JPH0399751A - Manufacture of cast complex steel material - Google Patents
Manufacture of cast complex steel materialInfo
- Publication number
- JPH0399751A JPH0399751A JP23694789A JP23694789A JPH0399751A JP H0399751 A JPH0399751 A JP H0399751A JP 23694789 A JP23694789 A JP 23694789A JP 23694789 A JP23694789 A JP 23694789A JP H0399751 A JPH0399751 A JP H0399751A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- iron
- mold
- alloy
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 229910000831 Steel Inorganic materials 0.000 title claims description 47
- 239000010959 steel Substances 0.000 title claims description 47
- 239000000463 material Substances 0.000 title claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 120
- 238000002844 melting Methods 0.000 claims abstract description 62
- 230000008018 melting Effects 0.000 claims abstract description 62
- 229910052742 iron Inorganic materials 0.000 claims abstract description 60
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 35
- 239000000956 alloy Substances 0.000 claims abstract description 35
- 239000002344 surface layer Substances 0.000 claims abstract description 18
- 238000005266 casting Methods 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 238000007711 solidification Methods 0.000 claims abstract description 7
- 230000008023 solidification Effects 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 36
- 239000002131 composite material Substances 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 14
- 238000009749 continuous casting Methods 0.000 claims description 6
- 238000007654 immersion Methods 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 5
- 230000000996 additive effect Effects 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 239000012792 core layer Substances 0.000 claims description 2
- 238000012856 packing Methods 0.000 claims description 2
- 239000000306 component Substances 0.000 claims 2
- 239000010410 layer Substances 0.000 claims 2
- 239000008358 core component Substances 0.000 claims 1
- 239000006185 dispersion Substances 0.000 claims 1
- 230000001737 promoting effect Effects 0.000 claims 1
- 239000011365 complex material Substances 0.000 abstract 1
- 230000001276 controlling effect Effects 0.000 abstract 1
- 238000007599 discharging Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 229910052717 sulfur Inorganic materials 0.000 description 20
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 15
- 239000011593 sulfur Substances 0.000 description 15
- 238000005275 alloying Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 229910000915 Free machining steel Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、鋳型内への鉄被覆合金ワイヤーを添加し、鋳
片表層部がタンディツシュ内溶鋼と同一成分からなり、
鋳片コア部のみに合金成分を含有せしめた鋳込み複合鋼
材を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention involves adding an iron-coated alloy wire into the mold, so that the surface layer of the slab is made of the same composition as the molten steel in the tundish.
The present invention relates to a method of manufacturing a cast composite steel material in which alloy components are contained only in the slab core.
従来の技術
鋼材の表層部とコア部とで異なる鋼種の特性を有する複
合鋼材は、付加価値の高い鋼材として使用され、最近連
続鋳造による製造について報告がなされている。例えば
、「鉄と鋼J 72 (198B)、5885における
「クラツド鋼丸ビレットの連続鋳造法」、或いは「材料
とプロセス」1 (198B)、5288での「ステン
レス鋼中空丸ブルームの連続鋳造法」があり、これらは
鋳ぐるみ法による複合鋼材の製造方法に関する。BACKGROUND OF THE INVENTION Composite steel materials whose surface layer and core portion have different characteristics are used as high value-added steel materials, and there have recently been reports on their production by continuous casting. For example, ``Continuous casting method for clad steel round billets'' in Tetsu to Hagane J 72 (198B), 5885, or ``Continuous casting method for stainless steel hollow round billets'' in ``Materials and Processes'' 1 (198B), 5288. These are related to methods for manufacturing composite steel materials using the casting method.
複合鋼材のその他の製造方法としては、鋳型内へ合金元
素を添加するコア添加法が知られている。例えば、特公
昭55−14847号には、コア部に鉄被覆チタン充填
ワイヤーを添加するホーロー用鋼板の製造方法が、特開
昭82−142053号には、鉄被覆硫黄充填ワイヤー
によりコア部に硫黄を添加する硫黄快削鋼の製造方法が
開示されている。As another method for manufacturing composite steel materials, a core addition method in which alloying elements are added into a mold is known. For example, Japanese Patent Publication No. 55-14847 describes a method for manufacturing enameled steel sheets in which an iron-coated titanium-filled wire is added to the core, and JP-A-82-142053 describes a method for manufacturing enameled steel sheets by adding an iron-coated sulfur-filled wire to the core. A method for manufacturing sulfur free-cutting steel is disclosed.
発明が解決しようとする課題
]ア添加法による鋳込複合鋼材の製造は、タンディツシ
ュ内溶鋼成分と同一成分からなる所定厚みの表層部を確
保し、更にそのコア部を合金添加により成分を所定範囲
内に調整することにより、表層部とコア部が異なる成分
からなる複合鋼材を得ようとするものである。[Problems to be Solved by the Invention] In manufacturing cast composite steel materials using the additive method, a surface layer with a predetermined thickness is secured that is made of the same components as the molten steel in the tundish, and the core portion is further increased in composition within a predetermined range by alloying. The aim is to obtain a composite steel material in which the surface layer portion and the core portion have different components.
以上の方法の課題は、第1図のように表層部を形成する
溶鋼成分のプールとコア部を形成する添加合金を含む溶
鋼成分のプールを連鋳片内で分離して保持することが必
要であり、このため合金をその内部に充填した鉄被覆合
金ワイヤーの溶解位置制御が重要な技術となる。The problem with the above method is that, as shown in Figure 1, it is necessary to separate and maintain the pool of molten steel components forming the surface layer and the pool of molten steel components containing additive alloys forming the core within the continuous slab. Therefore, controlling the melting position of iron-coated alloy wire filled with alloy becomes an important technology.
