JPH04100288A - Semiconductor laser and its manufacture - Google Patents

Semiconductor laser and its manufacture

Info

Publication number
JPH04100288A
JPH04100288A JP21703090A JP21703090A JPH04100288A JP H04100288 A JPH04100288 A JP H04100288A JP 21703090 A JP21703090 A JP 21703090A JP 21703090 A JP21703090 A JP 21703090A JP H04100288 A JPH04100288 A JP H04100288A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
semiconductor laser
mqw
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21703090A
Other languages
Japanese (ja)
Inventor
Ryuichi Terasaki
寺崎 隆一
Yoichi Ogata
陽一 尾形
Yoshinori Terui
良典 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP21703090A priority Critical patent/JPH04100288A/en
Publication of JPH04100288A publication Critical patent/JPH04100288A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3072Diffusion blocking layer, i.e. a special layer blocking diffusion of dopants

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent that P-type dopant diffuses in an active layer, and destructs and disorders MQW structure, by a method wherein an active layer is sandwiched by a second conductivity type clad layer and a first conductivity type clad layer which interpose a first conductivity type barrier layer. CONSTITUTION:On an-type In0.5(AlzGa1-z)0.5P clad layer 2, an MQW layer 3 composed of a well layer In0.5(AlxGa1-x)0.5P and a barrier layer In0.5(AlyGa1-y)0.5 P is formed by quickly switching material gas. The following are formed in order thereon; an n-In0.5(AluGa1-u)0.5P barrier layer 4 of 0.2mum or less in thickness to which silicon of 5X10<17>-1X10<19>cm<-3> is added as dopant, and a p- In0.5(AlzGa1-z)0.5P clad layer 5 to which magnesium of 2X10<17>-3X10<18>cm<-3> is added as dopant. When the thickness of a first conductivity type n- In0.5(AluGa1-u)0.5P barrier layer 4 is thinner than 100Angstrom , or when loadings of silicon is less than 5X10<17>cm<-3>, the diffusion of magnesium from a second conductivity type P-In0.5(AlzGa1-z)0.5P clad layer 5 to the MQW layer can not be prevented. When the thickness is larger than 0.2mum, injection efficiency to the MQW active layer is deteriorated, and desirable results are not obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、短波長でレーザ発振しかつ信頼性の高いIn
AlGaP系半導体レーザとその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a highly reliable In
The present invention relates to an AlGaP semiconductor laser and a manufacturing method thereof.

〔従来の技術とその問題点〕[Conventional technology and its problems]

近年、InGaP 、又はInAlGaPを活性層とす
るダブルヘテロ構造の半導体レーザは可視領域で発光す
る材料として注目を集めている。
In recent years, double heterostructure semiconductor lasers having an active layer of InGaP or InAlGaP have attracted attention as materials that emit light in the visible region.

上記の構成を有する半導体レーザは従来のAlGaAs
を主体とした半導体レーザよりもその光スポツト径を小
さくする事が原理的に可能であり、例えばコンパクトデ
ィスク、ビデオディスク等への高密度記録が可能となる
The semiconductor laser having the above configuration is a conventional AlGaAs semiconductor laser.
In principle, it is possible to make the optical spot diameter smaller than that of semiconductor lasers mainly based on semiconductor lasers, making it possible to perform high-density recording on compact discs, video discs, etc., for example.

一方、光ディスクへの情報書込、レーザビームプリンタ
等への応用の観点から〜30mWを越える高出力、高安
定な半導体レーザも要望されており開発か盛んにおこな
われている。
On the other hand, from the viewpoint of application to information writing on optical disks, laser beam printers, etc., there is also a demand for high output, highly stable semiconductor lasers exceeding ~30 mW, and active development is being carried out.

このように、短波長でかつ高出力である半導体レーザは
上記両者の要求を満たすものとしてその出現が期待され
ている。
As described above, it is expected that a semiconductor laser with a short wavelength and high output will appear as a device that satisfies both of the above requirements.

