ion when dissociated, but especially amine groups, quaternary ammonium bases, free Alternatively, a neutralized carboxylic acid group, a free or neutralized sulfuric acid group (eg, a sulfuric acid group, a sulfonic acid group, a sulfinic acid group), a free or neutralized aluminosilicate group, etc. are preferable.

誘電体微粒子はイオン性解離基を有する物質であれば種
類を問わないが、特に高分子物質であることが好ましい
The dielectric fine particles may be of any type as long as they have an ionic dissociative group, but polymeric substances are particularly preferred.

これら微粒子の形状は、できるだけ丸みを帯びた球状や
楕円球状の微粒子が好ましい。粒径としては1〜200
μmが好ましく、特に粒径の小さい方が大きなウィンズ
ロウ効果を示す傾向がある。
The shape of these fine particles is preferably as round as possible, spherical or ellipsoidal. Particle size is 1-200
μm is preferable, and in particular, the smaller the particle size, the greater the Winslow effect tends to be.

粒径分布については、できるだけ単分散に近いものが安
定なウィンズロウ効果を示しやすい。
Regarding the particle size distribution, particles that are as close to monodisperse as possible tend to exhibit a stable Winslow effect.

またこれら微粒子に含まれる水分は、誘電体微粒子10
0重量部あたり0,05〜20重量部であることが好ま
しい。0.05重量部未満である場合は、発生する電気
粘性効果が小さくなることがある。また20重量部以上
である場合は過大な電流が流れてしまうことがある。
In addition, the water contained in these fine particles is
It is preferable that it is 0.05 to 20 parts by weight per 0 parts by weight. If the amount is less than 0.05 parts by weight, the electrorheological effect that occurs may become small. Further, if the amount is 20 parts by weight or more, an excessive current may flow.

本発明のイオン性解離基を有する物質を被覆するための
電気絶縁性薄膜として用いられる絶縁性物質は、できる
だけ絶縁破壊強度や誘電率の高いものが好ましい。また
体積固有抵抗あるいは表面固有抵抗については、106
 (Ω・cmあるいはΩ)以上の物が好ましく、1o1
G(Ω・cmあるいはΩ)以上の物が特に好ましい。ま
た電気絶縁性薄膜の厚さはできるだけ薄い方が好ましく
、2μm以下であることが特に好ましい。
The insulating material used as the electrically insulating thin film for covering the substance having an ionic dissociative group of the present invention preferably has as high dielectric breakdown strength and dielectric constant as possible. For volume resistivity or surface resistivity, 106
(Ω・cm or Ω) or more is preferable, and 1o1
Particularly preferred are those with a resistance of G (Ω·cm or Ω) or more. Further, the thickness of the electrically insulating thin film is preferably as thin as possible, particularly preferably 2 μm or less.

本発明に用いられるこれら絶縁性物質の例としては、ポ
リエチレン、ポリプロピレン、ポリスチレン、ポリメタ
クリル酸メチル、ポリアクリロニトリル、ポリアミド、
ポリイミド、ポリフッ化ビニリデンなどの有機合成高分
子、フェス、アスファルト、ワックスなどの有機天然高
分子、シリカ、アルミナ、水酸化アルミニウム、チタン
酸バリウムなどの無機化合物などが挙げられる。
Examples of these insulating materials used in the present invention include polyethylene, polypropylene, polystyrene, polymethyl methacrylate, polyacrylonitrile, polyamide,
Examples include organic synthetic polymers such as polyimide and polyvinylidene fluoride, organic natural polymers such as fest, asphalt, and wax, and inorganic compounds such as silica, alumina, aluminum hydroxide, and barium titanate.

電気絶縁性薄膜の形成には、溶液、または粉体のコーテ
ィング、表面重合、蒸着、表面反応などの公知の被覆方
法が適用できる。電気絶縁性薄膜は、粒子の表面全体を
均一な厚さで被覆することが好ましい。被覆時は、二次
粒子の発生をできるだけ防止することが重要である。
Known coating methods such as solution or powder coating, surface polymerization, vapor deposition, and surface reaction can be applied to form the electrically insulating thin film. The electrically insulating thin film preferably covers the entire surface of the particles with a uniform thickness. During coating, it is important to prevent the generation of secondary particles as much as possible.

