JPH0398844A - Contracted or contracted-stroked can of laminated material and manufacture thereof - Google Patents

Contracted or contracted-stroked can of laminated material and manufacture thereof

Info

Publication number
JPH0398844A
JPH0398844A JP1232906A JP23290689A JPH0398844A JP H0398844 A JPH0398844 A JP H0398844A JP 1232906 A JP1232906 A JP 1232906A JP 23290689 A JP23290689 A JP 23290689A JP H0398844 A JPH0398844 A JP H0398844A
Authority
JP
Japan
Prior art keywords
film
blocking agent
agent particles
laminate
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1232906A
Other languages
Japanese (ja)
Other versions
JPH06102464B2 (en
Inventor
Toshiaki Watanabe
聡明 渡辺
Nobuyuki Hayashi
伸行 林
Takashi Iwai
隆史 岩井
Masatsune Shibue
渋江 正恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP23290689A priority Critical patent/JPH06102464B2/en
Publication of JPH0398844A publication Critical patent/JPH0398844A/en
Publication of JPH06102464B2 publication Critical patent/JPH06102464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To prevent inner surface defects from generating by a method wherein anti-blocking agent particles are contained in a copolymer polyester film, and the anti-blocking agent particles are buried under the film surface. CONSTITUTION:A biaxially oriented film which is composed of a copolymer polyester film 4, of which main component is ethylene telephthalate unit and which contains a small quantity of other ester unit and of which melting point if 170 - 252 deg.C, and which also contains anti-blocking agent particles 5 is heat bonded at least on one side, which becomes the inner surface of a can, of a metallic base 2 directly or through a primer for bonding, and thus a laminated body 1 is manufactured. And at least the film surface of this laminated body 1 is heated to a temperature which is at or higher than the melting point of the copolymer polyester, and then quenched, and the anti-blocking agent particles 5 are buried under the film surface, and contracting or contracting-stroking process is applied to the laminated body 1 after the treatments. By doing this, inner surface layer defects such as pin hole crack, fracture, exfoliation, etc. can be prevented from generating.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ラミネート材からの絞り乃至絞り−しごき缶
及びその製法に関し、より詳細には、缶成形時に発生す
る、フィルム中のアンチブロツキング剤粒子に起因する
内面欠陥を解消し、耐腐食性を向上させたラミネート絞
り乃至絞りーしどき缶及びその製法に関する. (従来の技術) 金属素材の缶内面となる側にポリエチレンテレフタレー
ト(PET)の如き熱可塑性樹脂フィルムを積層したラ
ミネート材を用いて,絞りーしごき缶を製造することに
ついては,既に多くの提案がなされている. 例えば、特開昭60−170532号公報、特開昭60
172637号公報には、金属素材の少なくとも容器内
面となるべき面にPETのような配向性熱可塑性樹脂フ
ィルムが密着された素材を、該樹脂の適性延伸温度にお
いて、ポンチとダイスとの間で絞りしごき加工に付し、
該フィルム層に分子配向を付与することを特徴とする絞
りしごき缶の製造方法が記載されている. (発明が解決しようとする問題点) これらの提案は,金属素材の絞りしごき加工時に樹脂フ
ィルムに分子配向を積極的に付与することにより、樹脂
フィルムの缶内面への接着性を向上させるものである. しかしながら,本発明者等の研究によると,金属一樹脂
フィルムラミネート材を絞りしごき加工等に賦する場合
に、共通して避けられない大きな欠点があることがわか
った. 即ち、PET等の延伸フィルムには,フィルムへの加工
性やハンドリング性を向上させ、且つフィルム同士の密
着傾向を解消するため、シリカ等のアンチブロッキング
剤粒子が一般に含有されている.このアンチブロツキン
グ剤粒子はこのものがフイルム表面に突き出していて微
小な突起として存在することにより、アンチブロッキン
