JPH0399842A - Gas interceptive material - Google Patents

Gas interceptive material

Info

Publication number
JPH0399842A
JPH0399842A JP23847189A JP23847189A JPH0399842A JP H0399842 A JPH0399842 A JP H0399842A JP 23847189 A JP23847189 A JP 23847189A JP 23847189 A JP23847189 A JP 23847189A JP H0399842 A JPH0399842 A JP H0399842A
Authority
JP
Japan
Prior art keywords
ethylene
mol
vinyl acetate
evoh
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23847189A
Other languages
Japanese (ja)
Inventor
Yasuo Motoishi
靖夫 本石
Shukichi Kawamura
修吉 河村
Shigeyuki Harita
榛田 滋行
Junichi Matsumoto
淳一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP23847189A priority Critical patent/JPH0399842A/en
Publication of JPH0399842A publication Critical patent/JPH0399842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To maintain excellent gas interceptive properties even under high humidity and under external mechanical forces, by providing a thin film of a metallic oxide on the surface of a film of an ethylene-vinyl alcohol copolymer resin which is obtained by saponifying a copolymer of ethylene, vinyl acetated and a vinylsilane compound and which has specified values of vinyl acetate component and ethylene content. CONSTITUTION:A saponified silane-containing ethylene-vinyl acetate copolymer (Si-EVOH) obtained by saponifying a copolymer of ethylene, vinyl acetate and a vinylsilane compound has a silane content of 0.0005-0.2 mol%, an ethylene content of 25-60 mol% and a saponification degree of vinyl acetate component of 95-96%. A thin film of a metallic oxide is provided on the surface of an Si-EVOH resin film, whereby a material is obtained which has excellent gas interceptive properties even under high humidity, and maintains the excellent gas interceptive properties even under bending, frictional or other mechanical external forces.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、高湿度下においても優れたガス遮断性を有す
るガス遮断性材料に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a gas barrier material having excellent gas barrier properties even under high humidity conditions.

1エに嵐二玖丘 近年、様々な用途においてガス遮断性材料に対する要求
は益々高度化しつつあり、従来、各種ガス(例えば酸素
)遮断性材料の機能高度化に関する研究開発が盛んに行
われている。種々のガス遮断性材料の中で、エチレン−
ビニルアルコール共重合樹脂(以後、EVOH樹脂と略
記する)は優れたガス遮断性の故をもって広範囲な用途
に使用されている事は周知の事実であるが、市場の要求
の高度化・多様化により対応出来ない用途が多々出て来
ていることも事実である。
1. Arashi Nikuoka In recent years, the requirements for gas barrier materials in various applications have become increasingly sophisticated, and research and development has been actively carried out to improve the functionality of various gas (e.g., oxygen) barrier materials. There is. Among various gas barrier materials, ethylene-
It is a well-known fact that vinyl alcohol copolymer resin (hereinafter abbreviated as EVOH resin) is used in a wide range of applications due to its excellent gas barrier properties, but due to the increasing sophistication and diversification of market requirements. It is also true that there are many uses that cannot be addressed.

EVOH樹脂の場合、とくに高湿度下におけるガス遮断
性の劣化が問題となる。この問題を解決するために、た
とえばEV○H樹脂膜表面に金属酸化物の薄膜を蒸着法
により設けることも考えられるが、致命的な欠陥が認め
られる。即ち、屈曲、摩擦等の機械的な外力を受けた場
合、層間接着性が不充分であるため改質効果が著しく損
なわれ、場合によっては効果が殆ど無に帰する事である
In the case of EVOH resin, deterioration of gas barrier properties especially under high humidity becomes a problem. In order to solve this problem, it is conceivable to provide a thin film of metal oxide on the surface of the EV○H resin film by vapor deposition, but this method has a fatal defect. That is, when subjected to external mechanical forces such as bending and friction, the modification effect is significantly impaired due to insufficient interlayer adhesion, and in some cases, the effect is almost nil.

この現象はプラスチックスにこの種の処理をした場合に
一般的に認められる事であり、EVOH樹脂の場合も例
外ではない。この欠陥を改善するため、一般的に密着性
改善の為に採用されるサンドブラストの様な物理的表面
処理、コロナ放電あるいはプライマー塗布などの化学的
表面処理をEV○H樹脂膜に適用したが満足のゆく改善
効果は認められなかった。
This phenomenon is generally observed when plastics are subjected to this type of treatment, and the case of EVOH resin is no exception. In order to improve this defect, physical surface treatments such as sandblasting, which are generally adopted to improve adhesion, and chemical surface treatments such as corona discharge or primer coating were applied to the EV○H resin film, but these treatments were not satisfactory. No gradual improvement effect was observed.

C1発明が解決しようとする課題 本発明は、前記欠点を改善したもので、高湿度下におい
ても優れたガス遮断性を有し、しかも屈曲、摩擦等の機
械的な外力を受けても優れたガス遮断性が維持されるガ
ス遮断性材料である。
C1 Problems to be Solved by the Invention The present invention has improved the above-mentioned drawbacks, and has excellent gas barrier properties even under high humidity conditions, and is also excellent even when subjected to mechanical external forces such as bending and friction. It is a gas barrier material that maintains gas barrier properties.

