JPH0410022B2 - - Google Patents

Info

Publication number
JPH0410022B2
JPH0410022B2 JP56023285A JP2328581A JPH0410022B2 JP H0410022 B2 JPH0410022 B2 JP H0410022B2 JP 56023285 A JP56023285 A JP 56023285A JP 2328581 A JP2328581 A JP 2328581A JP H0410022 B2 JPH0410022 B2 JP H0410022B2
Authority
JP
Japan
Prior art keywords
sample
container
coolant
cooling plate
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56023285A
Other languages
Japanese (ja)
Other versions
JPS57136149A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56023285A priority Critical patent/JPS57136149A/en
Publication of JPS57136149A publication Critical patent/JPS57136149A/en
Publication of JPH0410022B2 publication Critical patent/JPH0410022B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/20025Sample holders or supports therefor
    • G01N23/20033Sample holders or supports therefor provided with temperature control or heating means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 本発明は低温の液体試料等のX線回折を求める
のに適したX線回折装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray diffraction apparatus suitable for determining X-ray diffraction of a low-temperature liquid sample.

比較的低い温度状態で試料のX線回折を求めた
いという強い要請がありいくつかの提案が行なわ
れている。冷却ガス吹付法は固体もしくは液体の
試料に液体窒素を気化させた冷却ガスを吹きつけ
て試料の温度を降下させる方法である。この吹付
低温装置は固体もしくは液体の試料を低温にする
ことが可能であるが補助装置を含めて全装置がき
わめて大がかりになり簡便に利用しにくいという
問題がある。断熱のために真空にした容器内に試
料を封入して冷却する装置も実施されている。こ
のような装置は試料が固体である場合は問題がな
いが、液体の場合は試料が真空容器内に散逸して
しまうので液体試料の測定には適しない。軽油中
のある成分は低温で結晶化することが知られてい
るが、このような試料のX線回折を求めることは
従来不可能であつた。
There is a strong desire to obtain X-ray diffraction of a sample at a relatively low temperature, and several proposals have been made. The cooling gas spraying method is a method in which a cooling gas made by vaporizing liquid nitrogen is sprayed onto a solid or liquid sample to lower the temperature of the sample. Although this spray cryogenic apparatus is capable of lowering a solid or liquid sample to a low temperature, there is a problem in that the entire apparatus including auxiliary equipment is extremely large-scale, making it difficult to use easily. Devices have also been implemented in which a sample is sealed in a vacuum-filled container for insulation and then cooled. Such an apparatus has no problem when the sample is solid, but when the sample is liquid, the sample dissipates into the vacuum container, so it is not suitable for measuring liquid samples. Although it is known that certain components in gas oil crystallize at low temperatures, it has previously been impossible to obtain X-ray diffraction of such samples.

本発明の目的は低温液体試料等のX線回折分析
を可能にするX線回折装置における低温液体試料
支持装置を提供することにある。
An object of the present invention is to provide a low-temperature liquid sample support device in an X-ray diffraction apparatus that enables X-ray diffraction analysis of low-temperature liquid samples.

前記目的を達成するために本発明によるX線回
折装置における低温試料支持装置は、X線回折装
置において、 内容器に冷却剤が充填されて外容器間が真空に
保たれ得る冷却剤容器と、 前記内容器内の冷却剤に冷却剤導入管を介して
熱結合させられ、前記冷却剤容器の下方で水平方
向に位置させられている冷却板と、 前記冷却板に垂直に結合させられている試料基
板と、 前記基板の前方に着脱可能であり、前面にX線
透過膜が設けられている試料容器と、 前記基板の後方に取りつけられた温度調整のた
めのヒータと、 前方にX線透過物質による窓が設けられ、か
つ、ガス封入口が設けられており、前記冷却板に
結合させられて密封された試料室を形成するケー
スと、 前方に前記窓に対応してX線透過物質による窓
が設けられ、 真空引出口を有し前記試料室を収容して前記冷
却剤容器の外容器に結合可能な真空室とから構成
されている。
In order to achieve the above object, the present invention provides a low-temperature sample support device for an X-ray diffraction apparatus, which includes: a coolant container in which an inner container is filled with a coolant to maintain a vacuum between the outer containers; a cooling plate thermally coupled to the coolant in the inner container via a coolant introduction pipe and positioned horizontally below the coolant container; and vertically coupled to the cooling plate. a sample substrate; a sample container that is removably attached to the front of the substrate and has an X-ray transmission membrane on the front; a heater for temperature adjustment that is attached to the rear of the substrate; and an X-ray transmission membrane on the front. a case provided with a window made of material and a gas inlet, which is coupled to the cooling plate to form a sealed sample chamber; A vacuum chamber is provided with a window, has a vacuum outlet, accommodates the sample chamber, and is connectable to the outer container of the coolant container.