グ作用を奏するものである. ところが、アンチブロッキング剤粒子を含有するフイル
ムのラミネートを、しごき加工や高度の深絞り加工等に
賦すると、突出したアンチブロッキング剤粒子の部分に
応力集中が生じ、フィルムに微細なビンホール、クラッ
ク,或いは更に破断等の欠陥が生じるのである.そのた
め,このラミネート材を用いた絞り乃至絞りしごき缶で
は,エナメル・レーター値が高く、所期の耐腐食性や金
属溶出防止性能が得られないことになる.従って,本発
明の目的は、従来のラミネート絞り乃至絞り−しごき缶
における上記欠点が解消された、絞り乃至絞りーしごき
缶及びその製法を提供するにある. 本発明の他の目的は、アンチブロッキング剤粒子に起因
する内面欠陥の発生が防止され,耐腐食性や耐金属溶出
性に優れた絞り乃至絞り−しごき缶及びその製法を提供
するにある. (問題点を解決するための手段) 本発明によれば,金属素材と、該金属素材の少なくとも
缶内面となる側に直接或いは接着用プライマーを介して
設けられたエチレンテレフタレート単位を主体とし他の
エステル単位の少量を含む融点が170乃至252℃の
共重合ポリエステルフィルムとの積層体の絞り乃至絞り
−しごき成形で形成され、 該共重合ポリエステルフィルムはアンチブロッキング剤
粒子を含有するフィルムであって,該アンチブロッキン
グ剤粒子はフィルム表面より下に埋没されていることを
特徴とする絞り乃至絞り−しどき缶が提供される. 本発明によればまた,エチレンテレフタレート単位を主
体とし他のエステル単位の少量を含む融点が170乃至
252℃の共重合ポリエステルから成り且つアンチブロ
ッキング剤粒子を含有する二軸延伸フィルムを金属素材
の少なくとも缶内面となる側に直接或いは接着用プライ
マーを介して熱接着させて積層体を製造し、 この積層体の少なくともフィルム表面を共重合ポリエス
テルの融点以上の温度に加熱し、次いで急冷してアンチ
ブロツキング剤粒子をフィルム表面より下に埋没させ、
処理後の積層体を絞り乃至絞り−しごき加工に賦するこ
とを特徴とする絞り乃至絞りーしごき缶の製法が提供さ
れる.(作用〉 本発明において、アンチブロッキング剤を含有する二輪
延伸フィルムをラミネートに用いることは、フィルムの
ハンドリングや積層操作或いは被覆層の厚み制御等の点
で必須不可欠であるが,本発明は、金属素材上に積層さ
れたフィルムの少なくとも表面とその融点以上の温度に
加熱し、次いで急冷すると,表面に突出していたアンチ
ブロッキング剤粒子をフィルム表面よりも下に埋没させ
ることが可能となること、及びこのようにアンチブロッ
キング剤粒子の埋没処理されたラミネート材を深絞り加
工や絞りしごき加工に賦すると、ビンホール、クラック
、破断、剥離等の内面被膜欠陥の発生が防止されること
の発見に基づくものである. 本発明においては、金属素材に積層するフィルムとして
、エチレンテレフタレート単位を主体とし、他のエステ
ル単位の少量を含み且つ融点が170乃至252℃、特
に180乃至245℃にある共重合ポリエステルの二輪
延伸フィルムを用いることが第一の特徴である.即ち、
この共重合ポリエステルは、エチレンテレフタレート単
位を主体としていることから、機械的強度や加工性に優
れており,金属に被覆された状態で高度の絞りや絞りし
ごき加工が可能となる.また、エチレンテレフタレート
単位を主体とするポリエステルは他のポリエステルに比
して腐食成分に対するバリャー性に優れており、このフ
ィルムを内面被覆とした缶は耐食性に優れているという
利点を与える.この共重合ポリエステルは,エチレンテ
レフタレート以外のエステル単位の少量を含むことも,
ラミネート作業性やアンチブロッキング剤の埋没処理の
点で重要である.エチレンテレフクレート単独から成る
ポリエステル(PET)は一般に257℃の融点を有し
ているのに対して、共重合エステル成分を含有させるこ
とにより、このフィルムの融点を前述した範囲に低下さ
せ、フィルムの部分融着による熱接着や溶融急冷による
アンチブロッキング剤粒子の埋没処理を可能にする.ま
た、共重合エステル成分の導入により,到達結晶化度や
結晶化速度も小さくすることができ、その融点も低くで
きることと相俟って,ラミネート中に残留する内部応力
を下げることが可能となる.用いる共重合ポリエステル
の融点が前記範囲にあることも重要であり、この共重合
ポリエステルの融点が上記範囲よりも高い場合には、絞
りしごき時にフィルムが割れる欠陥があり,またアンチ
ブロッキング剤粒子の埋没処理も円滑に行い得ない等の
欠点も生じ易い.一方上記範囲よりも低いと、腐食性成
分に対するパリャー性が低下したり,或いはラミネート
時或いは塗装・印刷時の焼付等のその後の熱処理時又そ
の後の加工時に金属露出が生じて、エナメルレーター値
( ERV)が上昇する傾向がある.この共重合ポリエ
ステルのフィルムは二軸延伸されていることも重要であ
る.即ち、共重合ポリエステルフィルムを二軸延伸する
ことにより、フィルムの腰が強くなり、ラミネート操作
が容易に行われるようになる.また、フィルムのポリエ
ステルが二軸方向に分子配向されていることにより,ラ
ミネート時に融点以下で加熱を受けた場合にもラメラ(
球晶)を生成しにくいという利点をも与える. 上記二輪延伸フィルムと金属素材とを、直接或いは接着
プライマー層を介して熱接着させて得られたラミネート
材を,絞り乃至絞りしごき加工に先立って、少なくとも
フィルム表面が共重合ポリエステルの融点以上の温度に
なるように加熱し次いで急冷することが第二の特徴であ
る.この加熱と急冷により,フィルム表面に突出して存
在していたアンチブロッキング剤粒子は、溶融樹脂の表
面張力により表面より下に有効に埋没され、次いで急冷
されることによりこの埋没状態で固定されることになる
.走査型電子顕微鏡写真による観察結果によると、未処
理の二軸延伸共重合ポリエステルでは第3図に示す通り
、ポリエステルフィルム4の表面に突出しているアンチ
ブロッキング剤粒子5の個数は,100μ露平方当り1
乃至lOの才一ダーであるが,本発明の埋没処理を行っ
た後では第4図に示す通り、この個数はゼロ乃至殆んど
ゼロの才一ダーに低下している. 本発明ではまた.この埋没処理のための加熱と急冷とに
より、共重合体フィルムは未配向乃至非品質の状態とな
って,深絞りや絞りしごき加工に耐える優れた加工性(
延伸性)が付与されるという利点も同時に得られること
になる、 (発明の好適態様) i主主二上上 本発明に用いるラミネート材の一例を示す第1図におい
て,このラミネート材lは,金属素材2、該金属素材の
缶内面となる側に設けられた接着用プライマー層3、及
びこのプライマー層を介して設けられた共重合ポリエス