00課題を解決するための手段 本発明者等は、EVOH樹脂の、特に高湿度下における
ガス遮断性の劣化を改良するべく、EV○H栃脂組成物
表面に金属酸化物の薄膜を蒸着法により設ける方法に関
して鋭意検討を重ねた結果、屈曲、摩擦等の機械的な外
力を受けた場合に効果が殆ど無に帰すると言う通常のE
VOHの場合に見られる当該方法の致命的な欠陥が、エ
チレン、酢酸ビニル及びビニルシラン系化合物の共重合
体をけん化して得た、シラン含有エチレン−酢酸ビニル
共重合体けん化物(以下5i−EVOHと略称する)を
使用する事で改善される事を新たに見出だし本発明を完
成するに至った。5i−EVQH樹脂膜上に金属酸化物
の薄膜を設けた場合、EVOH樹脂膜を使用する場合に
くらべ、優れた効果が得られることは後述する実施例お
よび比較例から明らかである。
In order to improve the deterioration of the gas barrier properties of EVOH resin, especially under high humidity, the present inventors have developed a method of vapor depositing a thin film of metal oxide on the surface of EV○H horse chestnut resin composition. As a result of careful consideration of the method of installing the conventional E
The fatal flaw in this method, which can be seen in the case of VOH, is that the silane-containing saponified ethylene-vinyl acetate copolymer (hereinafter referred to as 5i-EVOH) is obtained by saponifying a copolymer of ethylene, vinyl acetate, and a vinyl silane compound. The present inventors have newly found that improvements can be made by using the following methods (abbreviated as ``)'' and have completed the present invention. It is clear from the Examples and Comparative Examples described later that when a metal oxide thin film is provided on the 5i-EVQH resin film, superior effects can be obtained compared to when an EVOH resin film is used.

本発明者等は、先に、EVOH樹脂膜中に金属酸化物を
含有せしめることにより、金属酸化物を含有せしめない
場合にくらべ優れた効果が得られることを見出だし、既
に特許出願済みであるが、本発明は、金属酸化物をEV
OH甜脂膜牛脂膜中せしめることによると同様の効果が
得られ、かつヘイズの悪化などの問題がない点でより優
れた方法である。
The inventors of the present invention have previously discovered that by incorporating a metal oxide into the EVOH resin film, superior effects can be obtained compared to the case where the metal oxide is not included, and a patent application has already been filed for this invention. However, the present invention uses metal oxides as EVs.
A similar effect can be obtained by using an OH fat film in a beef tallow film, and this method is more excellent in that it does not cause problems such as deterioration of haze.

また、特開昭60−144304には、シランを含有す
るオレフィン性単量体を共重合した、酢酸ビニル成分の
けん化度95モル%以上、エチレン含有量25モル〜6
0モル%、シランを含有するオレフィン性化合物含有量
0.0005〜O12モル%である5i−EVOHなる
溶融成形材料について述べられている。しかし上記特開
昭には5i−EVOHが耐ストレスクラツキング性、酸
素等のガス遮断性の温度依存性、耐極性溶剤性、耐水性
等が改良される事には言及しているが、5L−EVOH
樹脂膜表面に金属酸化物の薄膜を設けることによって、
高湿度下においても優れたガス遮断性を有し、しかも屈
曲、摩擦等の機械的な外力を受けても優れたガス遮断性
が維持される事実に関する記述はなく、本発明は全く別
の着想に基ずく新規な発明である。
In addition, JP-A-60-144304 discloses a vinyl acetate component copolymerized with an olefinic monomer containing silane, with a saponification degree of 95 mol% or more and an ethylene content of 25 mol to 6 mol%.
A melt molding material called 5i-EVOH is described, which has an olefinic compound content of 0.0005 to 12 mole %, including silane. However, the above-mentioned JP-A-Sho mentions that 5i-EVOH has improved stress cracking resistance, temperature dependence of oxygen and other gas barrier properties, polar solvent resistance, water resistance, etc. 5L-EVOH
By providing a thin film of metal oxide on the surface of the resin film,
There is no description of the fact that it has excellent gas barrier properties even under high humidity conditions, and that it maintains its excellent gas barrier properties even when subjected to mechanical external forces such as bending and friction, and the present invention is based on a completely different idea. This is a novel invention based on

以下、本発明を更に詳しく説明する。本発明において、
5i−EVOH樹脂膜とは5i−EVOH樹脂フィルム
、またはシートであり、その厚みはとくに制限されない
が、5〜2000μm、好適には5〜300μm程度で
ある。
The present invention will be explained in more detail below. In the present invention,
The 5i-EVOH resin film is a 5i-EVOH resin film or sheet, and its thickness is not particularly limited, but is about 5 to 2000 μm, preferably about 5 to 300 μm.

また、ビニルシラン系化合物としては、下記の(I>、
(IF)及び(I[[)で示される化合物の中から選ば
れた1種または2種以上の物を好適に用いる事が出来る
In addition, as vinylsilane compounds, the following (I>,
One or more compounds selected from the compounds represented by (IF) and (I[[) can be suitably used.