上記構成によれば試料室は真空空間とは分離さ
れているので前述した問題は完全に解決できる。
また冷却剤容器と真空室とは分離可能であり、真
空室内に位置する試料室内への試料の充填も容易
となり操作性においても秀れている。
According to the above configuration, since the sample chamber is separated from the vacuum space, the above-mentioned problem can be completely solved.
In addition, the coolant container and the vacuum chamber can be separated, and it is easy to fill the sample chamber located within the vacuum chamber, resulting in excellent operability.

以下、図面等を参照して本発明をさらに詳しく
説明する。
Hereinafter, the present invention will be explained in more detail with reference to the drawings and the like.

第1図は本発明の実施例装置の主として冷却剤
容器を破断して示した側面図、第2図は前記容器
の内外容器間に連通する真空室との結合状態を示
す側面図であつてX線回折装置の他の構成部分と
の関連を示してある。冷却剤容器1は内容器1b
と外容器1aからなる、いわゆるデユワー容器を
形成しており、内容器内に上方から冷却液剤であ
る液体窒素が充填され密封可能に構成されてい
る。内容器1bの底にはブロツク1cが設けられ
ており、このブロツク1cには銅の導入管10が
結合されており、この管10の内部に液体窒素が
導入されている。この導入管10の下端には銅の
円板状の冷却板11が結合させられている。
FIG. 1 is a side view mainly showing a cutaway coolant container of an apparatus according to an embodiment of the present invention, and FIG. 2 is a side view showing a state in which the container is connected to a vacuum chamber communicating between the inner and outer containers. The relationship with other components of the X-ray diffraction device is shown. Coolant container 1 is inner container 1b
and an outer container 1a, forming a so-called dewar container, and the inner container is filled with liquid nitrogen, which is a cooling liquid, from above and is configured to be able to be sealed. A block 1c is provided at the bottom of the inner container 1b, and a copper introduction tube 10 is connected to this block 1c, into which liquid nitrogen is introduced. A copper disc-shaped cooling plate 11 is coupled to the lower end of the introduction pipe 10.

この冷却板11は相当の熱慣性をもち常時冷却
されて低温度に保たされている。この冷却板11
には金属パツキング17を介して試料室ケース1
3が気密に固定される。
This cooling plate 11 has considerable thermal inertia and is constantly cooled and kept at a low temperature. This cooling plate 11
The sample chamber case 1 is connected to the sample chamber case 1 via the metal packing 17.
3 is fixed airtight.

この試料室の内部を第3図以後を参照して説明
する。前記冷却板11には第3図に示されている
ように試料基板12が垂直に接合されており、こ
の基板も冷却板11と熱的に結合しており、同様
に冷却される。この基板12の前面に試料容器
が、後面には加温装置が固定されている。試料容
器は前面に開く窓を有し、上方に3本の試料注入
孔(第4図参照)を有する試料板18と試料板押
え20に展着されて前記試料板18に結合され前
記窓を封じるマイラー19により構成されてい
る。
The inside of this sample chamber will be explained with reference to FIG. 3 and subsequent figures. As shown in FIG. 3, a sample substrate 12 is vertically joined to the cooling plate 11, and this substrate is also thermally connected to the cooling plate 11 and is similarly cooled. A sample container is fixed to the front surface of this substrate 12, and a heating device is fixed to the rear surface. The sample container has a window that opens on the front, and is attached to a sample plate 18 having three sample injection holes (see FIG. 4) at the top and a sample plate holder 20, and is connected to the sample plate 18 so that the window opens. It is made of sealing Mylar 19.