本発明に使用される油状液体は、従来の電気粘性流体で
使用されてきた、塩化ジフェニル、セパチン酸ジブチル
、芳香族ポリカルボン酸高級アルキルエステル、ハロフ
ェニルアルキルエーテル、トランス油、塩化パラフィン
、フッ素系オイル、シリコーン系オイルなどはもちろん
、電気絶縁性や電気絶縁破壊強度が高く、化学的に安定
で分散微粒子との比重差が極端に大きくないものであれ
ば基本的に使用できる。
The oily liquid used in the present invention includes diphenyl chloride, dibutyl sepatate, aromatic polycarboxylic acid higher alkyl ester, halophenyl alkyl ether, trans oil, chlorinated paraffin, and fluorine-based liquids that have been used in conventional electrorheological fluids. In addition to oils and silicone oils, basically any material can be used as long as it has high electrical insulation properties and electrical breakdown strength, is chemically stable, and does not have an extremely large difference in specific gravity from the dispersed fine particles.

本発明の誘電体微粒子の油状液体との混合体積比率は1
対99から60対40、好ましくは5対95から50対
50の範囲で選ばれる。
The mixing volume ratio of the dielectric fine particles of the present invention with the oily liquid is 1
The ratio is selected in the range of 99 to 60 to 40, preferably 95 to 50 to 50 to 50.

混合された電気粘性流体は、電気絶縁性をあまり低下さ
せない範囲で分散の安定化などの目的で添加剤を使用す
ることもできる。
Additives may be used in the mixed electrorheological fluid for purposes such as stabilizing dispersion, as long as the electrical insulation properties are not significantly reduced.

(発明の効果) 本発明の電気粘性流体は、高温において外部電圧を印加
した際に大きなせん断力が得られ、かつ電力消費量が少
ないため、クラッチ、ダンパーツレーキ、ショソクアフ
ソーバー アクチュエーターなどへ有効に応用できる。
(Effects of the Invention) The electrorheological fluid of the present invention can obtain a large shearing force when an external voltage is applied at high temperatures, and has low power consumption, so it can be used in clutches, damper brakes, shock absorber actuators, etc. Can be applied effectively.

(実施例) 本発明の電気粘性流体について、実施例、及び比較例を
挙げて具体的に説明するが、本発明はその要旨を越えな
い限り以下の実施例に制約されるものではない。
(Example) The electrorheological fluid of the present invention will be specifically explained by giving Examples and Comparative Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

本実施例での電気粘性特性は、同軸二重円筒型回転粘度
計(内筒の外径が20mm、長さが50mm、外筒の内
径が22mm)の内外筒間に試料流体を満たし、所定の
温度に設定した後、内外筒間に4KVの交流電圧を印加
し、速度1sec−’でせん断をかけた際に発生しだせ
ん断芯力と電流密度を測定する方法を用いて評価した。
The electrorheological properties in this example were measured by filling the space between the inner and outer cylinders of a coaxial double-cylinder rotational viscometer (inner cylinder outer diameter 20 mm, length 50 mm, outer cylinder inner diameter 22 mm) with a sample fluid. After setting the temperature to , an AC voltage of 4 KV was applied between the inner and outer cylinders and shear was applied at a rate of 1 sec-', and the evaluation was performed using a method of measuring the shear core force and current density generated.

実施例1 スチレン・ジビニルベンゼン・スルフォン酸型の強酸性
陽イオン交換樹脂(ザ・ダウ・ケミカル・カンハニー製
、タウエックス50WX8.200〜400メツシユ、
以下強酸性陽イオン交換樹脂と称す)のナトリウム塩1
00重量部、及びポリメタクリル酸メチル(PMMA)
微粉体(綜研化学■製、MP−1000、以下PMMA
微粉体と称す)3重量部を混合攪拌しイオン交換樹脂の
表面にPMMA微粉体を付着させた。次に、ホンカワミ
クロン■製メカノフニージョンシステムAM−15F型
(以下AM−15F型と称す)を用い、230Orpm
で30分間処理を行い、イオン交換樹脂をPMMAにて
被覆した後、減圧下120°Cにて5時間乾燥した。こ
れを微粒子1とする。カールフィッシャー法で測定した
微粒子1の含水率は、2.4%であった。この微粒子1
を、トリメリット酸トリオクチル(大日本インキ化学工
業■製モノサイザーW−700、以下W−700と称す
)に15重量%となるように混合分散させ電気粘性流体
とした。
Example 1 Styrene/divinylbenzene/sulfonic acid type strongly acidic cation exchange resin (manufactured by The Dow Chemical Kanhoney, TOWEX 50WX8.200-400 mesh,
Sodium salt 1 of (hereinafter referred to as strongly acidic cation exchange resin)
00 parts by weight, and polymethyl methacrylate (PMMA)
Fine powder (manufactured by Soken Kagaku ■, MP-1000, hereinafter PMMA)
(referred to as fine powder) were mixed and stirred to adhere the PMMA fine powder to the surface of the ion exchange resin. Next, using a Honkawa Micron ■ mechano-furniture system AM-15F type (hereinafter referred to as AM-15F type), 230 Orpm was used.
After the ion exchange resin was coated with PMMA, it was dried at 120° C. for 5 hours under reduced pressure. This is referred to as fine particle 1. The moisture content of fine particles 1 measured by Karl Fischer method was 2.4%. This fine particle 1
was mixed and dispersed in trioctyl trimellitate (Monocizer W-700, manufactured by Dainippon Ink & Chemicals, hereinafter referred to as W-700) to give an electrorheological fluid of 15% by weight.