[但し、ここでnは0〜1、mは0〜2、R1は低級ア
ルキル基、アリル基、又はアリル基を有する低級アルキ
ル基、R2は炭素数1〜40の飽和分岐又は非分岐のア
ルコキシル基であり、該アルコキシル基は酸素を含有す
る置換基を有していても良い、R3は水素又はメチル基
、R4は水素又は低級アルキル基、R5はアルキレン基
又は連鎖炭素原子が酸素もしくは窒素によって相互に結
合された2価の有機残基、R6は水素、ハロゲン、低級
アルキル基、アリル基、又はアリル基を有する低級アル
キル基、R7はアルコキシル基又はアシロキシル基であ
り、該アルコキシル基又はアシロキシル基は酸素もしく
は窒素を含有する置換基を有していても良い。R8は水
素、ハロゲン、低級アルキル基、アリル基、又はアリル
基を有する低級アルキル基、R9は低級アルキル基であ
る。]更に詳しく述べれば、R1は炭素数1〜5の低級
アルキル基、炭素数6〜18のアリル基、又は炭素数6
〜18のアリル基を有する炭素数1〜5の低級アルキル
基、R4は水素又は炭素数1〜5の低級アルキル基、R
5は炭素数1〜5のアルキレン基又は連頒炭素原子が酸
素もしくは窒素によって相互に結合された2価の有機残
基、R6は水素、ハロゲン、炭素数1〜5の低級アルキ
ル基、炭素数6〜18のアリル基、又は炭素数6〜18
のアリル基を有する炭素数1〜5の低級アルキル基、R
8は水素、ハロゲン、炭素数1〜5の低級アルキル基、
炭素数6〜18のアリル基、又は炭素数6〜18のアリ
ル基を有する炭素数1〜5の低級アルキル基、R9は炭
素数1〜5の低級アルキル基である。
[However, here, n is 0 to 1, m is 0 to 2, R1 is a lower alkyl group, an allyl group, or a lower alkyl group having an allyl group, and R2 is a saturated branched or unbranched alkoxyl having 1 to 40 carbon atoms. The alkoxyl group may have an oxygen-containing substituent, R3 is hydrogen or a methyl group, R4 is hydrogen or a lower alkyl group, R5 is an alkylene group or a chain carbon atom is replaced by oxygen or nitrogen. mutually bonded divalent organic residues, R6 is hydrogen, halogen, a lower alkyl group, an allyl group, or a lower alkyl group having an allyl group; R7 is an alkoxyl group or an acyloxyl group; may have a substituent containing oxygen or nitrogen. R8 is hydrogen, halogen, a lower alkyl group, an allyl group, or a lower alkyl group having an allyl group, and R9 is a lower alkyl group. ] More specifically, R1 is a lower alkyl group having 1 to 5 carbon atoms, an allyl group having 6 to 18 carbon atoms, or an allyl group having 6 to 6 carbon atoms.
A lower alkyl group having 1 to 5 carbon atoms having an allyl group of ~18, R4 is hydrogen or a lower alkyl group having 1 to 5 carbon atoms, R
5 is an alkylene group having 1 to 5 carbon atoms or a divalent organic residue in which consecutive carbon atoms are bonded to each other by oxygen or nitrogen; R6 is hydrogen, halogen, a lower alkyl group having 1 to 5 carbon atoms; 6-18 allyl group, or 6-18 carbon atoms
a lower alkyl group having 1 to 5 carbon atoms having an allyl group, R
8 is hydrogen, halogen, lower alkyl group having 1 to 5 carbon atoms,
R9 is an allyl group having 6 to 18 carbon atoms, or a lower alkyl group having 1 to 5 carbon atoms having an allyl group having 6 to 18 carbon atoms, and R9 is a lower alkyl group having 1 to 5 carbon atoms.

(1)で表されるビニルシラン系化合物としては、ビニ
ルトリメトキシシラン、ビニルメチルジメトキシシラン
、ビニルジメチルメトキシシラン、ビニルトリエトキシ
シラン、ビニルメチルジェトキシシラン、ビニルジメチ
ルエトキシシラン、アリルトリメトキシシラン、アリル
メチルジメトキシシラン、アリルジメチルメトキシシラ
ン、アリルトリエトキシシラン、アリルメチルジェトキ
シシラン、アリルジメチルエトキシシラン、ビニルトリ
ス(β−メトキシエトキシ)シラン、ビニルイソブチル
ジメトキシシラン、ビニルエチルジメトキシシラン、ビ
ニルトリブトキシシラン、ビニルメトキシジブトキシシ
ラン、ビニルジメトキシブトキシシラン、ビニルトリヘ
キシロキシシラン、ビニルジトキシジへキシロキシラン
、ビニルジメトキシへキシロキシシラン、ビニルトリオ
クチロキシシラン、ビニルメトキシジブトキシシラン、
ビニルジメトキシオクチロキシシラン、ビニルメトキシ
ジブトキシシラン、ビニルジメトキシオクチロキシシラ
ン、ビニルメトキシジオ・レイロキシシラン、ビニルジ
メトキシオクチロキシシラン等が挙げられるが、経済的
にみてビニルトリメトキシシランが好ましい。
The vinylsilane compounds represented by (1) include vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, vinyltriethoxysilane, vinylmethyljethoxysilane, vinyldimethylethoxysilane, allyltrimethoxysilane, allyl Methyldimethoxysilane, allyldimethylmethoxysilane, allyltriethoxysilane, allylmethyljethoxysilane, allyldimethylethoxysilane, vinyltris(β-methoxyethoxy)silane, vinylisobutyldimethoxysilane, vinylethyldimethoxysilane, vinyltributoxysilane, vinyl Methoxydibutoxysilane, vinyldimethoxybutoxysilane, vinyltrihexyloxysilane, vinylditoxydihexyloxylane, vinyldimethoxyhexyloxysilane, vinyltrioctyloxysilane, vinylmethoxydibutoxysilane,
Examples include vinyldimethoxyoctyloxysilane, vinylmethoxydibutoxysilane, vinyldimethoxyoctyloxysilane, vinylmethoxydio-leyloxysilane, vinyldimethoxyoctyloxysilane, and vinyltrimethoxysilane is preferred from an economical standpoint.