鋳型内の溶鋼流動は、一般に鉄被覆合金ワイヤーの吐出
孔からの吐出流の影響による鋳型上部(図中A部)の上
A循環流領域とその下部(図中B部)の上昇循環流が鎮
静化した領域に大別される。The flow of molten steel in the mold is generally caused by the influence of the discharge flow from the discharge hole of the iron-coated alloy wire, and the upper circulating flow area in the upper part of the mold (section A in the figure) and the upward circulation flow in the lower part (section B in the figure). It is broadly divided into areas that have been sedated.
ここで上述した溶鋼成分の異なる2つのプールを確保す
るには、B部でかつ所要の表層部厚みが確保出来る位置
に鉄被覆合金ワイヤーを投入し溶解を完了させることが
複合材を製造する1−で必要である。In order to secure the two pools with different molten steel compositions mentioned above, it is necessary to insert the iron-coated alloy wire at a position where the required surface layer thickness can be secured in part B and complete the melting. - is required.
しかしながら上記の観点から鋳型より退度に下部(図中
C部)で溶解させようとして溶解しにくいワイヤーを用
いた場合には、ワイヤーの外周に鋳型内の溶鋼が凝固付
着したまま鋳片内に残存したり、またたとえワイヤーが
溶解しても均一な合金の混合、拡散が行われず合金が局
部的に濃化する問題がある。However, from the above point of view, if you use a wire that is difficult to melt in order to melt it at a lower part of the mold (section C in the figure), the molten steel in the mold will solidify and adhere to the outer periphery of the wire and will not melt inside the slab. There is a problem that even if the wire remains, or even if the wire is melted, the alloy is not uniformly mixed and diffused, and the alloy locally becomes concentrated.
本発明では、連続鋳造による複合鋼材の製造において、
鉄被覆ワイヤーの溶解位置制御方法についてその最適化
をはかると共に、コア添加法により安定して複合材を製
造できるようにしたものである。In the present invention, in manufacturing composite steel materials by continuous casting,
In addition to optimizing the method for controlling the melting position of iron-coated wire, we have also made it possible to stably manufacture composite materials using the core addition method.
課題を解決するための手段
本発明は以上の課題を解決するものであり、以下にまず
鉄被覆ワイヤーの溶解位置コントロール手段について述
べる。製造しようとする複合材の目標とする表層部厚み
をLs (m)とするとき、鋳型内湯面からのワイヤー
溶解位置L (+a)は凝固式から(1)式で求めるこ
とが出来る。Means for Solving the Problems The present invention solves the above-mentioned problems, and the means for controlling the melting position of the iron-coated wire will first be described below. When the target surface layer thickness of the composite material to be manufactured is Ls (m), the wire melting position L (+a) from the molten metal surface in the mold can be determined from the solidification equation using equation (1).
L= (Ls /K) 2・Vc −(1)
ここ−cKは凝固係数(m/l1in” ) 、V c
は鋳造速度(m/min)である。L= (Ls/K) 2・Vc −(1)
where -cK is the coagulation coefficient (m/l1in"), Vc
is the casting speed (m/min).
一方、ワイヤー供給速度をVw (m/min)とすれ
ば、鋳型内に供給したワイヤーが溶解位置りまで到達す
る時間T(win) (以下溶解時間という)は、(
2)式で示される。On the other hand, if the wire supply speed is Vw (m/min), the time T (win) for the wire supplied into the mold to reach the melting position (hereinafter referred to as melting time) is (
2) It is shown by the formula.
T=L/V冒 ・・・・・・(2
)(1)および(2)式から、(3)式が得られる。T=L/V
) From equations (1) and (2), equation (3) is obtained.
L−(Ls /K) ” ・Vc =Vw ・T −
(3)このように、目標とする表層部厚みLs、鋳造速
度VCが与えられれば、ワイヤーの溶解すべき位置りが
定まり、これはワイヤー投入速度Vwとワイヤー溶解時
間Tの蹟により表すことが出来る。L-(Ls/K)" ・Vc=Vw ・T-
(3) In this way, if the target surface layer thickness Ls and casting speed VC are given, the position where the wire should be melted is determined, and this can be expressed by the wire feeding speed Vw and the wire melting time T. I can do it.
発明者らは、ワイヤー溶解時間を添加しようとする合金
を被覆する鉄ワイヤ一部の肉厚t、径りにより制御しよ
うとした。ここで当然ながらワイヤは溶鋼中を通過中、
溶鋼の凝固付着、溶解の過程を経るが、ここで言う溶解
時間は最終的に鉄被覆部が溶解し、中に充填された合金
元素を吐き出す時点を言う。またここで、溶解時間とし
て鉄被覆部に着眼しているのは、一般に鉄被覆ワイヤー
内に充填する合金は粉体状にて充填されるため粉体間の
空気層の存在により伝熱抵抗が大きく、鉄被覆部に比べ
溶鋼からの伝熱が遅いという理由による。The inventors attempted to control the wire melting time by controlling the thickness t and diameter of a portion of the iron wire covering the alloy to be added. Of course, the wire is passing through the molten steel,
The molten steel goes through the processes of solidification, adhesion, and melting, and the melting time referred to here refers to the time when the iron coating finally melts and the alloying elements filled therein are discharged. In addition, here, we are focusing on the iron-coated part as the melting time because the alloy that is filled into the iron-coated wire is generally filled in the form of powder, so the presence of air spaces between the powders causes heat transfer resistance. This is largely due to the fact that heat transfer from molten steel is slower than in iron-coated parts.