前記マイラー19を試料板押え20に展着する
さいにはマイラー19を十分に引き伸す治具を用
いる。試料板押えの接合面に接着剤をつけて伸展
されているマイラー19に接合することにより均
一なマイラー窓が作られる。試料基板の後面側に
ヒータ22がヒータ押え22aによつて固定され
る。なお、この試料基板12の温度を知るために
試料基板12内部に熱電対23を埋め込んであ
る。(第7図参照)。このヒータに電力を供給する
リードおよび熱電対の電位差を外部に伝達するた
めのリード7は前記冷却板11を貫通し、冷却剤
容器1の真空部を通り容器1の上方に取り出され
ている。前記冷却板11を貫通する部分、いわゆ
るハーメチツクシール部16となつている。第1
図に示すように冷却剤容器1上には中継ボツクス
8が設けられており、そのターミナル6を介して
ヒータに電力が供給され、リード7aを介して熱
電対の電位差が取り出される。金属性パツキング
17を介して前記冷却板に気密に固定される試料
室ケース13の前面にはベリリユウムのX線窓が
バンド状のリング15でケース13の前方開口部
に固定されている。
When spreading the Mylar 19 onto the sample plate holder 20, a jig is used to sufficiently stretch the Mylar 19. A uniform Mylar window is created by applying adhesive to the joint surface of the sample plate holder and joining it to the stretched Mylar 19. A heater 22 is fixed to the rear side of the sample substrate by a heater holder 22a. Note that in order to know the temperature of this sample substrate 12, a thermocouple 23 is embedded inside the sample substrate 12. (See Figure 7). Leads for supplying power to the heater and leads 7 for transmitting the potential difference between the thermocouples to the outside pass through the cooling plate 11, pass through the vacuum part of the coolant container 1, and are taken out above the container 1. A portion passing through the cooling plate 11 is a so-called hermetic seal portion 16. 1st
As shown in the figure, a relay box 8 is provided on the coolant container 1, and power is supplied to the heater through the terminal 6 of the relay box 8, and the potential difference of the thermocouple is taken out through the lead 7a. A beryllium X-ray window is fixed to the front opening of the case 13 with a band-shaped ring 15 on the front surface of the sample chamber case 13, which is airtightly fixed to the cooling plate via a metal packing 17.

第6図は試料室ケース13の底面図であつて、
バンド15の締付け状態が示されている。この試
料室ケース13には試料室内を乾燥空気または窒
素ガスを充填するためのガス封入口24が設けら
れている。この封入口24はガスを充填するとと
もにすでに入つていたガスを取り出すことができ
るように二重口になつており、中央からパイプ2
5を介して充填し外周より上下方からすでに充填
されていたガスを排出し、内部ガスの入れ替えを
可能にしている。このガスの充填は市販のN2
たは乾燥空気ボンベを用いることにより簡単に行
なえる。この試料室は第2図に示す真空室の中央
に位置させられる。真空室2の前面開口には金属
蒸着マイラー(ネツト付)のX線窓がバンド状の
マイラー押え4により固定されている。この真空
室2と前記冷却剤容器は着脱可能であり固定金具
24により固定される。前記冷却剤容器1と真空
室2と固定し、真空室2に設けられている真空引
口5を図示しない真空ポンプに接続すると、真空
室内とこれに連通する冷却剤容器1の外周空間は
真空に近づけられる。
FIG. 6 is a bottom view of the sample chamber case 13.
The tightened state of the band 15 is shown. The sample chamber case 13 is provided with a gas filling port 24 for filling the sample chamber with dry air or nitrogen gas. This filling port 24 has a double port so that it can be filled with gas and also take out the gas that has already entered, and the pipe 2 is connected from the center.
5, and the gas already filled is discharged from above and below from the outer periphery, making it possible to replace the internal gas. Filling with this gas can be easily performed using a commercially available N 2 or dry air cylinder. This sample chamber is located in the center of the vacuum chamber shown in FIG. An X-ray window made of metal-deposited mylar (with a net) is fixed to the front opening of the vacuum chamber 2 by a band-shaped mylar holder 4. The vacuum chamber 2 and the coolant container are removable and fixed by a fixing fitting 24. When the coolant container 1 and the vacuum chamber 2 are fixed and the vacuum outlet 5 provided in the vacuum chamber 2 is connected to a vacuum pump (not shown), the vacuum chamber and the outer circumferential space of the coolant container 1 communicating with the vacuum chamber become vacuum. can be approached.