(ffl>で表されるビニルシラン系化合物としては、
3−(メタ)アクリルアミドプロピルトリメトキシシラ
ン、3−(メタ)アクリルアミドプロピルトリエトキシ
シラン、3−(メタ)アクリルアミドプロピルトリス(
β−メトキシエトキシ)シラン、3−(メタ)アクリル
アミドプロピルトリス(N−メチルアミノエトキシ)シ
ラン、2−(メタ)アクリルアミドエチルトリメトキシ
シラン、(メタ)アクリルアミドメチルトリメトキシシ
ラン、2−(メタ)アクリルアミド−2−メチルプロと
ルトリメトキシシラン、2−〈メタ)アクリルアミドプ
ロピルトリメトキシシラン、N−(2−(メタ)アクリ
ルアミドエチル)−アミノプロピルトリメトキシシラン
、(3−(メタ)アクリルアミドプロピル〉−オキシプ
ロピルトリメトキシシラン、3−(メタ)アクリルアミ
ドプロピルトリアセトキシシラン、2−(メタ)アクリ
ルアミドエチルトリアセトキシシラン、4−(メタ)ア
クリルアミドブチルトリアセトキシシラン、3−(メタ
)アクリルアミドプロピルトリプロピオニロキシシラン
、2−(メタ)アクリルアミド−2−メチルプロとルト
リアセトキシシラン、N−(2−(メタ)アクリルアミ
ドエチル)アミノプロピルトリアセトキシシラン、3−
(メタ)アクリルア、ミドプロピルイソブチルジメトキ
シシラン、2−(メタ)アクリルアミドエチルジメチル
メトキシシラン、3−(メタ)アクリルアミドプロピル
オクチルジアセトキシシラン、(メタ)アクリルアミド
メチルフエニルジアセトキシシラン、3−(メタ)アク
リルアミドプロピルベンジルジェトキシシラン、3−(
N−メチル−(メタ)アクリルアミド)−プロピルトリ
メトキシシラン、2−(N−エチル−(メタ)アクリル
アミド)−エチルトリアセトキシシラン、2−(メタ)
アクリルアミド−2−メチルプロピルモノクロルジメト
キシシラン、2−(メタ)アクリルアミド−2−メチル
プロピルモノハイドロジエンジメトキシシラン等が挙げ
られるが、経済的にみて3−(メタ)アクリルアミドプ
ロピルトリメトキシシラン及び3−(メタ)アクリルア
ミドプロピルトリアセトキシシランが好ましく、又酸又
は塩基に対する安定性の点で2−(メタ)アクリルアミ
ド−2−メチルプロとルトリメトキシシラン及び2−く
メタ)アクリルアミド−2−メチルプロピルトリアセト
キシシランが好ましい。
As a vinylsilane compound represented by (ffl>,
3-(meth)acrylamidopropyltrimethoxysilane, 3-(meth)acrylamidopropyltriethoxysilane, 3-(meth)acrylamidopropyltris(
β-methoxyethoxy)silane, 3-(meth)acrylamidopropyltris(N-methylaminoethoxy)silane, 2-(meth)acrylamidoethyltrimethoxysilane, (meth)acrylamidomethyltrimethoxysilane, 2-(meth)acrylamide -2-methylpro and lutrimethoxysilane, 2-(meth)acrylamidopropyltrimethoxysilane, N-(2-(meth)acrylamidoethyl)-aminopropyltrimethoxysilane, (3-(meth)acrylamidopropyl)-oxypropyl Trimethoxysilane, 3-(meth)acrylamidopropyltriacetoxysilane, 2-(meth)acrylamidoethyltriacetoxysilane, 4-(meth)acrylamidobutyltriacetoxysilane, 3-(meth)acrylamidopropyltripropionyloxysilane, 2 -(meth)acrylamido-2-methylpro-triacetoxysilane, N-(2-(meth)acrylamidoethyl)aminopropyltriacetoxysilane, 3-
(meth)acryla, midopropylisobutyldimethoxysilane, 2-(meth)acrylamidoethyldimethylmethoxysilane, 3-(meth)acrylamidopropyloctyldiacetoxysilane, (meth)acrylamidomethylphenyldiacetoxysilane, 3-(meth)acrylamidomethylphenyldiacetoxysilane Acrylamidopropylbenzyljethoxysilane, 3-(
N-methyl-(meth)acrylamido)-propyltrimethoxysilane, 2-(N-ethyl-(meth)acrylamido)-ethyltriacetoxysilane, 2-(meth)
Examples include acrylamide-2-methylpropyl monochlorodimethoxysilane, 2-(meth)acrylamido-2-methylpropylmonohydrodiene dimethoxysilane, etc., but economically speaking, 3-(meth)acrylamidopropyltrimethoxysilane and 3-( Meth)acrylamidopropyltriacetoxysilane is preferred, and 2-(meth)acrylamido-2-methylprotrimethoxysilane and 2-meth)acrylamido-2-methylpropyltriacetoxysilane are preferred in terms of stability against acids or bases. preferable.

(I[)で表されるビニルシラン系化合物としては、ビ
ニルトリアセトキシシラン、ビニルトリプロピオニロキ
シシラン、イソプロペニルトリアセトキシシラン、ビニ
ルイソプロピルジアセトキシシラン、ビニルメチルジア
セトキシシラン、ビニルジメチルアセトキシシラン、ビ
ニルフエニルジアセトキシシラン、ビニルモノクロルジ
アセトキシシラン、ビニルモノハイドロジエンジアセト
キシシラン等が挙げられるが、経済的にみてビニルトリ
アセトキシシランが好ましい。
Examples of vinylsilane compounds represented by (I[) include vinyltriacetoxysilane, vinyltripropionyloxysilane, isopropenyltriacetoxysilane, vinylisopropyldiacetoxysilane, vinylmethyldiacetoxysilane, vinyldimethylacetoxysilane, vinylph Enyldiacetoxysilane, vinylmonochlorodiacetoxysilane, vinylmonohydrodienediacetoxysilane, etc. may be mentioned, but vinyltriacetoxysilane is preferred from an economic standpoint.