テルフィルム層4から成っている。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a drawing or drawing-iron can made from a laminate material and a method for manufacturing the same. This article relates to a laminated drawn or drawn-sealed can that eliminates inner surface defects caused by king agent particles and has improved corrosion resistance, and a method for manufacturing the same. (Prior art) There have already been many proposals for producing drawn and ironed cans using a laminate material in which a thermoplastic resin film such as polyethylene terephthalate (PET) is laminated on the inner surface of a metallic can. It is being done. For example, JP-A-60-170532, JP-A-60
Publication No. 172637 discloses that a metal material in which an oriented thermoplastic resin film such as PET is adhered to at least the surface that is to become the inner surface of the container is squeezed between a punch and a die at an appropriate stretching temperature for the resin. Subjected to ironing process,
A method for producing a drawn and ironed can is described, which is characterized by imparting molecular orientation to the film layer. (Problems to be solved by the invention) These proposals improve the adhesion of the resin film to the inner surface of the can by actively imparting molecular orientation to the resin film during drawing and ironing of the metal material. be. However, according to the research conducted by the present inventors, it has been found that there are common and unavoidable major drawbacks when subjecting metal-resin film laminate materials to drawing and ironing processes. That is, stretched films such as PET generally contain particles of an anti-blocking agent such as silica in order to improve the processability and handling of the film and to eliminate the tendency for the films to adhere to each other. These anti-blocking agent particles protrude from the film surface and exist as minute protrusions, thereby exerting an anti-blocking effect. However, when a film laminate containing anti-blocking agent particles is subjected to ironing or advanced deep drawing, stress concentration occurs in the protruding anti-blocking agent particles, causing minute holes, cracks, or the like in the film. Furthermore, defects such as breakage occur. Therefore, drawn or drawn and ironed cans using this laminate material have a high enamel rate value, and cannot achieve the desired corrosion resistance and metal elution prevention performance. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a drawn or drawn and ironed can, which eliminates the above-mentioned drawbacks of conventional laminate drawn or drawn and ironed cans, and a method for manufacturing the same. Another object of the present invention is to provide a drawn or drawn-ironed can which prevents the occurrence of inner surface defects caused by anti-blocking agent particles and has excellent corrosion resistance and metal elution resistance, and a method for manufacturing the same. (Means for Solving the Problems) According to the present invention, a metal material and an ethylene terephthalate