第2図に示す如く、発明者の調査でも、溶鋼温度を融点
直上に保ち、かつ溶鋼とワイヤーの鉄被覆の成分がほぼ
同等のもので溶解時間を測定した結果によっても、鉄被
覆部の肉厚t、径りにより溶解時間が決まり、おおよそ
第3図のように鉄被覆断面積により表せる。As shown in Fig. 2, the inventor's investigation also found that the melting time was measured by keeping the molten steel temperature just above the melting point and by measuring the melting time when the molten steel and the iron coating of the wire had almost the same composition. The melting time is determined by the thickness t and diameter, and can be approximately expressed by the cross-sectional area of the iron coating as shown in FIG.
以上から、鉄被覆ワイヤーの溶解時間を決定する因子を
明らかにし、更に実用上これらの因子と溶解位置りの関
係をより明確にするため、実際の複合材製造を行い、(
4)式のように、鉄被覆ワイヤーの溶解制御を行う指標
となる式を得た。Based on the above, in order to clarify the factors that determine the melting time of iron-coated wire, and further clarify the relationship between these factors and the melting position in practical use, we conducted an actual composite material production.
We obtained the formula 4), which serves as an index for controlling the dissolution of iron-coated wire.
L=03・p5 *SIIVw −・・・・
・(4)ここで、Lは溶解位置(■)、ρsはワイヤー
被覆部の密度(kg/mつ、Vwはワイヤーの投入速度
(m#+in) 、 Sは鉄被覆ワイヤーの断面積(m
’)、C3は係数で0.3〜0.6程度である。L=03・p5 *SIIVw −・・・・
・(4) Here, L is the melting position (■), ρs is the density of the wire coating part (kg/m2), Vw is the wire feeding speed (m#+in), and S is the cross-sectional area of the iron-covered wire (m
'), C3 is a coefficient of about 0.3 to 0.6.
Sは、鉄被覆ワイヤーの内径D i (m)と外径DO
(m)を使って次式で求まる。S is the inner diameter D i (m) and outer diameter DO of the iron-coated wire
(m) can be found using the following formula.
S=π/4” (Do 2 D i2) ”・・
’・(5)(0式は、溶解位置りを供給するワイヤーの
熱容量によりコントロールする考えに基づいた式であり
、係数は、鋳型内の溶鋼温度、鋳型サイズにより多少変
動するので、上記範囲の中で最も適当な係数を選定して
ワイヤーの投入速度制御を行えば良い。S=π/4" (Do 2 D i2)"...
'・(5) (Equation 0 is an equation based on the idea that the melting position is controlled by the heat capacity of the wire that supplies it, and the coefficient varies somewhat depending on the molten steel temperature in the mold and the mold size, so it is within the above range. The wire feeding speed may be controlled by selecting the most appropriate coefficient among them.
ここで、鉄被覆ワイヤーの断面形状は、」−述の如く円
形でも、或いは楕円形、角型その他の形状でも、鉄被覆
ワイヤーの断面積Sをそれぞれの形状に応じ同様に取り
扱うことにより(4)式を適用してよい。Here, the cross-sectional shape of the iron-coated wire can be determined by treating the cross-sectional area S of the iron-coated wire in the same manner according to each shape, whether it is circular as described above, oval, square, or other shapes. ) may be applied.
以上により鉄被覆ワイヤーにより溶解位置りを調整する
方法についての概略を述べた。The outline of the method for adjusting the melting position using iron-coated wire has been described above.
次に、コア部への合金元素添加の調整供給方法について
述べる。Next, a method for adjusting and supplying alloying elements to the core portion will be described.
ワイヤー溶解位置での鋳片の凝固シェル内溶鋼断面積を
A (m2) 、溶鋼の密度をpM (kg/ m”
)、コア部への合金添加目標濃度差(上昇分)を△C(
%)、ワイヤー内径をII(鵬)、ワイヤー内合金元素
の充填密度をpc (kg/ rn”) 、合金元素
の添加歩留をη(%)、溶解に供するワイヤー本数をN
木とすれば、(6)式の物質収支式が求まる。The cross-sectional area of the molten steel in the solidified shell of the slab at the wire melting position is A (m2), and the density of the molten steel is pM (kg/m”
), the target concentration difference (increase) of alloy addition to the core part is △C(
%), the inner diameter of the wire is II (Peng), the packing density of the alloying element in the wire is pc (kg/rn”), the addition yield of the alloying element is η (%), the number of wires subjected to melting is N
If it is a tree, the material balance equation (6) can be found.
AxVcxpM×ΔC
=π/4 ・D i2×pc XVw XηXN −
−−−・−(6)ここでワイヤーにより供給される合金
添加量QはQ= π/4* D i2×pc XVw
XN ・−・−(7)であるから、鉄被覆ワイヤーの
操作因子は以下のように表せる。AxVcxpM×ΔC = π/4 ・D i2×pc XVw XηXN −
---・-(6) Here, the alloy addition amount Q supplied by the wire is Q= π/4* D i2×pc XVw
Since XN ・−・−(7), the operating factor of the iron-coated wire can be expressed as follows.