ところで現在開発が行なわれているInAlGaP系可
視光半導体レーザは主として有機金属化学気相成長法(
以下MOCVD法と略す)により作製されている。
By the way, InAlGaP-based visible light semiconductor lasers currently under development are mainly produced using the metal-organic chemical vapor deposition method (
It is manufactured by the MOCVD method (hereinafter abbreviated as MOCVD method).

MOCVD法は分子線エピタキシャル成長法(MBE法
)等と比較して大量生産に適した成長方法であり、かつ
従来の液相成長法(LPE法)では極めてその成長が難
しいAIを含む半導体膜が比較的容易に作成可能である
という大きな利点を有している。
MOCVD is a growth method that is more suitable for mass production than molecular beam epitaxial growth (MBE), etc., and is suitable for semiconductor films containing AI, which are extremely difficult to grow using conventional liquid phase epitaxy (LPE). It has the great advantage of being easy to create.

InAlGaP系の半導体レーザはMOCVD法により
以下の様に作製される。
An InAlGaP semiconductor laser is manufactured by the MOCVD method as follows.

即ち、例えば■族元素の原料ガスとして、トリメチルア
ルミニウム(TMAI)、トリメチルガリウム(TMG
)、トリメチルインジウム(TMI)を用いる。
That is, for example, trimethylaluminum (TMAI), trimethylgallium (TMG
), using trimethylindium (TMI).

又、■族元素の原料ガスとして、ホスフィン(PHs)
を用いる。
In addition, phosphine (PHs) is used as a raw material gas for group Ⅰ elements.
Use.

これらの混合ガスを例えば、高周波誘導によって加熱さ
れたサセプターに設置されたGaAs基板上で熱分解さ
せる事により、[n、AlGaP層が形成される。
By thermally decomposing these gas mixtures on a GaAs substrate placed on a susceptor heated by high frequency induction, an [n, AlGaP layer is formed.

更にデバイス構成上不可欠な導電型の制御を行なう場合
には、ジメチル亜鉛(DMZ、)、水素化セレン(H2
Se)等をドーパントとして添加すれば良い。
Furthermore, when controlling the conductivity type, which is essential for device configuration, dimethyl zinc (DMZ) and selenium hydride (H2
Se) or the like may be added as a dopant.

(「電子材料J 1986年1月号第89頁参照)しか
し、現在実用化されている1nAIGaP系半導体レー
ザはその活性層がInGaPで形成されておりその発振
波長は〜670nmが限界である。
(Refer to "Electronic Materials J, January 1986 issue, page 89.") However, the active layer of the 1nAIGaP semiconductor laser currently in practical use is formed of InGaP, and its oscillation wavelength is limited to ~670 nm.

そのため、短波長化の一つの手段として活性層をInA
lGaP系のお互いの組成を変化させた超薄膜層を積層
して構成したいわゆる多重量子井戸構造(以下MQW構
造と略す)半導体レーザか研究されている。
Therefore, as a means of shortening the wavelength, the active layer is made of InA.
A so-called multi-quantum well structure (hereinafter abbreviated as MQW structure) semiconductor laser, which is constructed by stacking lGaP-based ultra-thin film layers with mutually different compositions, is being researched.

この構造によれば発光層となるMQW構造内の井戸層は
InGaP若しくはInAlGaPで構成されるが、短
波長化を達成しようとする場合1nAIGaPを採用し
た通常の半導体レーザと比較してAt添加を無くすか、
或いはAtの量はより少な(する必要がある。
According to this structure, the well layer in the MQW structure that becomes the light emitting layer is composed of InGaP or InAlGaP, but when trying to achieve a short wavelength, At is not added compared to a normal semiconductor laser that uses 1nAIGaP. Suka,
Alternatively, the amount of At may need to be smaller.

しかし、この様なInAlGaP系MQW構造のエピタ
キシャル膜をMOCVD法の様な高温成長で作製しよう
とする場合p型ドーパントが成長中に活性層に拡散して
しまい上記MQW構造の界面平坦性を悪化させてしまう
か、著しい場合はMQW構造を破壊し、無秩序化してし
まうという問題点があった。
However, when attempting to fabricate such an InAlGaP-based MQW structure epitaxial film by high-temperature growth such as MOCVD, p-type dopant diffuses into the active layer during growth, worsening the interface flatness of the MQW structure. There has been a problem that the MQW structure may be damaged or, in severe cases, the MQW structure may be destroyed and disordered.