上述したビニルシラン系化合物を共重合して得られな5
i−EVOH中のシラン含有は0.0005〜0.2モ
ル%、好ましくは、O,OOO’7〜0.03モル%で
ある。シラン含有量が0.0005モル%未満では、金
属酸化物(とりわけ酸化圭素)の密着性が十分ではなく
、一方0.2モル%を超えると架橋の程度が増大し過ぎ
て熱不溶性が発現し好ましくない。エチレン含有量は2
5〜60モル%、好ましくは25〜50モル%である。
5 which cannot be obtained by copolymerizing the vinyl silane compounds mentioned above.
The silane content in i-EVOH is 0.0005 to 0.2 mol%, preferably 7 to 0.03 mol% O,OOO'. If the silane content is less than 0.0005 mol%, the adhesion of metal oxides (particularly phosphorus oxide) will not be sufficient, while if it exceeds 0.2 mol%, the degree of crosslinking will increase too much and heat insolubility will occur. I don't like it. Ethylene content is 2
It is 5 to 60 mol%, preferably 25 to 50 mol%.

エチレン含有量が25モル%未溝では、実使用時の環境
湿度条件下における吸湿量が増大し、金属酸化物の密着
性を阻害し、エチレン含有率が60モル%を超えるとE
VOHの特性であるガスバリヤ−性、保香性、耐油性等
が低下する。酢酸ビニル成分のけん化度は95%以上、
好ましくは96%以上である。酢酸ビニル成分のけん化
度が95%未満では、ガスバリヤ−性、保香性、耐油性
等が低下するばかりでなく、溶融成形時の熱安定性も低
下する。更に、成形物に酢酸基に由来する酢酸臭がつき
、それが包装内容物に移行してしまうという欠点がある
If the ethylene content is 25 mol%, the amount of moisture absorbed under the environmental humidity conditions during actual use will increase, inhibiting the adhesion of metal oxides, and if the ethylene content exceeds 60 mol%, E
The characteristics of VOH such as gas barrier properties, aroma retention properties, oil resistance, etc. are reduced. The saponification degree of vinyl acetate component is 95% or more,
Preferably it is 96% or more. If the degree of saponification of the vinyl acetate component is less than 95%, not only gas barrier properties, aroma retention properties, oil resistance, etc. will be reduced, but also thermal stability during melt molding will be reduced. Furthermore, there is a drawback that the molded product has an acetic acid odor originating from the acetic acid group, which is transferred to the contents of the package.

ビニルシラン系化合物と、エチレン及び酢酸ビニルとの
共重合、及び生成した共重合体の鹸化は、公知の方法、
例えば特開昭60−144304に示されている様な方
法で実施可能である。該共重合体は、鹸化反応において
ビニルアルコキシシラン単位も部分的あるいは高度に鹸
化されてビニルシラノール単位、そのアルカリ塩あるい
はその相互縮合物に転換される。しかし前出の一般式(
II>で示されるビニルシラン系化合物含有の該共重合
体は、アルカリ性触媒による鹸化反応においてビニルシ
ラン系化合物単位のアミド結合が分解するという事なく
安定に保たれる。しかし、鹸化反応時一般式(I[)で
表されるビニルシラン系化合物のシランに結合したアル
コキシル基、カルボキシル基、水素及びハロゲンも同時
に部分的あるいは高度に鹸化され水酸基又はそのアルカ
リ塩に転換される。更にこの水酸基の一部は、鹸化反応
後得られた5i−EVOHを乾燥する際、乾燥条件によ
ってこれ等の官能基同士を結合させシロキサン結合を形
成させても良い。シロキサン結合を多く形成せしめた該
5i−EVOHは熱溶融性が悪化する場合が見られるの
で、この様な場合にはビニルシラン系化合物の含有量を
調整するか、ビニルシラン系化合物単位としてアルカリ
に対して著しく安定性の高い(メタ〉アクリルアミド−
分岐アルキルシラン単位を有するS 1−EVOHとす
る事が好ましい。又該共重合体は、金属酸化物の密着性
を阻害しない範囲で他の第3成分を共重合しても良い。
Copolymerization of a vinyl silane compound with ethylene and vinyl acetate and saponification of the resulting copolymer can be carried out using known methods.
For example, it can be implemented by a method as shown in Japanese Patent Laid-Open No. 60-144304. In the saponification reaction, the vinyl alkoxysilane units of the copolymer are also partially or highly saponified and converted into vinyl silanol units, their alkali salts, or their intercondensates. However, the general formula (
The vinylsilane compound-containing copolymer represented by II> is kept stable without decomposition of the amide bond of the vinylsilane compound unit in the saponification reaction using an alkaline catalyst. However, during the saponification reaction, the alkoxyl groups, carboxyl groups, hydrogen, and halogens bonded to the silane of the vinylsilane compound represented by the general formula (I[) are also partially or highly saponified and converted to hydroxyl groups or their alkali salts. . Furthermore, when drying the 5i-EVOH obtained after the saponification reaction, some of these hydroxyl groups may be bonded to each other to form siloxane bonds depending on the drying conditions. 5i-EVOH, which has a large number of siloxane bonds, may have poor thermal melting properties. In such cases, the content of the vinyl silane compound should be adjusted, or the unit of the vinyl silane compound should be treated with an alkali. Extremely stable (meth)acrylamide
It is preferable to use S 1-EVOH having a branched alkylsilane unit. Further, the copolymer may be copolymerized with another third component as long as the adhesion of the metal oxide is not impaired.