D + 2Vw =Q/(1)C・π/ 4 ・N)
−(8)以上から所望の溶解位置L(表層部Ls)を
満足しつつコア部に所望の合金量Qを添加する鉄被0
環ワイヤー条件は、(4)式および(8)式を満足する
鉄被覆ワイヤーの肉厚、径、投入速度等を組み合わせる
ことにより得られる。D + 2Vw = Q/(1)C・π/ 4・N)
-(8) From the above, the iron-covered wire condition that adds the desired amount of alloy Q to the core while satisfying the desired melting position L (surface layer Ls) satisfies equations (4) and (8). It can be obtained by combining the thickness, diameter, feeding speed, etc. of the iron-coated wire.
以上の方法により、コア添加法による複合材製造上のワ
イヤーの溶解位置制御方法の考え方を示した。Using the above method, we have demonstrated the concept of a method for controlling the melting position of wire in the manufacture of composite materials using the core addition method.
以」二述べた方法により複合材を製造するにあたっての
ワイヤーの必要溶解位置およびワイヤー仕様の概略を決
定出来るが、ワイヤーの溶解位置が前述の課題である鋳
型内の溶鋼の流動状態を勘案して十分であるかの判断条
件を規定するのが、次なる発明の骨子であり、以下にそ
の詳細を述べる。The necessary melting position of the wire and the outline of the wire specifications can be determined by the method described above in manufacturing composite materials, but the melting position of the wire can be determined by taking into account the flow state of the molten steel in the mold, which is the problem mentioned above. The gist of the next invention is to define the conditions for determining sufficiency, and the details thereof will be described below.
第1図に示した鋳型内A部でワイヤーの溶解が行われる
場合、添加合金の混合、拡散が複合材製造上の問題とな
る。この点について水モデル試験による鋳型内の」型外
循環流の調査結果を第4図に示すが、鋳型サイズが大き
いほど鋳型内の混合領域は湯面から深い所まで存在し、
概略ノズル浸漬深さを基準として鋳型の長辺幅の(1〜
2)倍程1
度である。When the wire is melted in part A in the mold shown in FIG. 1, mixing and diffusion of the additive alloy becomes a problem in manufacturing the composite material. Regarding this point, Fig. 4 shows the investigation results of the extra-mold circulation flow inside the mold through a water model test, and the larger the mold size, the deeper the mixing region inside the mold is.
Approximately the long side width of the mold based on the nozzle immersion depth (1~
2) Approximately 1 degree.
したがって、鋳型内A部への添加合金の混合、拡散を防
止するためには、ワイヤーの溶解位置L(m)は、次式
とすることが必要である。Therefore, in order to prevent mixing and diffusion of the additive alloy into the part A inside the mold, the melting position L(m) of the wire needs to be determined by the following formula.
L> (CIXH+LN)÷1000 ・・・・
・・(9)ここで、Hは鋳型サイズの長辺Ill、1(
11)、LHはノズルの浸漬深さ(am)、C1は係数
で1〜1.5程度である。L> (CIXH+LN)÷1000...
...(9) Here, H is the long side Ill of the mold size, 1(
11), LH is the immersion depth (am) of the nozzle, and C1 is a coefficient of about 1 to 1.5.
さらに、発明者らは、鉄被覆合金ワイヤーの吐出孔を変
更することにより鋳型内流動の最適化を図る手段、すな
わち(8)式で規定される溶解位置最浅制約の緩和手段
を開示する。Furthermore, the inventors disclose a means for optimizing the flow in the mold by changing the discharge hole of the iron-coated alloy wire, that is, a means for relaxing the shallowest melting position constraint defined by equation (8).
(1)旋回ノズル方式
鉄被覆合金ワイヤーの吐出孔を鋳型内壁面に対して、第
5図(a)のように傾斜して噴射することにより、吐出
流の運動エネルギーが鋳型下方に及ぶのを抑制すること
により、第2図のA部を縮小する方法である。特にこの
方法は、鋳型サイズが大きい場合に有効な方法である。(1) Swivel nozzle method By injecting the discharge hole of the iron-coated alloy wire at an angle to the inner wall surface of the mold as shown in Figure 5 (a), the kinetic energy of the discharge flow is prevented from reaching the lower part of the mold. This is a method of reducing the area A in FIG. 2 by suppressing the area. This method is particularly effective when the mold size is large.
(2)鉄被覆合金ワイヤーのストレート化2
従来の鋳型内壁面に向かう吐出孔に加え、第5図(b)
のように鉄被覆合金ワイヤーの底部に鋳型下方へ吐出孔
を新たに設けることにより前者の吐出孔にて所要表層部
厚み形成のための湯量を極力小さい運動エネルギーで供
給し、更に後者の吐出孔にてコア形成用の湯量、並びに
添加合金の均一分散のための攪拌エネルギーを確保する
ことに特徴がある。特にこの方法は、鋳型サイズが小さ
い場合に有効な方法である。(2) Straightening of iron-coated alloy wire 2 In addition to the conventional discharge hole facing the inner wall of the mold, Fig. 5(b)
By newly providing a discharge hole below the mold at the bottom of the iron-coated alloy wire, the former discharge hole supplies the amount of hot water needed to form the required surface layer thickness with as little kinetic energy as possible, and the latter discharge hole It is characterized by securing the amount of hot water for forming the core and the stirring energy for uniformly dispersing the added alloy. This method is particularly effective when the mold size is small.
