JPH0399496A - Radio wave absorber - Google Patents
Radio wave absorberInfo
- Publication number
- JPH0399496A JPH0399496A JP23604189A JP23604189A JPH0399496A JP H0399496 A JPH0399496 A JP H0399496A JP 23604189 A JP23604189 A JP 23604189A JP 23604189 A JP23604189 A JP 23604189A JP H0399496 A JPH0399496 A JP H0399496A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- radio wave
- wave absorber
- carbon
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 40
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 28
- 239000000919 ceramic Substances 0.000 claims abstract description 15
- 239000011230 binding agent Substances 0.000 claims abstract description 14
- 239000003365 glass fiber Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 9
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 abstract 10
- 230000002745 absorbent Effects 0.000 abstract 1
- 239000002250 absorbent Substances 0.000 abstract 1
- 239000002344 surface layer Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 229920002635 polyurethane Polymers 0.000 description 5
- 239000004814 polyurethane Substances 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、大電力での用途として使用できる電波吸収
体に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radio wave absorber that can be used for high power applications.
[従来の技術]
第5図は従来の電波吸収体を示す斜視図であり9図にお
いて、(1)は角錐状に成形された発泡ポリウレタンを
基材とし、抵抗体としてカーボンを含浸した均−抵抗鎖
車層形吸収体である。[Prior Art] Fig. 5 is a perspective view showing a conventional radio wave absorber, and in Fig. 9, (1) is a flat foamed polyurethane base material formed into a pyramid shape and impregnated with carbon as a resistor. It is a resistance chain wheel layer type absorber.
次に動作について説明する。Next, the operation will be explained.
電波が角錐状の均−抵抗鎖車層形吸収体(1)に入射す
ると、カーボンのオーム損失により電磁波のエネルギー
は熱のエネルギーに変換され吸収される。When a radio wave is incident on the pyramidal equal-resistance chain wheel layer absorber (1), the energy of the electromagnetic wave is converted into thermal energy and absorbed due to the ohmic loss of carbon.
この電波吸収体は、空間から見た吸収体の特性インピー
ダンスが形状を角錐状にすることにより、低インピーダ
ンスから高インピーダンスに逐次変化できるため、広帯
域にわたり反射特性が良好にでき、また、電波の入射角
度に対する反射特性も平板状の電波吸取帯に比べて良い
。With this radio wave absorber, the characteristic impedance of the absorber viewed from space can be changed sequentially from low impedance to high impedance by making the shape pyramid-shaped, so it can have good reflection characteristics over a wide band, and The angle-dependent reflection characteristics are also better than that of a flat radio wave absorption band.
角錐の高さは9通常、使用下限周波数のA波長以上必要
で、高さが大きく、また角錐尖端の開き角が小さいほど
反射特性が少くできる。The height of the pyramid is usually required to be at least 9 wavelength A, which is the lower limit frequency of use, and the larger the height and the smaller the opening angle of the tip of the pyramid, the lower the reflection characteristics can be.
上記のように構成された従来の電波吸収体はポリウレタ
ンを基材として用いているため耐熱性に難がある。The conventional radio wave absorber constructed as described above uses polyurethane as a base material, and therefore has poor heat resistance.
第6図に実験例として、電力密度が0.12W/ c
m ”の連続波を電波吸収体に放射した時の時間に対す
る電波吸収体の表面温度を示す。Figure 6 shows an experimental example where the power density is 0.12W/c.
It shows the surface temperature of a radio wave absorber versus time when a continuous wave of m'' is radiated onto the radio wave absorber.
約10秒でポリウレタンの老化の始まる上限温度に達す
るため、これ以上の大電力を用途とする電波吸収体とし
ては使用できない。Since it reaches the upper limit temperature at which polyurethane begins to age in about 10 seconds, it cannot be used as a radio wave absorber for applications that require higher power.
[発明が解決しようとする課題1
従来の電波吸収体は以上のように構成されており、基材
としてポリウレタンを用いているため。[Problem to be Solved by the Invention 1] The conventional radio wave absorber is constructed as described above and uses polyurethane as the base material.
ポリウレタンの老化の始まる上限温度160℃以上では
使用できず、熱に対して非常に弱く、大電力での用途と
して使用することができないなどの問題点があった。It cannot be used above the upper limit temperature of 160° C. at which polyurethane begins to age, and has problems such as being extremely sensitive to heat and not being able to be used for high power applications.
この発明は上記のような問題点を解消するためになされ
たもので、大電力での用途として使用することができる
とともに1反射特性の良好な電波吸収体を得ることを目
的とする。This invention was made to solve the above-mentioned problems, and aims to obtain a radio wave absorber that can be used for high power applications and has good reflection characteristics.