この様な現象は特に亜鉛をp型ドーパントとし、特性温
度の向上、閾値値電流の低下を目的として高ドーピング
を施す場合に著しく、ドーピング量を下げねばならない
等実用化の妨げになっていた。
This phenomenon is particularly noticeable when zinc is used as a p-type dopant and highly doped for the purpose of improving the characteristic temperature and lowering the threshold current, and this has hindered practical use, as the amount of doping must be reduced.

(発明が解決しようとする課題) 本発明は上記問題点に鑑み、なされたものであって、そ
の目的はp型ドーパントが活性層に拡散してしまい、M
QW構造を破壊し、無秩序化することを防止し、可視領
域で信頼性の高い、高性能半導体レーザを提供すること
にある。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned problems, and its purpose is to prevent the p-type dopant from diffusing into the active layer.
The object of the present invention is to provide a high-performance semiconductor laser that is highly reliable in the visible region and prevents the QW structure from being destroyed and disordered.

本発明者らは、この目的を達成するために鋭意検討した
結果、半導体構造、ドーパントの種類、量の選択により
、MQW構造を安定に保つ事が可能であることを見出し
、本発明を完成する至った。
As a result of intensive studies to achieve this objective, the present inventors discovered that it is possible to maintain a stable MQW structure by selecting the semiconductor structure, the type and amount of dopant, and completed the present invention. It's arrived.

(問題点を解決するための手段) すなわち、本発明は以下を要旨とするものである。(Means for solving problems) That is, the gist of the present invention is as follows.

(1) (no、 5(AI−Ga+−x)o、 sP
とIno、 5(AlyGa1−y)0.、Pの多重量
子井戸構造を存する活性層が第一導電型のIno、 5
(AlGaP層u)o、 sPバリヤー層を介した第二
導電型の Ino、 5(A1.Ga+、g)o、 sPクラッド
層と、第一導電型のIno、 i(A1gG&+−jo
、 sPクラッド層(0≦)(<y〈uくZ≦1. y
≦U≦2≦1)で夾まれてなることを特徴とするダブル
ヘテロ構造を有する半導体レーザ。
(1) (no, 5(AI-Ga+-x)o, sP
and Ino, 5(AlyGa1-y)0. , Ino in which the active layer having a P multi-quantum well structure is of the first conductivity type, 5
(AlGaP layer u)o, Ino of second conductivity type via sP barrier layer, 5(A1.Ga+,g)o, sP cladding layer and Ino of first conductivity type, i(A1gG&+-jo
, sP cladding layer (0≦) (<y〈u Z≦1.y
1) A semiconductor laser having a double heterostructure, characterized in that the semiconductor laser has a double heterostructure.

(2)第一導電型を付与する不純物はシリコン、第二導
を梨を付与する不純物はマグネシウムである事を特徴と
する請求項(1)に記載された半導体レーザ。
(2) The semiconductor laser according to claim 1, wherein the impurity imparting the first conductivity type is silicon, and the impurity imparting the second conductivity type is magnesium.

(3)請求項(1)又は請求項(2)に記載された半導
体レーザ用エピタキシャル膜を作成する方法がMOCV
D法である事を特徴とする半導体レーザの製造方法。
(3) The method for producing an epitaxial film for a semiconductor laser according to claim (1) or claim (2) is MOCV.
A method for manufacturing a semiconductor laser, characterized by using the D method.

(実施例) 本発明を実施例を用いて、図面を参照しながら説明する
(Example) The present invention will be described using an example and with reference to the drawings.

第1図は本発明の一例を示す半導体レーザの構造図であ
る。
FIG. 1 is a structural diagram of a semiconductor laser showing an example of the present invention.

第2図は本発明の半導体レーザ用エピタキシャル膜を作
製するためのMOCVD装置の一例を示す概略図である
FIG. 2 is a schematic diagram showing an example of an MOCVD apparatus for manufacturing an epitaxial film for a semiconductor laser according to the present invention.