以上複合材製造上の鉄被覆ワイヤーの溶解位置について
の湯面からの必要最浅深さについての規定とその制約条
件の緩和方法について述べた。The above describes the regulations regarding the required shallowest depth from the hot water surface for the melting position of iron-coated wire in the manufacture of composite materials, and methods for relaxing the constraints.
次に、鉄被覆ワイヤーの溶解位置についての湯面からの
限界最深深さについて述べる。限界最深深さは鉄被覆ワ
イヤーの付着地金残存という問題から規定するもので、
第1図のB領域の下端の溶鋼が加熱度ΔT(=溶鋼温度
−融点)及び流動性を消失した位置で定義するものであ
る。この条件は、鋳片の熱容量に対する凝固シェル成長
による抜熱による鋳片内溶鋼温度の低下により概略状ま
3
るものである。Next, we will discuss the maximum depth below the melting surface for the melting position of the iron-coated wire. The maximum depth limit is determined based on the problem of residual metal adhering to the iron-coated wire.
This is defined as the position at which the molten steel at the lower end of region B in FIG. 1 loses its heating degree ΔT (=molten steel temperature - melting point) and fluidity. This condition is approximately satisfied by the reduction in the temperature of the molten steel in the slab due to the heat removal due to the growth of the solidified shell relative to the heat capacity of the slab.
(10)式の左辺の第2項は、鋳片内の凝固割合を定義
する式であり、左辺は鋳片内の未凝固割合(%)を表現
する。実温テストなどから、鉄被覆ワイヤーの付着地金
残存が発生しない条件を求めると、ワイヤーの溶鋼位置
りにおける鋳片の未凝固率が、40〜50%以上の領域
で溶解を完了させる必要がある。The second term on the left side of equation (10) is an equation that defines the solidification ratio within the slab, and the left side expresses the unsolidified ratio (%) within the slab. Based on real-temperature tests and other methods, we found that the conditions under which no metal remains attached to the iron-coated wire are found to be such that melting must be completed when the unsolidified rate of the slab at the molten steel position of the wire is 40 to 50% or more. be.
・・・・・・(10)
ここで、
Kは凝固係数(m罵/鳳in″h)、Lは鉄被覆ワイヤ
ーの溶解位置(m)、Vcは鋳造速度(m/min)
、Hは鋳型の長辺幅(mm)、Bは鋳型の短辺厚み(m
m)を表す。......(10) Here, K is the coagulation coefficient (m/min), L is the melting position of the iron-coated wire (m), and Vc is the casting speed (m/min).
, H is the long side width of the mold (mm), B is the short side thickness of the mold (m
m).
(10)式から溶解位置についての湯面からの限界最深
深さLは次式となる。From the equation (10), the maximum depth L from the melting surface for the melting position is determined by the following equation.
4
以上をまとめると、鉄被覆ワイヤーの溶解位置について
の湯面からの最浅深さを(9)式にて規定し、限界最深
深さLを(11)式にて規定することにより、鉄被覆ワ
イヤーの溶解位置はC1を1〜1.5、C2を0,5〜
0.6とし、(12)式にて規定される。4 To summarize the above, by specifying the shallowest depth from the hot water surface of the melting position of the iron-coated wire using equation (9), and specifying the critical maximum depth L using equation (11), it is possible to The melting position of the coated wire is C1 from 1 to 1.5 and C2 from 0.5 to
0.6 and is defined by equation (12).
・・・・・・(12)
作用
本発明は、その内部に添加合金元素を充填した鉄被覆ワ
イヤーの溶解位置制御について述べたもので、第1の作
用は、複合材製造上必要なワイヤーの溶解位置の制御範
囲を明らかにしたことであり、第2の作用は、鉄被覆ワ
イヤーの寸法および投入速度を制御因子として、上記制
御範囲に溶解位置をコントロールしつつ、コア部に必要
に応じた合金元素を供給する方法を明らかにしたことに
ある。(12) Function The present invention describes the control of the melting position of an iron-coated wire filled with an additional alloying element. The control range for the melting position has been clarified, and the second effect is to control the melting position within the above control range by using the dimensions and feeding speed of the iron-coated wire as control factors, and to adjust the melting position to the core as necessary. The goal is to clarify a method for supplying alloying elements.
本発明による鉄被覆ワイヤーの溶解位置コント5 0−ルにより、良好な複合材の製造が可能となる。Melting position control of iron-coated wire according to the present invention 5 O-R allows for the production of good composite materials.
実施例
以下に、コア部硫黄濃度の高い硫黄快削鋼の連続鋳造に
関する実施例について説明する。Examples Examples of continuous casting of sulfur free-cutting steel having a high core sulfur concentration will be described below.
転炉で0.06%C10,02%Si、0.50%Mn
、0.025%P、0.012%S、0.015%Mの
成分系の溶鋼を溶製し、曲率半径12mの湾曲型連鋳機
で、横断面サイズが182mmX lB2mmノビL/
−/トを、5孔の鉄被覆合金ワイヤー(水平4孔十垂直
1孔の吐出孔を有する)を用い、鋳造速度■e = 1
.8〜2.Om1膳inで鋳造した。0.06%C10, 02%Si, 0.50%Mn in converter
, 0.025%P, 0.012%S, 0.015%M molten steel was melted using a curved continuous casting machine with a radius of curvature of 12m, and the cross-sectional size was 182mmX 1B2mm Nobi L/
−/to, using a 5-hole iron-coated alloy wire (having 4 horizontal holes and 1 vertical discharge hole), and casting speed ■e = 1
.. 8-2. It was cast in Om1 set.