unit provided on at least the inside surface of the metal material directly or via an adhesive primer, and other Formed by drawing or drawing-ironing of a laminate with a copolyester film containing a small amount of ester units and having a melting point of 170 to 252°C, the copolyester film containing anti-blocking agent particles, There is provided a squeeze or squeeze-squeeze can characterized in that the anti-blocking agent particles are buried below the surface of the film. According to the present invention, a biaxially stretched film made of a copolyester mainly composed of ethylene terephthalate units and containing small amounts of other ester units and having a melting point of 170 to 252° C. and containing antiblocking agent particles is coated with at least one of the metal materials. A laminate is produced by thermally adhering it to the inner surface of the can either directly or via an adhesive primer, and at least the film surface of this laminate is heated to a temperature equal to or higher than the melting point of the copolymerized polyester, and then rapidly cooled to form an anti-block film. burying agent particles below the film surface,
There is provided a method for producing a drawn or drawn and ironed can, characterized in that the treated laminate is subjected to drawing or drawing and ironing processing. (Function) In the present invention, the use of a two-wheel stretched film containing an anti-blocking agent for lamination is indispensable in terms of film handling, lamination operation, coating layer thickness control, etc.; By heating at least the surface of the film laminated on the material to a temperature equal to or higher than its melting point, and then rapidly cooling, it becomes possible to bury the anti-blocking agent particles protruding from the surface below the film surface; This is based on the discovery that when a laminate material treated with embedded anti-blocking agent particles is subjected to deep drawing or drawing ironing, the occurrence of internal coating defects such as holes, cracks, breaks, and peeling is prevented. In the present invention, the film to be laminated on the metal material is a copolyester consisting mainly of ethylene terephthalate units, containing a small amount of other ester units, and having a melting point of 170 to 252°C, particularly 180 to 245°C. The first feature is that a two-wheel stretched film is used.
Since this copolyester mainly consists of ethylene terephthalate units, it has excellent mechanical strength and processability, and can be subjected to advanced drawing and drawing ironing processes while coated with metal. In addition, polyester mainly composed of ethylene terephthalate units has superior barrier properties against corrosive components compared to other polyesters, and cans coated with this film on the inside have the advantage of superior corrosion resistance. This copolyester may also contain small amounts of ester units other than ethylene terephthalate.