該第3成分としては、炭素数3以上のα−オレフィン、
アクリル酸、メタクリル酸及びこれらの酸のエステル等
が挙げられる。又熱溶融成形性を改善する為に、金属酸
化物の密着性を阻害しない範囲で酸、塩基及びそれ等の
塩を5i−EVOHに添加しても良い。酸、塩基やそれ
等の塩としては、酢酸、硼酸、燐酸、水酸化ナトリウム
、水酸化カルシウム、水酸化カリウム、酢酸ナトリウム
、酢酸カルシウム、硼酸ナトリウム、燐酸カリウム、燐
酸カルシウム、燐酸水素カルシウム、燐酸−水素二カリ
ウム、燐酸二水素−カリウム等が挙げられる。更に成形
物の滑り住改善の為に、酸化珪素や酸化アルミニウム等
をS i −EVOHに添加しても良い。更に金属酸化
物の密着性を阻害しない範囲でナイロン、EVOH及び
ポリオレフィン等地のポリマーを添加しても良い。
The third component includes an α-olefin having 3 or more carbon atoms,
Examples include acrylic acid, methacrylic acid, and esters of these acids. Further, in order to improve hot melt moldability, acids, bases, and salts thereof may be added to 5i-EVOH within a range that does not impede the adhesion of the metal oxide. Acids, bases and their salts include acetic acid, boric acid, phosphoric acid, sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium acetate, calcium acetate, sodium borate, potassium phosphate, calcium phosphate, calcium hydrogen phosphate, phosphoric acid. Examples include dipotassium hydrogen and potassium dihydrogen phosphate. Furthermore, silicon oxide, aluminum oxide, or the like may be added to Si-EVOH to improve the sliding properties of the molded product. Furthermore, polymers such as nylon, EVOH, and polyolefin may be added to the extent that they do not impede the adhesion of the metal oxide.

5i−EVOH樹脂表面に積層される金属酸化物薄膜の
厚みは単分子層から5000オングストロ一ム程度が好
適であり、500〜2000オングストロ一ム程度、と
くに1000オンゲストロム近辺が最適である。
The thickness of the metal oxide thin film laminated on the surface of the 5i-EVOH resin is preferably from a monomolecular layer to about 5,000 angstroms, and preferably about 500 to 2,000 angstroms, particularly around 1,000 angstroms.

金属酸化物薄膜を5i−EVOH樹脂膜表面に積層する
方法としては、蒸着法が最適であり、蒸着法としては、
処理時の膜の安定性の点から、真空を利用した物理蒸着
法、化合物の分解または化合物の化学反応を利用した化
学的蒸着法が好適である。 このようにして得られたガ
ス遮断性材料は、食品包装材料(液状食品用包装材料、
レトルト用包装材料など)、医薬品および医療器材包装
材料として有用である。
The most suitable method for laminating a metal oxide thin film on the surface of a 5i-EVOH resin film is vapor deposition.
From the viewpoint of film stability during processing, physical vapor deposition using vacuum and chemical vapor deposition using decomposition of a compound or chemical reaction of a compound are suitable. The gas barrier material obtained in this way can be used as a food packaging material (liquid food packaging material,
It is useful as packaging material for retorts, etc.), pharmaceuticals, and medical equipment.

以下本発明を実施例によりさらに具体的に説明する。The present invention will be explained in more detail below using Examples.

E、実施例 実施例1および比較例1 エチレン、酢酸ビニル及びビニルトリメトキシシランの
共重合体をけん化して得た、シラン含有量0.01モル
%、エチレン含有量32モル%、酢酸ビニル成分のけん
化度99.5モル%の5i−EVOHの厚み15μmの
フィルム上に、電子ビーム蒸着装置を使用し、真空度1
.0X10”−’Torrで、2000オングストロー
ムの酸化上素膜を蒸着した9このEVOH栃脂膜全脂膜
50μmの無延伸ポリプロピレンフィルムとポリウレタ
ン系接着剤を介して貼合わせたのち酸素透過速度を測定
した結果を第1表に示した。なお、金属酸化物を蒸着し
た効果を明確にする゛ため金属酸化物の蒸着処理を行わ
ない5i−EVOH樹脂膜(比較例1)についても同様
の貼合わせを行った試料を対照として準備した。酸素透
過速度測定装置はModern Contorols社
製のOy:toran  10150A型を使用し、測
定条件は20℃−65%R)(および20℃−100%
RHとしな。金属酸化物を蒸着しないEVOH樹脂膜に
比較して特に高湿度下での酸素透過速度が充分低い水準
に保持され、EVOH樹脂膜の酸素透過速度の相対湿度
依存性の抑制効果が認められる。
E, Examples Example 1 and Comparative Example 1 Silane content 0.01 mol%, ethylene content 32 mol%, vinyl acetate component obtained by saponifying a copolymer of ethylene, vinyl acetate and vinyltrimethoxysilane. A 15 μm thick film of 5i-EVOH with a saponification degree of 99.5 mol% was coated with an electron beam evaporator and
.. The 9 EVOH horse chestnut resin film with a 2000 angstrom oxide film deposited on it was laminated with a 50 μm unstretched polypropylene film via a polyurethane adhesive at 0x10''-' Torr, and then the oxygen permeation rate was measured. The results are shown in Table 1.In addition, in order to clarify the effect of metal oxide vapor deposition, a similar lamination was carried out for a 5i-EVOH resin film (Comparative Example 1) that was not subjected to metal oxide vapor deposition treatment. The sample was prepared as a control.The oxygen permeation rate measuring device used was Oy:toran 10150A manufactured by Modern Controls, and the measurement conditions were 20°C-65%R) (and 20°C-100%R).
Toshina RH. Compared to an EVOH resin film in which no metal oxide is vapor-deposited, the oxygen permeation rate is maintained at a sufficiently low level, especially under high humidity, and the effect of suppressing the relative humidity dependence of the oxygen permeation rate of the EVOH resin film is recognized.