鋳型上部へワイヤー供給ガイドを設置し、ワイヤー供給
機を用いて鋳型と鉄被覆合金ワイヤーとの間から鋳型内
へ、粉末硫黄を充填した鉄被覆ワイヤーを連続的に供給
しながら鋳造した。A wire feed guide was installed above the mold, and casting was performed using a wire feeder to continuously feed the iron-coated wire filled with powdered sulfur into the mold from between the mold and the iron-coated alloy wire.
コア部硫黄濃度が0.150〜0.250%SのA鋼種
と0.050〜o、too%SのB鋼種を製造するため
に硫黄充填ワイヤーを2種類準備し、A鋼種用は外径6
.5+u+φ、鉄被覆厚み0.9m腸、B#4種用は外
径4.5+imφ、鉄被覆厚み1.om鵬とした。Two types of sulfur-filled wires were prepared to manufacture steel type A with a core sulfur concentration of 0.150 to 0.250%S and steel type B with a core sulfur concentration of 0.050 to o, too%S. 6
.. 5+u+φ, iron coating thickness 0.9m, external diameter 4.5+imφ for B#4 type, iron coating thickness 1. ompeng.
6
尚、硫黄を添加しない鋳片表層部厚みの目標値は、いず
れの鋼種においても10〜25m鵬とした。6. The target thickness of the surface layer of the slab without adding sulfur was 10 to 25 m for all steel types.
第1表に、上記硫黄快削鋼の製造条件および得られたビ
レット鋳片から採取した横断面サンプルにおける表層部
厚みの測定結果、コア部硫黄濃度の分析結果並びにコア
部での地金残存の有無、硫黄の局部濃化の有無について
の観察結果を示した。Table 1 shows the manufacturing conditions for the sulfur free-cutting steel mentioned above, the measurement results of the surface layer thickness in a cross-sectional sample taken from the obtained billet slab, the analysis results of the sulfur concentration in the core, and the residual metal content in the core. Observation results regarding the presence or absence of sulfur and the presence or absence of local concentration of sulfur are shown.
第6図は、鉄被覆ワイヤーの投入速度に対して、凝固後
に表層部厚みから算出したワイヤーの溶解位置を示して
いる。FIG. 6 shows the melting position of the wire calculated from the surface layer thickness after solidification with respect to the feeding speed of the iron-coated wire.
ここでは、」二足実施例と対応伺けて、本発明の具体的
適用方法について詳細に述べることとする。ここで基本
条件として、鋳片サイズに対し、V C= 1.8m
/minで凝固係数K = 24m5+/sin′hで
表層部厚みを15〜20mm確保するためには、(1)
式からワイヤーの溶解位置を鋳型内湯面から0.7〜1
.25m深さにする必要がある。Here, a concrete application method of the present invention will be described in detail in correspondence with the two-legged embodiment. Here, as a basic condition, V C = 1.8 m for the slab size.
/min and solidification coefficient K = 24m5+/sin'h to ensure a surface layer thickness of 15 to 20mm, (1)
From the formula, the wire melting position is 0.7 to 1 from the mold surface.
.. It needs to be 25m deep.
これに対し、良好な複合材を製造するための鋳型内での
2つの溶鋼プールの分離条件およびワイ7
ャーの完全溶解条件を規定する(12)式は左辺がノズ
ル浸漬深さを0.2厘とすると(0,3B〜0.44)
mと求まり、また右辺は(1,28〜1.80)mの範
囲にあり、上記の0.7〜1.25m深さにワイヤーの
溶解位置を制御すれば求める複合材が得られる見通しが
立つ。On the other hand, in Equation (12), which defines the conditions for separating the two molten steel pools in the mold and the conditions for complete melting of the wire in order to produce a good composite material, the left side of Equation (12) specifies the nozzle immersion depth by 0.2. If it is Rin (0.3B~0.44)
m, and the right side is in the range of (1,28 to 1.80) m, and it is expected that the desired composite material will be obtained by controlling the melting position of the wire to the depth of 0.7 to 1.25 m described above. stand.
次に、上記溶解位置に制御しつつ、コア部に目標濃度を
供給出来るワイヤー寸法およびワイヤー供給速度を求め
る。今、コア部を0.050%Sから0.200%Sに
上昇させようとすると必要硫黄是は0.42kg/mi
l+であり、硫黄の密度を2000kg/rn’とした
物質収支の(8)式と、鉄被覆ワイヤーの溶解位置制御
の関係の(4) (5)式を連立させることで、ワイヤ
ーの外径り。= 8.5mmφ、鉄被覆厚み0.9m1
1、ワイヤーの供給速度Vw = 10.7m/min
、鉄被覆部の供給速度2.8kg1履inが求まる。Next, the wire dimensions and wire supply speed that can supply the target concentration to the core portion while controlling the melting position as described above are determined. Now, if we try to increase the core part from 0.050%S to 0.200%S, the required sulfur is 0.42kg/mi.
By combining equation (8) for the mass balance with the density of sulfur as 2000 kg/rn' and equations (4) and (5) for controlling the melting position of the iron-coated wire, the outer diameter of the wire can be determined by the law of nature. = 8.5mmφ, iron coating thickness 0.9m1
1. Wire supply speed Vw = 10.7m/min
, the feeding rate of the iron coating part is 2.8 kg/in.