This is important in terms of laminating workability and embedding of anti-blocking agents. Polyester (PET) consisting of ethylene terephcrate alone generally has a melting point of 257°C, but by including a copolymerized ester component, the melting point of this film is lowered to the above range, and the film has a melting point of 257°C. Enables embedding of anti-blocking agent particles by thermal adhesion through partial fusion or by melting and rapid cooling. In addition, by introducing the copolymerized ester component, the ultimate crystallinity and crystallization rate can be lowered, and together with the fact that the melting point can be lowered, it is possible to lower the internal stress remaining in the laminate. .. It is also important that the melting point of the copolyester used is within the above range; if the melting point of the copolyester is higher than the above range, defects may occur such as cracking of the film during drawing and ironing, and embedding of anti-blocking agent particles. It also tends to have drawbacks such as the inability to process smoothly. On the other hand, if it is lower than the above range, the enamelator value ( ERV) tends to increase. It is also important that this copolyester film is biaxially stretched. That is, by biaxially stretching a copolymerized polyester film, the stiffness of the film becomes stronger and the lamination operation becomes easier. In addition, because the polyester of the film is molecularly oriented in biaxial directions, lamellae (
It also has the advantage of being less likely to produce spherulites. The laminate material obtained by thermally adhering the above-mentioned two-wheel stretched film and the metal material directly or through an adhesive primer layer is heated to a temperature above the melting point of the copolymerized polyester at least on the surface of the film prior to drawing or drawing and ironing. The second feature is that it is heated so that it becomes , and then rapidly cooled. Through this heating and rapid cooling, the anti-blocking agent particles that were present protruding from the film surface are effectively buried below the surface due to the surface tension of the molten resin, and are then fixed in this buried state by rapid cooling. become. According to the results of observation using scanning electron micrographs, as shown in FIG. 3, in untreated biaxially stretched copolymerized polyester, the number of anti-blocking agent particles 5 protruding from the surface of the polyester film 4 per 100 μm square 1
However, after performing the burial treatment of the present invention, as shown in Figure 4, this number has decreased to zero to almost zero. In the present invention, also. Due to the heating and rapid cooling for this burial treatment, the copolymer film becomes an unoriented or non-quality state, and has excellent workability that can withstand deep drawing and drawing ironing.
(Preferred embodiment of the invention) In FIG. 1 showing an example of the laminate material used in the present invention, this laminate material l has the following properties: It consists of a metal material 2, an adhesive primer layer 3 provided on the side of the metal material that will become the inner surface of the can, and a copolymerized polyester film layer 4 provided via this primer layer.

本発明に用いるラミネート材の他の一例を示す第2図に
おいて、このラ尖ネート材1は金属素材2とこの金属素
材に対して直接熱接着された共重合ポリエステルフィル
ム層4から成っている.この共重合ポリエステルフィル