実施例2〜6および比較例2 シラン含有量を0.0005〜0.2モル%の間で変更
した、膜厚み12μmである4種類の5i−EVOH樹
脂膜を使用し、いずれの試料に対しても実施例1記載の
方法で2000オングストロームの酸化上素膜を蒸着し
た。それらについて酸素透過速度を測定するに際し、厚
み50μmの無延伸ポリプロピレンフィルムとポリウレ
タン系接着剤を介して貼合わせたのち、屈曲処理を加え
ない試料と加えた試料を準備し、酸素透過速度を測定し
た結果を第2表に示した。屈曲処理はGe1bo Fl
ex−testerにより500回行ツタ。酸素透過速
度は実施例1記載の方法で、20°C−100%RHで
測定しな。シラン成分を分子鎖中に含まないEVO)I
の場合には、蒸着処理後のEVOH樹脂膜の酸素透過速
度が屈曲処理なしでは充分に蒸着処理効果が認められる
のに対して屈曲処理後には蒸着処理効果がほとんど消失
している。−方、5i−EVOH樹脂膜の場合には、シ
ラン含有量が増加するにつれて屈曲処理後でも蒸着処理
効果が残存していることが明らかである。
Examples 2 to 6 and Comparative Example 2 Four types of 5i-EVOH resin films with a film thickness of 12 μm and with silane contents varied between 0.0005 and 0.2 mol% were used, and for each sample A 2000 angstrom thick oxide film was then deposited using the method described in Example 1. When measuring the oxygen permeation rate of these, we prepared a sample without bending treatment and a sample with bending treatment after laminating it to a 50 μm thick unstretched polypropylene film via a polyurethane adhesive, and measured the oxygen permeation rate. The results are shown in Table 2. The bending process is Ge1bo Fl
500 rows of ivy by ex-tester. The oxygen permeation rate was measured by the method described in Example 1 at 20°C and 100% RH. EVO) I that does not contain a silane component in its molecular chain
In this case, the oxygen permeation rate of the EVOH resin film after the evaporation treatment shows that the evaporation treatment effect is sufficient without the bending treatment, but the evaporation treatment effect almost disappears after the bending treatment. On the other hand, in the case of the 5i-EVOH resin film, it is clear that as the silane content increases, the effect of the vapor deposition treatment remains even after the bending treatment.

以下余白 第2表 実施例7 エチレン、酢酸ビニル及びビニルトリメトキシシランの
共重合体をけん化して得た、シラン含有量0.02モル
%、エチレン含有量32モル%。
Table 2 with blank space below Example 7 Silane content: 0.02 mol%, ethylene content: 32 mol%, obtained by saponifying a copolymer of ethylene, vinyl acetate and vinyltrimethoxysilane.

酢酸ビニル成分のけん化度99.5モル%の5i−EV
OHの厚みが15μmのフィルム上に、(SiH4+N
20)混合ガスに40MW/、、JのA r Fエキシ
マレーザ光(193nm)を照射し直接光分解し、約1
000オングストロームの酸化圭素膜を生成させた。こ
のEVOH膜の酸素透過速度を、厚み50μmの無延伸
ポリプロピレンフィルムと貼合わせたのち、実施例1記
載の方法で、蒸着なしの5i−EVOH樹脂膜(比較例
3)と比較測定した結果を第3表に示した。実施例1に
示したと同様、高湿度下での酸素遮断性が顕著に改善さ
れた。
5i-EV with saponification degree of vinyl acetate component of 99.5 mol%
On a film with an OH thickness of 15 μm, (SiH4+N
20) The mixed gas is directly photodecomposed by irradiating 40MW/, J of ArF excimer laser light (193nm), and approximately 1
A phosphorus oxide film of 0.000 angstroms was produced. The oxygen permeation rate of this EVOH membrane was measured by the method described in Example 1 after being laminated with an unstretched polypropylene film having a thickness of 50 μm, and the results were compared with that of a 5i-EVOH resin membrane without vapor deposition (Comparative Example 3). It is shown in Table 3. As shown in Example 1, the oxygen barrier properties under high humidity were significantly improved.