本発明の半導体レーザの構造を製造工程と共に説明する
と、まず第2図に示すMOCVD装置を用い、高周波誘
導加熱コイル20によりn型のGaAs基板が載置され
たサセプター21を所定の温度に加熱した後にV族原料
ガスとしてホスフィン(PH2) 、III族原料ガス
として例えばトリメチルアルミニウム(TMAI)、ト
リメチルガリウム(TMG)、トリメチルインジウム(
TMI)を使用し、n型を付与するドーピングガスとし
てモノシラン(SiH4)を供給し、n−GaAs基板
1の上に、n型のIno、 5(A1.Ga+−、)o
、 sPクラッド層2を得る。この時温度としては良質
なエピタキシャル膜を得るためには700°C〜825
°Cが好ましく、さらに好ましくは750〜800℃の
温度範囲がよい。圧力は常圧、減圧どちらでもよい。
To explain the structure of the semiconductor laser of the present invention together with the manufacturing process, first, using the MOCVD apparatus shown in FIG. Later, phosphine (PH2) was used as a group V raw material gas, and trimethylaluminum (TMAI), trimethylgallium (TMG), trimethylindium (
monosilane (SiH4) is supplied as a doping gas to impart n-type conductivity, and n-type Ino, 5(A1.Ga+-,)o is formed on the n-GaAs substrate 1 using
, to obtain the sP cladding layer 2. At this time, the temperature is 700°C to 825°C to obtain a good quality epitaxial film.
The temperature range is preferably 750 to 800°C, more preferably 750 to 800°C. The pressure may be either normal pressure or reduced pressure.

又AlとGaの組成はTMAI、 TMGの供給量を変
化させることによって変えることができる。ドーパント
としてはシリコンが最適であり、その濃度は1×10I
7an−3〜2 X 10”an−’になるように設定
する事が必要である。
Furthermore, the composition of Al and Ga can be changed by changing the amount of TMAI and TMG supplied. Silicon is the best dopant, and its concentration is 1×10I.
It is necessary to set it so that it becomes 7an-3~2 x 10"an-'.

その上に、井戸層Ino、 5(AlxGa+−x)o
、 sPと障壁層Ino、 5(AlyGa+−y)o
、 sPからなるMQW層3を原料ガスの切換えを急峻
に行なうことにより形成する。
On top of that, a well layer Ino, 5(AlxGa+-x)o
, sP and barrier layer Ino, 5(AlyGa+-y)o
, sP is formed by rapidly switching the raw material gases.

MQW中の井戸層、障壁層の各厚みはレーザの波長を短
波長化する点、又作製しやすさの点から30〜200人
が好ましく、又積層の数は各々3層から10層程度が実
用的である。
The thickness of each well layer and barrier layer in the MQW is preferably 30 to 200 layers from the viewpoint of shortening the wavelength of the laser and ease of manufacturing, and the number of laminated layers is approximately 3 to 10 layers each. It's practical.

次に、ドーパントとしてシリコンを5xto”〜I X
IO”an−’添加した0、2μm以下の厚みのn−1
no、 5(A1.Ga+−、)o、 iPバリヤー層
4を、更にその上に、ドーパントとしてマグネシウムを
2X10”〜3X10I″Cm−’添加したp−1no
、 a(A1.Ga+−*)o、 sPクラッド層5を
形成する。前記第一導電型のn−Ino、 5(Alu
Ga+−v)o、 sPバリヤー層4の厚みが100人
より薄くなると又はシリコンの添加量が5X10”an
−’より少くなると、後記第二導電型のp−Ino、 
s(A1gGa+−m)o、 sPクラッド層5からの
マグネシウムのMQW層への拡散を防止しきれず、又0
.2μmより厚くなるとMQW活性層へ注入効率が劣化
してしまい、好ましくない。
Next, silicon is added as a dopant to 5xto”~I
IO"an-' added n-1 with a thickness of 0.2 μm or less
no, 5(A1.Ga+-,)o, p-1no with iP barrier layer 4 further added with magnesium as a dopant from 2X10" to 3X10I"Cm-'
, a(A1.Ga+-*)o, sP cladding layer 5 is formed. the first conductivity type n-Ino, 5(Alu
Ga+-v) o, sP If the thickness of the barrier layer 4 is less than 100mm or the amount of silicon added is 5X10"an
-', p-Ino of the second conductivity type described later,
s(A1gGa+-m)o, the diffusion of magnesium from the sP cladding layer 5 into the MQW layer cannot be prevented completely, and 0
.. If it is thicker than 2 μm, the efficiency of injection into the MQW active layer will deteriorate, which is not preferable.