[課題を解決するための手段]
この発明に係る電波吸収体は、耐熱性のある基材を用い
て、多層構成とし、電波の入射面から順にセラミック又
は無機系のバインダ層,グラスフアイバ層、カーボン層
,グラスフアイバ層、カーボン層,セラミツク又は無機
系のバインダ層等で構成したものである。[Means for Solving the Problems] The radio wave absorber according to the present invention has a multilayer structure using a heat-resistant base material, and includes, in order from the radio wave incident surface, a ceramic or inorganic binder layer, a glass fiber layer, It is composed of a carbon layer, a glass fiber layer, a carbon layer, a ceramic or inorganic binder layer, etc.
[作用]
この発明における電波吸収体は、耐熱性のある基材を用
いて、多層構成とすることにより、大電力での用途とし
て使用しても不燃性でかつ機械強度にも優れており、抵
抗体としてカーボン層を整合層と吸収層の多層構成とし
て構成することにより反射特性の良好な電波吸収体を得
る。[Function] The radio wave absorber of the present invention uses a heat-resistant base material and has a multilayer structure, so that it is nonflammable even when used for high power applications and has excellent mechanical strength. By configuring the carbon layer as a resistor in a multilayer structure including a matching layer and an absorbing layer, a radio wave absorber with good reflection characteristics can be obtained.
[実施例] 以下この発明の一実施例を図について説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.
第1図(a)は、この発明の一実施例を示す断面図、第
1図(b)は9層構成を示す断面図であり。FIG. 1(a) is a cross-sectional view showing one embodiment of the present invention, and FIG. 1(b) is a cross-sectional view showing a nine-layer structure.
第1図(a) (blにおいて、 (11)は,セラミ
ツク又は無機系のバインダを用いた層、 (12)はグ
ラスファイバ層、 (13)は整合層として用いるカー
ボン層。In FIG. 1(a) (bl), (11) is a layer using a ceramic or inorganic binder, (12) is a glass fiber layer, and (13) is a carbon layer used as a matching layer.
(14)はグラスファイバ層、 (15)は吸収体層と
してのカーボン層、 (16)はセラミック又は無機系
のバインダ層を用いた層である。(14) is a glass fiber layer, (15) is a carbon layer as an absorber layer, and (16) is a layer using a ceramic or inorganic binder layer.
次に動作について説明する。Next, the operation will be explained.
電波が入射すると、抵抗層のカーボン層のオーム損失に
より吸収される動作は従来の電波吸収体と同様である。When a radio wave is incident, it is absorbed by the ohmic loss of the carbon layer of the resistance layer in the same manner as a conventional radio wave absorber.
この一実施例では、整合層として用いるカーボン層(1
3)平面板としたときにそれに垂直に入射する電波の透
過損失を約1dB近くになるようカーボンの密度を選定
し、又、吸収体層として用いるカーボン層(15)を平
面板としたときにそれに垂直に入射する電波の透過損失
を約14dB以上になるようカーボンの密度を選定し、
又、カーボン層(13)と(15)を機械的に安定な構
成とするためグラスファイバ層(12) 、 (14)
を用い1表面層としてセラミック層(11) 、 (1
6)を用いて構成している。In this example, a carbon layer (1
3) When the carbon layer (15) used as the absorber layer is used as a flat plate, the density of carbon is selected so that the transmission loss of radio waves incident perpendicularly to it is approximately 1 dB. The density of carbon is selected so that the transmission loss of radio waves incident perpendicularly to it is approximately 14 dB or more.
In addition, in order to make the carbon layers (13) and (15) mechanically stable, glass fiber layers (12) and (14) are used.
Ceramic layers (11) and (1
6).
第2図はこの発明の一実施例における電波吸収体の周波
数に対する反射特性を示す図であり又。FIG. 2 is a diagram showing the frequency-dependent reflection characteristics of a radio wave absorber in an embodiment of the present invention.
第3図は電波の入射角度に対する反射特性を示す図であ
る。第3図において(イ)はこの発明の電波吸収体によ
る反射特性を、(ロ)は従来の電波吸収体による反射特
性を示す。FIG. 3 is a diagram showing the reflection characteristics with respect to the incident angle of radio waves. In FIG. 3, (a) shows the reflection characteristics of the radio wave absorber of the present invention, and (b) shows the reflection characteristics of the conventional radio wave absorber.
図から明らかに、この発明による電波吸収体は1反射特
性が良好なものである。It is clear from the figure that the radio wave absorber according to the present invention has good 1 reflection characteristics.