この冷却剤容器と真空室1の組立は第2図破線
で示すゴニオメータ31上に搭載される。試料と
ゴニオメータ31との中心合わせは試料位置合わ
せ機構9により微調整することにより行なわれ
る。
This assembly of the coolant container and the vacuum chamber 1 is mounted on a goniometer 31 shown in broken lines in FIG. Center alignment between the sample and the goniometer 31 is performed by finely adjusting the sample positioning mechanism 9.

第2図中に破線でチユーブシールド30を示し
てある。この中にはX線源であるX線管が収容さ
れている。
The tube shield 30 is shown in broken lines in FIG. This contains an X-ray tube that is an X-ray source.

本発明による装置は以上のように構成されてい
るので、冷却剤容器1を真空室2から固定金具2
7を操作して分離した状態で冷却板11から試料
ケースを取りはずすことができる。その状態で試
料室への液体試料の装着を行なう。液体試料を試
料板18とマイラー19で形成される空間に充填
し、試料室ケース13を冷却板11に固定するこ
とにより独立した試料室空間が形成される。試料
室空間への窒素ガス等の充填は栓26をはずして
ボンベを接続して充填終了後に栓26を閉じる。
試料室の準備が完了し、真空室2と冷却容器1を
結合し、図示しない真空ポンプを作動させると試
料室外周および冷却室の外周空間は真空に近づけ
られる。
Since the apparatus according to the present invention is constructed as described above, the coolant container 1 can be moved from the vacuum chamber 2 to the fixture 2.
7 to remove the sample case from the cooling plate 11 in a separated state. In this state, the liquid sample is loaded into the sample chamber. An independent sample chamber space is formed by filling the space formed by the sample plate 18 and Mylar 19 with a liquid sample and fixing the sample chamber case 13 to the cooling plate 11. To fill the sample chamber space with nitrogen gas or the like, the plug 26 is removed, a cylinder is connected, and the plug 26 is closed after filling is completed.
When the preparation of the sample chamber is completed, the vacuum chamber 2 and the cooling container 1 are connected, and a vacuum pump (not shown) is operated, the outer periphery of the sample chamber and the outer circumferential space of the cooling chamber are brought close to vacuum.

冷却容器1には上部から液体窒素などの冷却剤
を充填され密封されており、冷却板11とこれと
一体に熱結合させられている試料基板12、試料
板18およびこれに収容されている液体試料は冷
却される。
The cooling container 1 is filled with a coolant such as liquid nitrogen from above and sealed, and contains a cooling plate 11, a sample substrate 12 which is thermally coupled to the cooling plate 11, a sample plate 18, and the liquid contained therein. The sample is cooled.

冷却剤を用いて冷却しうる最低の温度以上の温
度を得るためにヒータ22が作動させられ、試料
基板の温度(=試料温度)は熱電対23の出力に
より常時監視される。測定温度に達した時に外部
のチユーブシールド30内X線源を作動させる
と、X線は真空室のマイラーの窓3、試料室のケ
ースX線窓14(ベリリウム)、および試料室の
マイラー19の窓を介して試料液体に達し、回折
させられる。回折X線は前記とは逆に19→14
→3を透過して図示しないX線検出器に達し検出
される。
The heater 22 is operated to obtain a temperature higher than the lowest temperature that can be cooled using a coolant, and the temperature of the sample substrate (=sample temperature) is constantly monitored by the output of the thermocouple 23. When the X-ray source in the external tube shield 30 is activated when the measurement temperature is reached, the X-rays are transmitted through the Mylar window 3 in the vacuum chamber, the case X-ray window 14 (beryllium) in the sample chamber, and the Mylar 19 in the sample chamber. The sample liquid is reached through the window and is diffracted. Contrary to the above, diffraction X-rays are 19 → 14
→It passes through 3 and reaches an X-ray detector (not shown), where it is detected.