ム層4においては、金属素材1に接する極く表層4aの
みが溶融されて接着されており、残りの大部分の層4b
では二軸延伸による分子配向が実買上そのまま保持され
ている. 本発明では、金属素材としては各種表面処理鋼板やアル
ミニウム等の軽金属板が使用される.表面処理鋼板とし
ては、冷圧延鋼板を焼鈍後二次冷間圧延し、亜鉛メッキ
、錫メッキ、ニッケルメッキ、電解クロム酸処理、クロ
ム酸処理等の表面処理の一種または二種以上行ったもの
を用いることができる.板の表裏において、異なったメ
ッキ乃至表面処理を行なうこともできる。好適な表面処
理鋼板の一例は、電解クロム酸処理鋼板であり、特に1
0乃至2 0 0 mg/m2の金属クロム層と1乃至
500g/II12(金属クロム換算)のクロム酸化物
層とを備えたものであり、このものは塗膜乃至フィルム
密着性と耐腐食性との組合せに優れている。表面処理鋼
板の他の例は、0.1乃至o.2g/m2の錫メッキ量
を有するブリキ板である。このブリキ板は、金属クロム
換算で、クロム量が1乃至3 0 mg/m2となるよ
うな重クロム酸処理或はクロム酸処理或はクロム酸/リ
ン酸処理が行われていることが望ましい。
In FIG. 2 showing another example of the laminate material used in the present invention, the laminated material 1 is composed of a metal material 2 and a copolymerized polyester film layer 4 directly thermally bonded to the metal material. In this copolyester film layer 4, only the very surface layer 4a in contact with the metal material 1 is melted and bonded, and most of the remaining layer 4b
In this case, the molecular orientation due to biaxial stretching is maintained as it was when purchased. In the present invention, various surface-treated steel plates and light metal plates such as aluminum are used as the metal materials. Surface-treated steel sheets include cold-rolled steel sheets that are annealed and then subjected to secondary cold rolling, and subjected to one or more surface treatments such as zinc plating, tin plating, nickel plating, electrolytic chromic acid treatment, and chromic acid treatment. It can be used. It is also possible to perform different plating or surface treatments on the front and back sides of the plate. An example of a suitable surface-treated steel sheet is an electrolytic chromic acid treated steel sheet, particularly 1
It is equipped with a metal chromium layer of 0 to 200 mg/m2 and a chromium oxide layer of 1 to 500 g/II12 (metal chromium equivalent), and has excellent paint film adhesion and corrosion resistance. Excellent combination of Other examples of surface-treated steel sheets include 0.1 to o. It is a tin plate with a tin plating amount of 2 g/m2. This tin plate is preferably subjected to dichromic acid treatment, chromic acid treatment, or chromic acid/phosphoric acid treatment such that the amount of chromium is 1 to 30 mg/m2 in terms of metallic chromium.

軽金属板としては、所謂純アルよニウム板の他にアルミ
ニウム合金板が使用される。耐腐食性と加工性との点で
優れたアル主ニウム合金板は、Mn:O.O乃至1.5
重量%、Mg:0.O乃至5重量%、Zn : 0.0
1乃至0.3重量%、Cu : 0.01乃至0.25
、及びCr : 0.01乃至0.25重量%、残部が
A1の組成を有するものである.これらの軽金属板も、
塗膜乃至フィルム密着性と耐食性の観点より表面処理を
行なう事が望ましく、これらの表面処理として、クロム
処理、ジルコニウム処理、リン酸処理、アルマイト処理
、アクリル酸処理等がある.このうちで金属クロム換算
で、クロム量が5乃至3 0 0 B/tm”となるよ
うなクロム酸処理或はクロム酸/リン酸処理が行われて
いることが望ましい. 金属板の素板厚(A)は、金属の種類、容器の用途或は
サイズによっても相違するが、一般に0.IO乃至0.
50mmの厚みを有するのがよく,この内でも表面処理
鋼板の場合には、0.10乃至0.40mmの厚み,ま
た軽金属板の場合には0.l5乃至0.50+wmの厚
みを有するのがよい. 用いる共重合ポリエステルは、エチレンテレフクレート
単位を主体とし、他のエステル単位の少量を含むもので
ある.一般に共重合ポリエステル中の二塩基酸成分の7
0モル%以上、特に75モル%以上がテレフタル酸成分
から成り、ジ才一ル成分の70モル%以上、特に75モ
ル%以上がエチレングリコールから成り,二塩基酸成分
及び/又はジ才一ル成分の1乃至30モル%,特に5乃
至25モル%がテレフタル酸以外の二塩基酸成分及び/
又はエチレングリコール以外のジオール成分から成るこ
とが好ましい. テレフタル酸以外の二塩基酸としては,イソフタル酸、
フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボ
ン酸:シクロヘキサンジカルポン酸等の脂環族ジカルボ
ン酸:コハク酸,アジビン酸、セバチン酸、ドデカンジ
オン酸等の脂肪族ジカルボン酸:のl種又は2種以上の
組合せが挙げられ、エチレングリコール以外のジ才一ル
成分としては,プロビレングリコール、1.4−ブタン
ジオール、ジエチレングリコール、1.6−ヘキシレン
グリコール、シクロヘキサンジメタノール、ビスフェノ
ールAのエチレンオキサイド付加物等の1種又は2種以
上が挙げられる.勿論,これらのコモノマーの組合せは
、共重合ポリエステルの融点を前記範囲とするものでな
ければならない.用いるコポリエステルは、フィルムを
形成するに足る分子量を有するべきであり、このために
は固有粘度(1.V.)が0.55乃至t.9 dl/
g、特ニ0.65乃至1.4 dl/gの範囲にあるも
のが望ましい. このコポリエステルフィルムには、そ
れ自体公知のアンチブロッキング剤が含有されている.