実施例2 交換基にトリメチルベンジルアンモニウム、Mを有する
スチレン・ジビニルベンゼン共重合体型の強塩基性イオ
ン交換樹脂(ザ・ダウ・ケミカル・カンハニー類、タウ
エックスIX8.200〜400メツシユ)のクロル塩
100重量部、及びPMMA微粉体3重量部を混合攪拌
しイオン交換樹脂の表面にPMMA微粉体を付着させた
。次に、AM−15F型を用い230Orpmで30分
間処理を行い、イオン交換樹脂をPMMAにて被覆した
後、減圧下120°Cにて5時間乾燥した。これを微粒
子2とする。カールフィッシャー法テ測定した微粒子2
の含水率は、4.0%であった。この微粒子2を、W−
700に15重量%となるように混合分散させ電気粘性
流体とした。
Example 2 Chlor salt 100 of a styrene-divinylbenzene copolymer type strongly basic ion exchange resin having trimethylbenzylammonium and M as an exchange group (The Dow Chemical Company, Towex IX 8.200-400 mesh) parts by weight and 3 parts by weight of PMMA fine powder were mixed and stirred to adhere the PMMA fine powder to the surface of the ion exchange resin. Next, treatment was performed for 30 minutes at 230 rpm using AM-15F type, and the ion exchange resin was coated with PMMA, followed by drying at 120° C. under reduced pressure for 5 hours. This is referred to as fine particle 2. Fine particles measured by Karl Fischer method 2
The water content was 4.0%. This fine particle 2 is
700 to give an electrorheological fluid of 15% by weight.

実施例3 メタクリル酸リチウム5.0gS N、N−メチレンビ
スアクリルアミド0.7g、  ジメチルホルムアミド
20m1.t−ブチルパーオキシ 2−エチルヘキサノ
エート(日本油脂■製有機過酸化物バーブチルO)0.
]gからなる溶液を、脱気溶封した封管中にて70°C
124時間反応させた。得られた硬化物を粉砕し分級し
た後、120°C減圧下で5時間乾燥させ、平均粒径5
0μmのメタクリル酸リチウム共重合体微粒子を得た。
Example 3 Lithium methacrylate 5.0 gS N,N-methylenebisacrylamide 0.7 g, dimethylformamide 20 ml. t-Butylperoxy 2-ethylhexanoate (organic peroxide barbutyl O manufactured by NOF ■) 0.
] g in a degassed, melt-sealed tube at 70°C.
The reaction was allowed to proceed for 124 hours. After pulverizing and classifying the obtained cured product, it was dried at 120°C under reduced pressure for 5 hours to reduce the average particle size to 5.
Lithium methacrylate copolymer fine particles of 0 μm were obtained.

次に、このメタクリル酸リチウム共重合体微粒子100
重量部、及びPMMA微粉体3重量部を混合攪拌しメタ
クリル酸リチウム共重合体微粒子の表面にPMMA微粉
体を付着させた。次に、AM−15F型を用い、230
 Or pmで30分間処理を行い、メタクリル酸リチ
ウム共重合体微粒子をPMMAにて被覆した後、減圧下
120°Cにて5時間乾燥した。これを微粒子3とする
。カールフィッシャー法で測定した微粒子3の含水率は
、1.3%であった。この微粒子3を、W−700に1
5重量%となるように混合分散させ電気粘性流体とした
Next, the lithium methacrylate copolymer fine particles 100
parts by weight and 3 parts by weight of PMMA fine powder were mixed and stirred to adhere the PMMA fine powder to the surface of the lithium methacrylate copolymer fine particles. Next, using the AM-15F type, 230
Or pm for 30 minutes, the lithium methacrylate copolymer fine particles were coated with PMMA, and then dried at 120°C under reduced pressure for 5 hours. This is referred to as fine particle 3. The moisture content of the fine particles 3 measured by Karl Fischer method was 1.3%. Add 3 of these fine particles to 1 part of W-700.
They were mixed and dispersed to a concentration of 5% by weight to form an electrorheological fluid.