更にシリコンの添加量がlXl0”an−’を越えると
シリコン自身のMQW層3への拡散が無視できずこれも
半導体レーザの特性を劣化させることとなり好ましくな
い。
Furthermore, if the amount of silicon added exceeds lXl0"an-', diffusion of silicon itself into the MQW layer 3 cannot be ignored, which is also undesirable because it deteriorates the characteristics of the semiconductor laser.

上部のクラッド層5のマグネシウムの添加量は3X10
”an−”より多くなるとMQW層への拡散を防ぎきれ
ず、又2XIQ”am−”より小さいとクラッド層の比
抵抗増加による半導体レーザの信頼性の低下を招き好ま
しくない。
The amount of magnesium added to the upper cladding layer 5 is 3X10
If it is larger than "an-", diffusion into the MQW layer cannot be prevented, and if it is smaller than 2XIQ "am-", the reliability of the semiconductor laser will decrease due to an increase in the specific resistance of the cladding layer, which is not preferable.

次に、p−GaAsキャップ層6を形成する。Next, a p-GaAs cap layer 6 is formed.

第1表に示すように、構成元素の組成及びドーパントの
種類、濃度、厚みを変えて、実施例1〜10のものを作
製した。又同様にドーパントの種類、濃度、厚みを変え
て、比較例1〜4のものを作製した。
As shown in Table 1, Examples 1 to 10 were prepared by changing the composition of the constituent elements and the type, concentration, and thickness of the dopant. Comparative Examples 1 to 4 were also produced by changing the type, concentration, and thickness of the dopant.

これらによって、得られたエピタキシャル、ウェハーを
用いて、上記GaAsキャップ層6をエツチングにより
除去し、アルゴンレーザを用いたフォトルミネッセンス
(PL)法によりMQW活性層の発光波長、発光強度を
測定した。
Using the epitaxial wafer thus obtained, the GaAs cap layer 6 was removed by etching, and the emission wavelength and emission intensity of the MQW active layer were measured by a photoluminescence (PL) method using an argon laser.

又上記エピタキシャルウェーハよりストライブ幅7μm
、共振器長300μmのリッジ導波型半導体レーザを作
成し、発振波長、閾値電流、特性温度を測定した。
Also, the stripe width is 7 μm from the above epitaxial wafer.
A ridge waveguide semiconductor laser with a cavity length of 300 μm was fabricated, and the oscillation wavelength, threshold current, and characteristic temperature were measured.

その結果を第1表に併せて示した。活性層と第二導電型
のp−Ino、 5(A1.Ga+−g)o、 sPク
ラッド層の間に、第一導電型のn−Ino、 5(A1
.Ga+−)o、 sPバリヤー層を設けた実施例1〜
10のものは、閾値電流(mA)が小さく、特性温度が
高く良好であったが他のドーパントを使用したり、ドー
パント量が不適正なものは、閾値電流が高く、又特性温
度Kが低く、良好な半導体レーザは得られなかった。
The results are also shown in Table 1. Between the active layer and the second conductivity type p-Ino, 5(A1.Ga+-g)o, sP cladding layer, the first conductivity type n-Ino, 5(A1
.. Example 1 with Ga+-)o, sP barrier layer
Item No. 10 had a small threshold current (mA) and a high characteristic temperature, which was good. However, those that used other dopants or had an inappropriate amount of dopant had a high threshold current and a low characteristic temperature K. However, a good semiconductor laser could not be obtained.