この供給速度により第6図の安定して複合材を製造可能
な溶解位置に制御出来る。This feeding rate allows control to the melting position shown in FIG. 6, where the composite material can be stably produced.
同様な方法が、鋳造条件が異なる場合にも適用出来る。A similar method can be applied to cases where casting conditions are different.
8
19
発明の効果
以」二説明したように、本発明によれば、鉄被覆合金ワ
イヤーの鋳型内添加により、複合鋼材の連続鋳造が可能
となり、従来造塊法で鋳造していた複合鋼材の製造コス
トの低減や品質の安定化に対する効果は極めて大きい。8 19 Effects of the Invention As explained in 2, according to the present invention, by adding iron-coated alloy wire into the mold, continuous casting of composite steel materials becomes possible, and composite steel materials conventionally cast by the ingot method can be cast. The effects on reducing manufacturing costs and stabilizing quality are extremely large.
第1図は縦断面図、第2図は鉄被覆厚みとワイヤー溶解
時間の関係を示す図、第3図は鉄被覆断面積とワイヤー
溶解時間の関係を示す図、第4図は鋳型内の上昇循環流
の調査結果を示す図、第5図(a) 、 (b)は鋳型
内流動の最適化を図る手段の説明図、第6図はワイヤー
の投入速度と溶解位置を示す図である。
lφΦ・ノズル、2・・・吐出口、3・参・ワイヤー、
4・・・表層部、5・・・コア層。Figure 1 is a longitudinal cross-sectional view, Figure 2 is a diagram showing the relationship between iron coating thickness and wire melting time, Figure 3 is a diagram showing the relationship between iron coating cross-sectional area and wire melting time, and Figure 4 is a diagram showing the relationship between iron coating thickness and wire melting time. A diagram showing the investigation results of upward circulation flow, Figures 5(a) and (b) are explanatory diagrams of means for optimizing the flow in the mold, and Figure 6 is a diagram showing the wire feeding speed and melting position. . lφΦ, nozzle, 2...discharge port, 3, wire,
4... Surface layer part, 5... Core layer.
Claims (1)
された溶鋼が、母溶鋼成分の表層部(リム層)を形成し
、さらに、未凝固部への合金添加により、母溶鋼と異な
る成分の内部(コア層)を形成する鋳込み複合鋼材製造
方法において、湯面からの距離で表す鉄被覆ワイヤーの
溶解位置Lを、上記鋳片表層部に添加合金が混合しない
よう下式の左辺の規定以上とし、かつ鉄被覆ワイヤーが
未溶解で鋳片内に残存しない下式の右辺の規定以下に制
御することを特徴とする鋳込み複合鋼材の製造方法。 (L_N+C1×H/1000)<L<Vc・(C2・
(H×B)/K・2(H×B))^2ここで、 L:鉄被覆合金ワイヤーの溶解位置の鋳型湯面からの距
離(m) L_N:浸漬ノズルの吐出孔の鋳型湯面からの距離(m
m)H:鋳型の長辺幅(mm)、B:鋳型の短辺厚み(
mm)Vc:鋳造速度(m/min)、K:凝固係数(
mm/min^1^/^2)C1:係数(1〜1.5)
、C2:係数(0.5〜0.6)(2)請求項(1)の
範囲内に鉄被覆合金ワイヤーの溶解位置をコントロール
する手段として、溶解位置Lが下式に示すとおりワイヤ
ー被覆部の投入重量速度に比例するとした近似制御方法
を特徴とする鋳込み複合鋼材の製造方法。 L=C3・ρs・S・Vw ここで、 ρs:ワイヤー被覆部の密度(kg/m^3)、S:ワ
イヤー被覆部の横断面積(m^2) =π/4・(Do^2−Di^2) Do:被覆ワイヤーの外径(m)、 Di:被覆ワイヤーの内径(m) Vw:鉄被覆ワイヤーの投入速度(m/min)、C3
:係数(0.3〜0.6) (3)請求項(1)、(2)を満足し、かつ、所要合金
添加量を得るための物質収支式としての下式を制御条件
のひとつに加えることで、最終的にワイヤー条件、投入
条件を決定し、所望のコア成分を任意に選択することを
特徴とする鋳込み複合鋼材の製造方法。 Di^2Vw=(Q/N・π/4・ρc) ここで、 Di:鉄被覆ワイヤーの内径(m) N:投入ワイヤー本数 Vw:鉄被覆ワイヤーの投入速度(m/min)Q:合
金添加量(kg/min) ρc:合金の充填密度(kg/m^3) (4)鋳型内での溶鋼の上昇循環流を抑制し、添加合金
の均一分散化を促進させる、あるいは/および、よりリ
ム層の薄い複合鋼材を得るために、浸漬ノズルの吐出孔
を鋳型内壁面に対して傾斜すること(回転流利用)、ま
たは、浸漬ノズル底部に吐出孔を設けて下向きに吐出さ
せること(下降流利用)を特徴とする請求項(1)〜(
3)記載の鋳込み複合鋼材の製造方法。[Claims] (1) In continuous casting of steel, molten steel supplied from a tundish forms the surface layer (rim layer) of the mother molten steel components, and further, by adding alloy to the unsolidified portion, In a cast composite steel manufacturing method that forms an interior (core layer) of different components from molten steel, the melting position L of the iron-coated wire expressed as the distance from the molten metal surface is determined by the following formula to prevent the additive alloy from mixing with the surface layer of the slab. A method for manufacturing a cast composite steel material, characterized by controlling the value to be equal to or higher than the specification on the left side of the equation, and below the specification on the right side of the equation below, such that the iron-coated wire is not unmelted and remains in the slab. (L_N+C1×H/1000)<L<Vc・(C2・
(H×B)/K・2(H×B))^2 where, L: Distance from the mold surface of the melting position of the iron-coated alloy wire (m) L_N: Molten surface of the discharge hole of the immersion nozzle Distance from (m)
m) H: Width of the long side of the mold (mm), B: Thickness of the short side of the mold (
mm) Vc: Casting speed (m/min), K: Solidification coefficient (
mm/min^1^/^2) C1: Coefficient (1 to 1.5)
, C2: Coefficient (0.5 to 0.6) (2) As a means for controlling the melting position of the iron-coated alloy wire within the range of claim (1), the melting position L is as shown in the following formula at the wire coating part. A method for manufacturing a cast composite steel material, characterized by an approximate control method in which the speed is proportional to the input weight speed. L=C3・ρs・S・Vw where, ρs: Density of wire coating part (kg/m^3), S: Cross-sectional area of wire coating part (m^2) =π/4・(Do^2- Di^2) Do: Outer diameter of coated wire (m), Di: Inner diameter of coated wire (m) Vw: Feeding speed of iron coated wire (m/min), C3