比較例1 強酸性陽イオン交換樹脂のナトリウム塩を、減圧下13
0°Cにて5時間乾燥した。これを微粒子4とする。カ
ールフィッシャー法で測定した微粒子4の含水率は、0
.9%であった。この微粒子4をW−700に15重量
%となるように混合分散させ電気粘性流体とした。
Comparative Example 1 A sodium salt of a strongly acidic cation exchange resin was heated under reduced pressure for 13 min.
It was dried at 0°C for 5 hours. This will be referred to as fine particles 4. The water content of the fine particles 4 measured by the Karl Fischer method is 0.
.. It was 9%. The fine particles 4 were mixed and dispersed in W-700 at a concentration of 15% by weight to form an electrorheological fluid.

比較例2 薄層クロマトグラフィー用微結晶セルロースを減圧下1
30℃にて5時間乾燥させた後25°C相対湿度70%
の条件下で吸湿させた。これを微粒子5とする。カール
フィッシャー法で測定した微粒子5の含水率は、4.0
%であった。この微粒子5を、W−700に15重量%
となるように混合分散させ電気粘性流体とした。
Comparative Example 2 Microcrystalline cellulose for thin layer chromatography was prepared under reduced pressure 1
25°C relative humidity 70% after drying at 30°C for 5 hours
Moisture was absorbed under these conditions. This is referred to as fine particle 5. The moisture content of fine particles 5 measured by Karl Fischer method is 4.0
%Met. 15% by weight of this fine particle 5 was added to W-700.
They were mixed and dispersed to form an electrorheological fluid.

比較例3 薄層クロマトグラフィー用微結晶セルロース表面に、ト
ルエンに溶解したPMMAを流動気床法で被覆した。次
に、この被覆粒子を減圧下130°Cにて5時間乾燥さ
せた後、25°C相対湿度70%の条件下で吸湿させた
。これを微粒子6とする。
Comparative Example 3 PMMA dissolved in toluene was coated on the surface of microcrystalline cellulose for thin layer chromatography using a fluidized air bed method. Next, the coated particles were dried at 130°C under reduced pressure for 5 hours, and then allowed to absorb moisture at 25°C and a relative humidity of 70%. This will be referred to as fine particles 6.

カールフィッシャー法で測定した微粒子6の含水率は、
4.0%であった。この微粒子6をW−700に15重
量%となるように混合分散させ電気粘性流体とした。
The water content of the fine particles 6 measured by the Karl Fischer method is
It was 4.0%. The fine particles 6 were mixed and dispersed in W-700 at a concentration of 15% by weight to form an electrorheological fluid.

比較例4 反応基にイミノジアセテート基を有するスチレン・ジビ
ニルベンゼン共重合体型のキレート樹脂(室町化学工業
銖社製 ムロマソクA−1,200−400メツシユ)
の銅(2価)塩を減圧下130°Cにて5時間乾燥した
。これを微粒子7とする。カールフィッシャー法で測定
した微粒子7の含水率は、08%であった。この微粒子
7を、W−700に15重量%となるように混合分散さ
せ電気粘性流体とした。
Comparative Example 4 Styrene/divinylbenzene copolymer type chelate resin having an iminodiacetate group as a reactive group (Muromasoku A-1, 200-400 mesh manufactured by Muromachi Chemical Industry Co., Ltd.)
The copper (divalent) salt was dried at 130°C under reduced pressure for 5 hours. This is referred to as fine particle 7. The moisture content of fine particles 7 measured by the Karl Fischer method was 0.8%. The fine particles 7 were mixed and dispersed in W-700 at a concentration of 15% by weight to form an electrorheological fluid.

表1 *:過大電流が流れ、測定不能であった。Table 1 *: An excessive current flowed and measurement was impossible.

次に、実施例1〜3、比較例1〜4で得られた微粒子1
〜7の電気粘性特性を測定した。
Next, fine particles 1 obtained in Examples 1 to 3 and Comparative Examples 1 to 4
The electrorheological properties of ~7 were measured.

表1に、測定時の混合液の温度、発生しだせん断路力及
び電流密度の測定結果を示す。
Table 1 shows the measurement results of the temperature of the mixed liquid, the generated shear path force, and the current density at the time of measurement.