(発明の効果) 本発明によれば第二導電型のクラッド層と活性層の間に
バリヤー層を設けることによって、第二導電型のクラッ
ド層のドーパントであるマグネシウムの拡散を防止する
ことができるので、短波長でレーザ発振しかつ信頼性の
高いInAlGaP系半導体を得ることができる。
(Effects of the Invention) According to the present invention, by providing a barrier layer between the second conductivity type cladding layer and the active layer, diffusion of magnesium, which is a dopant in the second conductivity type cladding layer, can be prevented. Therefore, it is possible to obtain an InAlGaP-based semiconductor that oscillates at a short wavelength and has high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例を示す半導体レーザの構造図、第
2図は本発明の半導体レーザの製造方法に使用するMO
CVD装置の概略図の一例である。 1 : n−GaAs基板 2 : n−1no、 1(A1.Ga+−g)a、 
sPクラッド層n−Ino、 5(Al−Ga+−−)
o、 sPバリヤー層n−1no、 5(A1.Ga+
−、)o、 sPクラッド層p−GaAsキャップ層 PH5(ホスフィン) ASH2(アルシン) 9 : 5iHn (モノシラン) 10 : H2Se (セレン化水素)11 : TM
G(トリメチルガリウム)12 : TMAI (トリ
メチルアルミニウム)13 : TMI()−リメチル
インジウム)14 : CP2Mg(シクロペンタジェ
ニルマグネシウム)15 : DMZn (ジメチル亜
鉛)16:ロードロックシステム 17:真空ポンプ I8:フィルター 19:反応管 20 : RFコイル 21:サセプタ 22:コントロールバルブ 23:マスフローコントローラー 24 : H2ガス 特許出願人  電気化学工業株式会社
FIG. 1 is a structural diagram of a semiconductor laser showing an example of the present invention, and FIG. 2 is an MO used in the method of manufacturing the semiconductor laser of the present invention.
It is an example of the schematic diagram of a CVD apparatus. 1: n-GaAs substrate 2: n-1no, 1(A1.Ga+-g)a,
sP cladding layer n-Ino, 5 (Al-Ga+--)
o, sP barrier layer n-1no, 5(A1.Ga+
-, )o, sP cladding layer p-GaAs cap layer PH5 (phosphine) ASH2 (arsine) 9: 5iHn (monosilane) 10: H2Se (hydrogen selenide) 11: TM
G (trimethyl gallium) 12: TMAI (trimethyl aluminum) 13: TMI ()-limethyl indium) 14: CP2Mg (cyclopentadienyl magnesium) 15: DMZn (dimethyl zinc) 16: Load lock system 17: Vacuum pump I8: Filter 19: Reaction tube 20: RF coil 21: Susceptor 22: Control valve 23: Mass flow controller 24: H2 gas patent applicant Denki Kagaku Kogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)In_0_._5(Al_xGa_1_−_x)
_0_._5PとIn_0_._5(Al_yGa_1
_−_y)_0_._5Pの多重量子井戸構造を有する
活性層が第一導電型のIn_0_._5(Al_uGa
_1_−_u)_0_._5Pバリヤー層を介した第二
導電型の In_0_._5(Al_zGa_1_−_z)_0_
._5Pクラッド層と、第一導電型のIn_0_._5
(Al_zGa_1_−_z)_0_._5Pクラッド
層(0≦x<y<u<z≦1、y≦u≦z≦1)で夾ま
れてなることを特徴とするダブルヘテロ構造を有する半
導体レーザ。
(1) In_0_. _5 (Al_xGa_1_-_x)
_0_. _5P and In_0_. _5(Al_yGa_1
_−_y)_0_. The active layer having a _5P multi-quantum well structure is made of In_0_. of the first conductivity type. _5(Al_uGa
_1_-_u)_0_. In_0_. of second conductivity type via _5P barrier layer. _5(Al_zGa_1_-_z)_0_
.. _5P cladding layer and first conductivity type In_0_. _5
(Al_zGa_1_-_z)_0_. A semiconductor laser having a double heterostructure, characterized in that it includes a 5P cladding layer (0≦x<y<u<z≦1, y≦u≦z≦1).
(2)第一導電型を付与する不純物はシリコン、第二導
電型を付与する不純物はマグネシウムである事を特徴と
する請求項(1)に記載された半導体レーザ。
(2) The semiconductor laser according to claim 1, wherein the impurity imparting the first conductivity type is silicon, and the impurity imparting the second conductivity type is magnesium.
(3)請求項(1)又は請求項(2)に記載された半導
体レーザ用エピタキシャル膜をMOCVD法によって、
作製することを特徴とする半導体レーザの製造方法。
(3) The epitaxial film for a semiconductor laser according to claim (1) or claim (2) is formed by the MOCVD method.
1. A method of manufacturing a semiconductor laser, comprising: manufacturing a semiconductor laser.
JP21703090A 1990-08-20 1990-08-20 Semiconductor laser and its manufacture Pending JPH04100288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21703090A JPH04100288A (en) 1990-08-20 1990-08-20 Semiconductor laser and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21703090A JPH04100288A (en) 1990-08-20 1990-08-20 Semiconductor laser and its manufacture