: Coefficient (0.3 to 0.6) (3) The following equation as a material balance equation to satisfy claims (1) and (2) and obtain the required alloy addition amount is one of the control conditions. A method for manufacturing a cast composite steel material, which is characterized by finally determining wire conditions and feeding conditions and arbitrarily selecting a desired core component. Di^2Vw=(Q/N・π/4・ρc) Here, Di: Inner diameter of iron-coated wire (m) N: Number of wires Vw: Feeding speed of iron-coated wire (m/min) Q: Alloy addition Quantity (kg/min) ρc: Alloy packing density (kg/m^3) (4) Suppressing the upward circulation flow of molten steel in the mold and promoting uniform dispersion of the added alloy, and/or In order to obtain a composite steel material with a thin rim layer, the discharge hole of the immersion nozzle is inclined with respect to the inner wall surface of the mold (rotary flow utilization), or the discharge hole is provided at the bottom of the immersion nozzle and the discharge is directed downward (downward flow). Claims (1)-(
3) The method for manufacturing the cast composite steel material described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23694789A JPH0399751A (en) | 1989-09-14 | 1989-09-14 | Manufacture of cast complex steel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23694789A JPH0399751A (en) | 1989-09-14 | 1989-09-14 | Manufacture of cast complex steel material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0399751A true JPH0399751A (en) | 1991-04-24 |
JPH0573504B2 JPH0573504B2 (en) | 1993-10-14 |
Family
ID=17008112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23694789A Granted JPH0399751A (en) | 1989-09-14 | 1989-09-14 | Manufacture of cast complex steel material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0399751A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007313552A (en) * | 2006-05-29 | 2007-12-06 | Sumitomo Metal Ind Ltd | Method for continuously casting double-layered cast slab |
-
1989
- 1989-09-14 JP JP23694789A patent/JPH0399751A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007313552A (en) * | 2006-05-29 | 2007-12-06 | Sumitomo Metal Ind Ltd | Method for continuously casting double-layered cast slab |
Also Published As
Publication number | Publication date |
---|---|
JPH0573504B2 (en) | 1993-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4058153A (en) | Process for centrifugally casting spheroidal graphite cast iron pipes | |
JP2017080788A (en) | Method and device for continuously casting double-layered cast slab | |
JP6855806B2 (en) | Continuous casting method and continuous casting equipment for multi-layer slabs | |
DE102014112206A1 (en) | Method for continuous casting of a metal, in particular a steel, and apparatus for continuous casting | |
JPH0399751A (en) | Manufacture of cast complex steel material | |
CN108296460B (en) | A method of continuous casting billet center-line segregation is eliminated using material dilution is increased | |
US4220191A (en) | Method of continuously casting steel | |
JP2572807B2 (en) | Manufacturing method of lead free-cutting steel by continuous casting method | |
JP5847686B2 (en) | Method of adding mold flux into continuous casting mold | |
CN107326258B (en) | A kind of following minor diameter Ductile iron bar of diameter 25mm and preparation method thereof | |
JP6801378B2 (en) | Molding device for continuous casting of steel and manufacturing method of surface modified slab using it | |
JP2002501438A (en) | Method and apparatus for manufacturing a slab | |
JP6500682B2 (en) | Method and apparatus for continuous casting of multi-layer cast slab | |
JPS6054821B2 (en) | Horizontal continuous casting method for composite slabs | |
JPS63149055A (en) | Refining method for molten steel in tundish for continuous casting | |
JPH0987729A (en) | Ferro-alloy wire for adjusting molten steel component and tundish for small lot suitable to use it | |
US4566524A (en) | Method of and apparatus for casting a compound metal bar | |
SU961850A1 (en) | Method of continuous casting of metal to slabs | |
JP7389335B2 (en) | Method for producing thin slabs | |
SU772688A1 (en) | Method of producing ingot moulds for steel casting | |
JPS613823A (en) | Worked aluminum article for deoxidation and producing device thereof | |
US1535245A (en) | Method of making ingots, and the ingot | |
JPH0573503B2 (en) | ||
JPS6049847A (en) | Production of free-cutting lead steel by continuous casting method | |
RU2204460C2 (en) | Method for continuous casting of steel |