微粒子1〜3では、室温から110°Cに至るまで安定
したウィンズロウ効果が得られており、また、電流値も
小さく消費電力が小さい。一方、微粒子4は、110°
Cでは過大な電流が流れる為ウィンズロウ効果の測定が
不能であった。微粒子5は、110’Cにおいては、含
水率の低下によりウィンズロウ効果が消失した。微粒子
6は、ウィンズロウ効果は示すものの、その値は小さく
、また微粒子2と同様に110℃においては、含水率の
低下によりウィンズロウ効果が消失した。微粒子7は、
80°C及び110°Cにおいては電流値は小さく安定
したウィンズロウ効果を示すものの、室温においてはウ
ィンズロウ効果をほとんど示さなかった。
For fine particles 1 to 3, a stable Winslow effect was obtained from room temperature to 110° C., and the current value was also small, resulting in low power consumption. On the other hand, fine particles 4 are 110°
In C, it was impossible to measure the Winslow effect because an excessive current flowed. In fine particles 5, the Winslow effect disappeared at 110'C due to a decrease in water content. Fine particles 6 showed the Winslow effect, but the value was small, and like fine particles 2, the Winslow effect disappeared at 110° C. due to a decrease in water content. The fine particles 7 are
Although the current value was small and showed a stable Winslow effect at 80°C and 110°C, almost no Winslow effect was shown at room temperature.

代理人 弁理士  高 橋 勝 利Agent Patent Attorney Katsutoshi Takahashi

Claims (1)

【特許請求の範囲】 1、電気絶縁性の油状液体中に誘電体微粒子を分散させ
てなる電気粘性流体において、誘 電体微粒子がイオン性解離基を有する物質 であり、かつその表面が電気絶縁性薄膜で 被覆されていることを特徴とする電気粘性 流体。 2、イオン性解離基を有する物質が高分子物質であるこ
とを特徴とする請求項1記載の電 気粘性流体。
[Scope of Claims] 1. In an electrorheological fluid formed by dispersing dielectric particles in an electrically insulating oily liquid, the dielectric particles are a substance having an ionic dissociative group, and the surface thereof is electrically insulating. An electrorheological fluid characterized by being coated with a thin film. 2. The electrorheological fluid according to claim 1, wherein the substance having an ionic dissociative group is a polymeric substance.
JP21972490A 1990-08-21 1990-08-21 Electroviscous fluid Pending JPH04100897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21972490A JPH04100897A (en) 1990-08-21 1990-08-21 Electroviscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21972490A JPH04100897A (en) 1990-08-21 1990-08-21 Electroviscous fluid

Publications (1)

Publication Number Publication Date
JPH04100897A true JPH04100897A (en) 1992-04-02

Family

ID=16739977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21972490A Pending JPH04100897A (en) 1990-08-21 1990-08-21 Electroviscous fluid

Country Status (1)

Country Link
JP (1) JPH04100897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513160A (en) * 2014-03-14 2017-05-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Electrorheological fluids and haptic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513160A (en) * 2014-03-14 2017-05-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Electrorheological fluids and haptic devices

Similar Documents

Publication Publication Date Title
Zareei et al. Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory
JPH0737626B2 (en) Electrorheological fluid
Sim et al. Preparation and electrorheological characteristics of poly (p-phenylene)-based suspensions
UA61049C2 (en) Gel composition comprising carbonaceous compound
JPH07103392B2 (en) Electrorheological fluid
Sugimoto Winslow effect in ionic exchange resin dispersion
Kim et al. Preparation and Characterization of Phosphate Cellulose‐Based Electrorheological Fluids
Stangroom Basic considerations in flowing electrorheological fluids
JPH06185565A (en) Electric rheology device
KR20010019614A (en) Electrorheological Fluids Dispersed Multi-Phase
JPH02240197A (en) Electroviscous fluid
Liu et al. Fabrication of ammonium persulfate coated silica microsphere via chemical grafting and its electrorheology
JPH04100897A (en) Electroviscous fluid
US6984343B1 (en) Fluid suspensions with electrorheological effect
JPH04348192A (en) Electro-viscous fluid
JPH02292393A (en) Electro-rheological fluid composition, granular material, and manufacture thereof
JPH01164823A (en) Electric viscous fluid
JPH03162494A (en) Electric field-responsive fluid
JPH03119098A (en) Electroviscous fluid
JPH0335095A (en) Electroviscous fluid
JPH02284991A (en) Electrorheological fluid composition, granular material used therein and its manufacture
JPH02235994A (en) Electroviscous fluid
JPH01172496A (en) Improved electroviscous fluid
JPH0457892A (en) Electroviscous fluid
JPH03139598A (en) Electroviscous fluid