アンチブロッキング剤としては,例えば非晶質シリカ、
ゼオライト、非品質アルミナシリカ等の無機粒子が使用
され、一aに粒径が0.05乃至lOμ一,特に0.1
乃至5μ頂の範囲にあるものが使用される.アンチプロ
ッキング剤の含有量は一般に共重合ポリエステル100
重量部当り0.01乃至065重量部、特に0.03乃
至0.1重量部の範囲内である.コポリエステルフィル
ムは,二軸延伸されていることが重要である.二軸配向
の程度は,偏光蛍光法、複屈折法,密度勾配管法密度等
で確認する事ができるが、本発明においては、コポリエ
ステルフィルムは、1.345 g/cm”乃至1.3
95 g/c1の範囲の密度を有するように分子配向さ
れていることが望ましい. また、フィルムの厚みは、腐食成分に対するバリャー性
と加工性との兼ね合いから、5乃至50μ−、特にl2
乃至40μmの厚みを有することが望ましい. フィルムの接着性を高めるために、二軸延伸コポリエス
テルフィルムの表面をコロナ放電処理しておくことが一
般に望ましい.コ゛ロナ放電処理の程度は、そのぬれ張
力が4 4 dyne/c@以上となるようなものであ
ることが望ましい. この他、フィルムへのプラズマ処理火炎処理等のそれ自
体公知の接着性向上表面処理やウレタン樹脂系、変性ポ
リエステル樹脂系の等の接着性向上コーティング処理を
行っておくことも可能である. フィルムと金属素材とを直接熱接着させる場合には、金
属素材を共重合ポリエステルの融点近傍又は,それ以上
の温度に予備加熱し、この加熱された金属素材とフィル
ムとを積層し、圧着させた後.これを急冷してラミネー
トとする.また、接着プライマーを用いて両者を熱接着
させることもできる, 本発明に用いる接着プライマーは、金属素材とコポリエ
ステルフィルムとの両方に優れた接着性を示すものであ
る.密着性と耐腐食性とに優れたプライマー塗料の代表
的なものは,種々のフェノール類とホルムアルデヒドか
ら誘導されるレゾール型フェノールーアルデヒド樹脂と
、ビスフェノール型エボキシ樹脂とから成るフェノール
ーエポキシ系塗料であり,特にフェノール樹脂とエボキ
シ樹脂とを50 : 50乃至5:95重量比、特に4
0 : 60乃至1 0 : 90の重量比で含有する
塗料である.接着プライマー層は、一般に0.3乃至5
μ嘗の厚みに設けるのがよい.星役盟贋 本発明によれば、上記積層体の少なくともフィルム表面
を共重合ポリエステルの融点以上の温度に加熱し次いで
急冷してアンチブロッキング剤粒子の埋没処理を行う.
アンチブロツキング剤粒子の埋没処理は、フィルムの表
面層が溶融すると同時に殆んどg1間的に行われるので
、極く短時間の処理で十分である.フィルムの温度は、
共重合ポリエステルの融点をm.とじたとき、m,+l
O0℃、特にm,+5℃乃至m.,+80℃の範囲が適
当であり、加熱時間は0.1乃至600秒間、特に0.