以上詳しく説明した実施例において、冷媒とし
て液体窒業を用いると試料の温度は−190℃から
+40℃まで可変できる。取扱いは前述したように
簡単であり、広い応用が期待できる。なお、前述
した実施例は低温液体の例について述べてあるが
液体だけではなく粉末などの分析にも好適に応用
できる。
In the embodiment described in detail above, when liquid nitrogen is used as the refrigerant, the temperature of the sample can be varied from -190°C to +40°C. As mentioned above, it is easy to handle and can be expected to have a wide range of applications. Note that although the above-mentioned embodiments have been described with respect to low-temperature liquids, the present invention can be suitably applied to analysis of not only liquids but also powders.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第7図は本発明による装置の実施例
を示す図であつて、第1図は冷却剤容器と試料室
の関係を示す側断面図、第2図は前記冷却剤容器
と真空室、X線管ゴニオメータなどの位置関係を
示す側面図、第3図は試料室の側断面図、第4図
は試料容器の正面図、第5図は試料容器の背面
図、第6図は同底面図、第7図は試料容器を冷却
板との関係を展開的に示した斜視図である。 1……冷却剤容器、2……真空室、3……X線
窓(真空容器)、4……マイラー押え、5……真
空引口、6……ヒータ端子、7……リード線、8
……中継ボツクス、9……試料位置調整機構、1
0……液体窒素導入管、11……冷却板、12…
…試料基板、13……試料室ケース、14……ケ
ースX線窓、15……リング、16……密栓(ハ
ーメチツクシール)、17……パツキング、18
……試料板、19……マイラー、20……試料板
押え、21……ねじ、22……ヒータ、22a…
…ヒータ押え、23……熱電対、24……ガス封
入口、25……パイプ、26……栓、27……固
定金具、30……チユーブシールド、31……ゴ
ニオメータ。
1 to 7 are views showing an embodiment of the apparatus according to the present invention, in which FIG. 1 is a side sectional view showing the relationship between the coolant container and the sample chamber, and FIG. 2 is a side sectional view showing the relationship between the coolant container and the vacuum chamber. Figure 3 is a side sectional view of the sample chamber, Figure 4 is a front view of the sample container, Figure 5 is a rear view of the sample container, and Figure 6 is a side view showing the positional relationship of the chamber, X-ray tube goniometer, etc. The bottom view and FIG. 7 are perspective views showing the relationship between the sample container and the cooling plate. 1... Coolant container, 2... Vacuum chamber, 3... X-ray window (vacuum container), 4... Mylar presser foot, 5... Vacuum outlet, 6... Heater terminal, 7... Lead wire, 8
... Relay box, 9 ... Sample position adjustment mechanism, 1
0...Liquid nitrogen introduction pipe, 11...Cooling plate, 12...
... Sample substrate, 13 ... Sample chamber case, 14 ... Case X-ray window, 15 ... Ring, 16 ... Hermetic seal, 17 ... Packing, 18
...Sample plate, 19...Mylar, 20...Sample plate holder, 21...Screw, 22...Heater, 22a...
... Heater holder, 23 ... Thermocouple, 24 ... Gas filling port, 25 ... Pipe, 26 ... Plug, 27 ... Fixing metal fittings, 30 ... Tube shield, 31 ... Goniometer.

Claims (1)