第3表       * : cc#−day・atm
実施例8 エチレン、酢酸ビニル及びビニルトリメトキシシランの
共重合体をけん化して得た、シラン含有量0.02モル
%、エチレン含有量32モル%、酢酸ビニル成分のけん
化度99,5モル%の5i−EVOHの厚みが12μm
のフィルム上に、混合ガスとして(トリメチルアルミニ
ューム十N20)を使用した他は実施例7と同様の操作
により、約1200オングストロームの酸化アルミニュ
ーム膜を生成させた。この5i−EVOH樹脂膜の酸素
透過速度を、厚み50μmの無延伸ポリプロピレンフィ
ルムと貼合わせた後、実施例1記載の方法で、蒸着なし
の5i−EVOH樹脂膜(比較例4)と比較測定した結
果を第4表に示した。実施例1に示したと同様、高湿度
下での酸素遮断性が顕著に改善された。
Table 3 *: cc#-day・atm
Example 8 Obtained by saponifying a copolymer of ethylene, vinyl acetate and vinyltrimethoxysilane, silane content 0.02 mol%, ethylene content 32 mol%, saponification degree of vinyl acetate component 99.5 mol% The thickness of 5i-EVOH is 12 μm
An aluminum oxide film of about 1200 angstroms was formed on the film by the same operation as in Example 7 except that (trimethylaluminum 10N20) was used as the mixed gas. The oxygen permeation rate of this 5i-EVOH resin film was measured by the method described in Example 1 after being laminated with a 50 μm thick unstretched polypropylene film in comparison with that of a 5i-EVOH resin film without vapor deposition (Comparative Example 4). The results are shown in Table 4. As shown in Example 1, the oxygen barrier properties under high humidity were significantly improved.

F0発明の効果 本発明のガス遮断性材料は、高湿度下においてもガス遮
断性の低下がなく低湿度下におけるとほぼ同水準のガス
遮断性を有し、かつ屈曲、摩擦等の機械的な外力を受け
てもガス遮断性の低下がない。
F0 Effects of the Invention The gas barrier material of the present invention has almost the same level of gas barrier properties as under low humidity without any decrease in gas barrier properties even under high humidity conditions, and is resistant to mechanical damage such as bending and friction. Gas barrier properties do not deteriorate even when subjected to external force.

Claims (3)

【特許請求の範囲】[Claims] (1)エチレン、酢酸ビニル及びビニルシラン系化合物
の共重合体をけん化して得た、シラン含有量0.000
5〜0.2モル%、酢酸ビニル成分のけん化度95モル
%以上、エチレン含有率25〜60モル%である、エチ
レン−ビニルアルコール共重合樹脂膜表面に金属酸化物
の薄膜を有するガス遮断性材料。
(1) Silane content 0.000 obtained by saponifying a copolymer of ethylene, vinyl acetate, and vinyl silane compounds
5 to 0.2 mol%, the degree of saponification of the vinyl acetate component is 95 mol% or more, and the ethylene content is 25 to 60 mol%. Gas barrier property having a thin film of metal oxide on the surface of the ethylene-vinyl alcohol copolymer resin film. material.
(2)ビニルシラン系化合物がビニルトリメトキシシラ
ンである、請求項1記載のガス遮断性材料。
(2) The gas barrier material according to claim 1, wherein the vinylsilane compound is vinyltrimethoxysilane.
(3)金属酸化物の薄膜が蒸着法で得た薄膜である請求
項1〜2のいずれかの一つの項に記載のガス遮断性材料
(3) The gas barrier material according to any one of claims 1 to 2, wherein the metal oxide thin film is a thin film obtained by a vapor deposition method.
JP23847189A 1989-09-13 1989-09-13 Gas interceptive material Pending JPH0399842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23847189A JPH0399842A (en) 1989-09-13 1989-09-13 Gas interceptive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23847189A JPH0399842A (en) 1989-09-13 1989-09-13 Gas interceptive material

Publications (1)

Publication Number Publication Date
JPH0399842A true JPH0399842A (en) 1991-04-25

Family

ID=17030731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23847189A Pending JPH0399842A (en) 1989-09-13 1989-09-13 Gas interceptive material

Country Status (1)

Country Link
JP (1) JPH0399842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1609593A2 (en) 1994-06-30 2005-12-28 Arkema Packaging material including a silica layer and a polyolefin layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1609593A2 (en) 1994-06-30 2005-12-28 Arkema Packaging material including a silica layer and a polyolefin layer

Similar Documents

Publication Publication Date Title
TWI411618B (en) Air barrier film, gas barrier layered body and manufacturing method thereof
JP6519974B2 (en) Gas barrier laminate having good moisture barrier properties
EP0952999B1 (en) Polyamine/unsaturated organic acid composition for barrier coating
WO1996028299A1 (en) Barrier composite film and process for the production thereof
US6436498B1 (en) Reactive silicone/alkyleneimine barrier laminating adhesives having bis-silane additives
EP1348747A1 (en) Gas barrier coating composition and method for manufacturing same
GB2040734A (en) Silicone-coatted article and process for productionthereof
JP2007092052A (en) Gas barrier film, gas barrier laminate, and method for producing the same
EP1263894B1 (en) Barrier coatings using polyacids, process for obtaining them and polycarboxylate coating compositions
WO2021230319A1 (en) Gas barrier film
JP5245507B2 (en) Gas barrier laminated film
JP2003049035A (en) Aqueous dispersion and vacuum deposition film laminated therewith
AU731163B2 (en) Reactive silicone/alkyleneimine barrier laminating adhesives and applications thereof
JP2004143197A (en) Gas barrier coating composition and gas barrier film
AU728150B2 (en) Silicone containing laminate adhesive
JP5550800B2 (en) Gas barrier coating composition, method for producing the same, and gas barrier coating film
JPH0399842A (en) Gas interceptive material
TW201842098A (en) Hydrophilic structure and production method for hydrophilic structure
EP1336637A1 (en) Gas barrier film
CA2401644C (en) Alkylenimine/organic barrier coatings having bis-silane additives
JP4795724B2 (en) Oxygen-absorbing laminate and packaging material
JP4974557B2 (en) Retort processing paper container
JP6672064B2 (en) Barrier laminated film and barrier package
JP5229762B2 (en) Gas barrier coating composition, method for producing the same, and gas barrier coating film
JPS59179627A (en) Antifogging of transparent material