Publications (1)

Publication Number Publication Date
JPH04100288A true JPH04100288A (en) 1992-04-02

Family

ID=16697740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21703090A Pending JPH04100288A (en) 1990-08-20 1990-08-20 Semiconductor laser and its manufacture

Country Status (1)

Country Link
JP (1) JPH04100288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306923A (en) * 1991-12-04 1994-04-26 France Telecom Optoelectric device with a very low series resistance
EP1320158A1 (en) * 2001-12-13 2003-06-18 Agilent Technologies, Inc. (a Delaware corporation) Means of controlling dopant diffusion in a semiconductor heterostructure
GB2444279A (en) * 2006-11-30 2008-06-04 Bookham Technology Plc Optoelectronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306923A (en) * 1991-12-04 1994-04-26 France Telecom Optoelectric device with a very low series resistance
EP1320158A1 (en) * 2001-12-13 2003-06-18 Agilent Technologies, Inc. (a Delaware corporation) Means of controlling dopant diffusion in a semiconductor heterostructure
GB2444279A (en) * 2006-11-30 2008-06-04 Bookham Technology Plc Optoelectronic device

Similar Documents

Publication Publication Date Title
US7402843B2 (en) Group III-V compound semiconductor and group III-V compound semiconductor device using the same
US5496767A (en) Semiconductor laser and manufacturing method of the same
JPH1154794A (en) Compound semiconductor device and its manufacture
JP3548442B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2004207682A (en) Semiconductor laser element and manufacturing method therefor
JP3171307B2 (en) Semiconductor laser device and method of manufacturing the same
JP2001024221A (en) Gallium nitride compound semiconductor and its manufacture
JPH04100288A (en) Semiconductor laser and its manufacture
JP3235440B2 (en) Nitride semiconductor laser device and method of manufacturing the same
JP3219231B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JPH05343737A (en) Manufacture of semiconductor light emitting element
JP3622292B2 (en) Semiconductor light emitting device
JP3727000B2 (en) Semiconductor laser device and manufacturing method thereof
JP2004288789A (en) Method for manufacturing surface-emitting semiconductor laser element, crystal growing apparatus, surface-emitting semiconductor laser element using them, optical transmitting module using surface-emitting semiconductor laser element, optical transmitting/receiving module, and optical communication system
JP2001028473A (en) Growth method of n-type nitride semiconductor
JPH10256667A (en) Semiconductor light emitting element
JPH04250679A (en) Visible light semiconductor laser
JP3697749B2 (en) Semiconductor light emitting device
JPH08125285A (en) Semiconductor light-emitting device
JP3767621B2 (en) Semiconductor light emitting device
JPH05175607A (en) Method of forming semiconductor multilayer film and manufacture of semiconductor laser
JP2000269607A (en) Semiconductor laser and its manufacture
JPH11307457A (en) Non-alloy electrode contact layer and its preparation
JPH02156522A (en) Manufacture of semiconductor device
JPH10335745A (en) Semiconductor device and its manufacturing method