【特許請求の範囲】 1 X線回折装置において、 内容器に冷却剤が充填されて外容器間が真空に
保たれ得る冷却剤容器と、 前記内容器内の冷却剤に冷却剤導入管を介して
熱結合させられ、前記冷却剤容器の下方で水平方
向に位置させられている冷却板と、 前記冷却板に垂直に結合させられている試料基
板と、 前記基板の前方に着脱可能であり、前面にX線
透過膜が設けられている試料容器と、 前記基板の後方に取りつけられた温度調整のた
めのヒータと、 前方にX線透過物質による窓が設けられ、か
つ、ガス封入口が設けられており、前記冷却板に
結合させられて密封された試料室を形成するケー
スと、 前方に前記窓に対応してX線透過物質による窓
が設けられ、 真空引出口を有し前記試料室を収容して前記冷
却剤容器の外容器に結合可能な真空室とからなる
X線回折装置における低温試料支持装置。
[Scope of Claims] 1. An X-ray diffraction apparatus comprising: a coolant container in which an inner container is filled with a coolant to maintain a vacuum between the outer containers; and a coolant inlet tube that connects the coolant in the inner container. a cooling plate that is thermally coupled to the cooling plate and positioned horizontally below the coolant container; a sample substrate that is vertically coupled to the cooling plate; and a sample substrate that is detachable in front of the substrate; A sample container with an X-ray transparent membrane on the front, a heater for temperature adjustment attached to the rear of the substrate, a window made of an X-ray transparent material on the front, and a gas filling port. a case that is coupled to the cooling plate to form a sealed sample chamber; a window made of an X-ray transparent material is provided in the front corresponding to the window, and a vacuum outlet is provided to form a sealed sample chamber; and a vacuum chamber capable of accommodating and coupling to an outer container of the coolant container.
JP56023285A 1981-02-18 1981-02-18 Device for supporting low temperature sample in x ray diffraction device Granted JPS57136149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56023285A JPS57136149A (en) 1981-02-18 1981-02-18 Device for supporting low temperature sample in x ray diffraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56023285A JPS57136149A (en) 1981-02-18 1981-02-18 Device for supporting low temperature sample in x ray diffraction device

Publications (2)

Publication Number Publication Date
JPS57136149A JPS57136149A (en) 1982-08-23
JPH0410022B2 true JPH0410022B2 (en) 1992-02-24

Family

ID=12106326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56023285A Granted JPS57136149A (en) 1981-02-18 1981-02-18 Device for supporting low temperature sample in x ray diffraction device

Country Status (1)

Country Link
JP (1) JPS57136149A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112132A (en) * 1987-10-27 1989-04-28 Rigaku Denki Kk Low-temperature device for sample
JP2559622Y2 (en) * 1990-06-22 1998-01-19 株式会社 マックサイエンス Sample cryogenic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233263Y2 (en) * 1974-04-10 1977-07-29

Also Published As

Publication number Publication date
JPS57136149A (en) 1982-08-23

Similar Documents

Publication Publication Date Title
US3611746A (en) Cryostat for cooling vacuum-housed radiation detector
JPH0410022B2 (en)
JP4679181B2 (en) Energy dispersive X-ray detector and sample analyzer
US20170138841A1 (en) Spectrometer Insert for Measuring Temperature-Dependent Optical Properties
JPH02503461A (en) cryosorption pump
CA2016243A1 (en) Vacuum separator for dewar flask cold exchange systems
Roberts An optical absorption cell for use at low temperatures
US4399689A (en) Temperature-controlled sample cell for photoacoustic spectroscopy
Schoen et al. Glass Dewars for Optical Studies at Low Temperatures
US4766316A (en) Disc detector assembly having vacuum chamber
US4715189A (en) Open cycle cooling of electrical circuits
US2941250A (en) Reaction vessel
EP0213421A2 (en) Infrared detector assembly having vacuum chambers
Morrison et al. The measurement of the thermal properties of gases and vapours adsorbed on solid surfaces
EP0253883A1 (en) Cryogenically cooled radiation detection apparatus.
SU842520A1 (en) Low-temperature attachment to x-ray diffractometer
US3389578A (en) Refrigerator for multiplier phototubes
SU1666889A1 (en) Cryostat for optical study of materials
RU173869U1 (en) CELL FOR LABORATORY X-RAY SPECTRAL DIAGNOSTICS
CN212622868U (en) Cold trap device
SU1064089A1 (en) Method and apparatus for cryostatting samples
JPS59120830A (en) Low temperature cooling device for measuring infrared spectrum
SU1232972A1 (en) Device for testing conductivity of specimen through defects
SU1589148A1 (en) Method of testing materials at enhanced temperatures
SU728039A1 (en) Device for testing materials at low temperatures