第4図は、電力密度が0.8W/cm2の連続波をこの
発明による電波吸収体に放射した時の時間に対する電波
吸収体の表面温度を示しており。FIG. 4 shows the surface temperature of the radio wave absorber with respect to time when a continuous wave with a power density of 0.8 W/cm2 is radiated onto the radio wave absorber according to the present invention.
約60分経過しても温度が約160℃であり、従来のも
のと比較して大電力で、耐熱性が大幅に改善できている
ことが分る。Even after about 60 minutes, the temperature remained at about 160°C, which shows that the heat resistance has been significantly improved with a large amount of power compared to the conventional one.
第4図に示す特性は、自然対流による放熱状態での試験
結果であり2強制空冷を行なう必要もない。The characteristics shown in FIG. 4 are test results under a heat dissipation state by natural convection, and there is no need to perform forced air cooling.
なお、上記実施例では電波吸収体の形状を角錐状として
説明したが、平板状又は任意の形状に構成しても同様の
効果が得られる。In the above embodiments, the shape of the radio wave absorber is described as being pyramidal, but the same effect can be obtained even if the radio wave absorber is configured to have a flat plate shape or any other shape.
又、上記実施例では、カーボン層を整合層として用いる
カーボン層(13)と吸収体層として用いるカーボン層
(15)で構成したものを示したが、吸収体層として用
いるカーボン層(15)のみを設けて構成してもよい。In addition, in the above embodiment, the carbon layer (13) used as a matching layer and the carbon layer (15) used as an absorber layer were shown, but only the carbon layer (15) used as an absorber layer was shown. It may be configured by providing.
この場合カーボン層(13) 、 (14)で構成した
ものに比べ電波の入射角度に対する反射特性が多少悪く
なる程度であり、大電力での用途として使用できること
は言うまでもない。In this case, the reflection characteristics with respect to the angle of incidence of radio waves are only slightly worse than those composed of carbon layers (13) and (14), and it goes without saying that it can be used for high power applications.
[発明の効果1
以上のように、この発明によれば耐熱性のある基材を用
いて多層構成とし、電波は入射面から順にセラミック又
は無機系のバインダ層,グラスフアイバ層、カーボン層
,グラスフアイバ層、カーボン層,セラミツク又は無機
系のバインダ層等で構成したので1反射特性の良好な電
波吸収体を得ることができ、また大電力での用途に使用
できる効果がある。[Effect of the invention 1 As described above, according to the present invention, a heat-resistant base material is used to form a multilayer structure, and radio waves are transmitted sequentially from the incident surface to a ceramic or inorganic binder layer, a glass fiber layer, a carbon layer, and a glass fiber layer. Since it is composed of a fiber layer, a carbon layer, a ceramic or inorganic binder layer, etc., a radio wave absorber with good reflection characteristics can be obtained, and it can also be used for high power applications.
第1図(a) 、 (b)はこの発明の一実施例を示す
断面図、第2図はこの発明の一実施例の周波数に対する
反射特性を示す図、第3図はこの発明の一実施例による
入射角に対する反射特性を示す図、第4図はこの発明の
一実施例による時間に対する表面温度を示す図、第5図
は従来の電波吸収体を示す斜視図、第6図は従来の電波
吸収体の時間に対する表面温度を示す図である。
図において、(1)は均−抵抗鎖車層形吸収体。
(Ill及び(16)はセラミック又は無機系のバイン
ダ層を用いた層、 (12)及び(14)はグラスファ
イバ層、 (13)及び(15)はカーボン層である。
なお図中同一あるいは相当部分には同一符号を付して示
しである。FIGS. 1(a) and (b) are cross-sectional views showing one embodiment of the present invention, FIG. 2 is a diagram showing the reflection characteristics with respect to frequency of one embodiment of the present invention, and FIG. 3 is a diagram showing one embodiment of the present invention. FIG. 4 is a diagram showing the surface temperature versus time according to an embodiment of the present invention, FIG. 5 is a perspective view of a conventional radio wave absorber, and FIG. 6 is a diagram of a conventional radio wave absorber. FIG. 3 is a diagram showing the surface temperature of a radio wave absorber versus time. In the figure, (1) is a uniform resistance chain wheel layered absorber. (Ill and (16) are layers using ceramic or inorganic binder layers, (12) and (14) are glass fiber layers, and (13) and (15) are carbon layers. Parts are shown with the same reference numerals.
Claims (2)
いて,電波の入射面から,順にセラミツク又は無機系の
バインダ層,グラスフアイバ層,抵抗層としてカーボン
層,さらにセラミツク又は無機系のバインダ層を設けて
構成したことを特徴とする電波吸収体。(1) In a radio wave absorber in which a resistor is provided on a base material of arbitrary shape, from the radio wave incident surface, a ceramic or inorganic binder layer, a glass fiber layer, a carbon layer as a resistance layer, and then a ceramic or inorganic binder layer are used as the resistance layer. A radio wave absorber comprising a binder layer.
いて,電波の入射面から順に,セラミツク又は無機系の
バインダ層,グラスフアイバ層,整合層としてカーボン
層,グラスフアイバ層,抵抗層としてカーボン層,さら
にセラミツク又は無機系のバインダ層を設けて構成した
ことを特徴とする電波吸収体。(2) In a radio wave absorber in which a resistor is provided on a base material of an arbitrary shape, in order from the radio wave incident surface, a ceramic or inorganic binder layer, a glass fiber layer, a carbon layer as a matching layer, a glass fiber layer, and a resistance layer. 1. A radio wave absorber comprising a carbon layer and a ceramic or inorganic binder layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23604189A JPH0399496A (en) | 1989-09-12 | 1989-09-12 | Radio wave absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23604189A JPH0399496A (en) | 1989-09-12 | 1989-09-12 | Radio wave absorber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0399496A true JPH0399496A (en) | 1991-04-24 |
Family
ID=16994886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23604189A Pending JPH0399496A (en) | 1989-09-12 | 1989-09-12 | Radio wave absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0399496A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0986294A2 (en) * | 1998-09-04 | 2000-03-15 | TDK Corporation | Electric wave absorber |
US6061011A (en) * | 1997-09-09 | 2000-05-09 | Nisshinbo Industries, Inc. | Nonflammable radio wave absorber |
KR100472198B1 (en) * | 1999-01-21 | 2005-03-07 | 티디케이가부시기가이샤 | Radio wave absorbent-assembling member, radio wave absorbent and method for producing the same |
JP2008224506A (en) * | 2007-03-14 | 2008-09-25 | Mitsubishi Electric Corp | Antenna measuring apparatus |
-
1989
- 1989-09-12 JP JP23604189A patent/JPH0399496A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6061011A (en) * | 1997-09-09 | 2000-05-09 | Nisshinbo Industries, Inc. | Nonflammable radio wave absorber |
EP0986294A2 (en) * | 1998-09-04 | 2000-03-15 | TDK Corporation | Electric wave absorber |
EP0986294A3 (en) * | 1998-09-04 | 2000-05-17 | TDK Corporation | Electric wave absorber |
US6259394B1 (en) | 1998-09-04 | 2001-07-10 | Tdk Corporation | Electric wave absorber |
KR100472198B1 (en) * | 1999-01-21 | 2005-03-07 | 티디케이가부시기가이샤 | Radio wave absorbent-assembling member, radio wave absorbent and method for producing the same |
JP2008224506A (en) * | 2007-03-14 | 2008-09-25 | Mitsubishi Electric Corp | Antenna measuring apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Hybrid frequency-selective rasorber with low-frequency diffusion and high-frequency absorption | |
Wang et al. | Design of nonresonant metasurfaces for broadband RCS reduction | |
CN109862769A (en) | A kind of absorbing material and preparation method thereof of ultra-thin ultra-wide spectrum | |
CN105514619A (en) | Ultra wideband material microwave absorber loaded with chip resistor | |
CN112477311A (en) | Phase-change enhanced infrared radar stealth structure and preparation method thereof | |
JPH0399496A (en) | Radio wave absorber | |
JPH05114756A (en) | Adjustable high-frequency device | |
JP2001230588A (en) | Electromagnetic wave absorbing body and its manufacturing method | |
JP3547921B2 (en) | Non-radiative dielectric line and method of manufacturing the same | |
JPH01220899A (en) | Wave absorber and manufacture thereof | |
Habib et al. | An efficient FSS absorber for WLAN security | |
JPH02866B2 (en) | ||
JP2001244686A (en) | Radio wave absorber, radio wave dark box, radio wave darkroom, radio wave absorption panel, and radio wave absorbing screen | |
JP2814119B2 (en) | Radio wave absorbing material, method of manufacturing the same, and radio wave absorbing plate using the radio wave absorbing material | |
JPH05191101A (en) | Window | |
JPH10224078A (en) | Radio wave absorber | |
CN115742502B (en) | Forming method of wave-absorbing/bearing composite material multi-stage honeycomb structure | |
JPS61292998A (en) | Radio wave absorbing material | |
JP2745016B2 (en) | Manufacturing method of radio wave absorbing substrate | |
JPS63204799A (en) | Wave absorber | |
JP2003115693A (en) | Wave absorber | |
JPS63276296A (en) | Electromagnetic wave absorption element | |
JP2022157654A (en) | radio wave absorber | |
JPS63276295A (en) | Electromagnetic wave absorption element | |
JP6479643B2 (en) | Radio wave absorber and manufacturing method thereof |