1乃至60秒間の範囲が適当である.また、フィルムは
自由界面で溶融状態となっていることがアンチブロッキ
ング剤粒子の埋没に有効である. フィルムの加熱は,熱風循環炉、赤外練加熱炉、抵抗加
熱、高周波誘導加熱等で行うことができ、加熱後の急冷
は、水冷,風冷、液体窒素やドライアイス等による冷却
を用いて行うことができる.急冷は、溶融された共重合
ポリエステルが30秒以内、特にIO秒以内にポリエス
テルの結晶化温度域(100〜200℃)を通過するよ
うにするのがよい. 絞り   リーしごき 工 上記の通り埋没処理が行われたラミネート材は、それ自
体公知の手段により絞り加工乃至絞り−しごき加工に賦
されるが、この場合.次の条件を用いることが好ましい
. 先ず、絞り加工或いは絞りしごき加工は、共重合ポリエ
ステルの適正延伸温度、特に30乃至80℃の温度、最
も好適には40乃至70℃の温度で行うことが好ましい
.即ち、この温度範囲では、共重合ポリエステルは絞り
時に塑性流動して軸方向に有効に分子配向され、しかも
しごき時にも薄肉化が有効に行われる. また、絞り乃至絞りーしごき加工はポンチとダイスとの
組合せを用いて行われるが、ポンチとしては、平均粗さ
(Ra)が0.01乃至3μ諺,特に0.1乃至2μ■
の側面を有するポンチを用いることが、加工後のカップ
の抜け性の点で好ましい.粗さのパターンは,一般にド
ット状(ディンプル状)のものが好ましい. 更に、用いる潤滑剤は可及的に低粘度であることが好ま
しく,一般に100乃至400SUS(セイボルトユニ
バーサルセコンド)(40℃)のものが抜け性の点で有
利に使用される.本発明の缶体は、前述したラミネート
材を用いる点を除けば、それ自体公知の方法で製造され
る.即ち、このラミネートを円板等の形状に剪断し、こ
れを絞りポンチと絞りダイスとの間で一段或いは多段の
絞り加工に賦する.絞り成形は大径の浅いカップへの絞
り成形と小径の深絞りカップへの深絞り成形とでも行う
ことができ、この深絞り成形工程では、肉厚を均一化す
るためカップ側壁部の上方部分に軽度のしごきを加えた
り、軸方向に絞りダイスのグイラジアス等の選定により
引張力を加えるようにしてもよい.深絞り缶の場合、絞
り加工は、1段乃至多段で行うことができ下記式 D R o = d 式中、Dは前断したラミネート材の径であり,dはポン
チ径である. で定義される絞り比R0は一段では1.2乃至2.5の
範囲にあるのがよい. しごき加工は,一段乃至多段で行うことができ、下記式 io 式中、t0はしごき加工前のラミネート材の厚みであり
、t1はしごき加工後のカップの側壁の厚みである. で定義されるしごき率(R.lは1段としてのしごき加
工で20〜40%にあるのが良い.多段しごきの場合に
は,最初の方のしごきで、できるだけしごき率を大きく
取り、加工後のカップの抜け性より最後のしごきリング
でのしごき率を3乃至20%の範囲とするのが良い. 得られる絞り乃至絞りしごきカップは,必要によりトリ
ミング,洗浄等の工程を通った後、ネツキング、フラン
ジング加工を行なって缶蓋との巻締を行なう缶体とする
. (発明の効果) 本発明によれば、金属素材上に積層された特定の共重合
ポリエステルの二軸延伸フィルムの少なくとも表面とそ
の融点以上の温度に加熱し、次いで急冷すると、表面に
突出していたアンチブロッキング剤粒子をフィルム表面
よりも下に埋没させることが可能となり、このようにア
ンチブロツキング剤粒子の埋没処理されたラミネートを
深絞り加工や絞りしごき加工に賦することにより、ビン
ホール,クラック、破断、剥離等の内面被膜欠陥の発生
が防止された. (実施例1) プライマー′ ビスフェノール八重量75%.Pクレゾール25%から
なる混合フェノールとホルムアルデヒドとを塩基触媒の
存在下に反応.精製.溶媒に溶解させて,レゾール型フ
ェノールホルムアルデヒド樹脂の溶液を製造した. ビスフェノールA型エポキシ樹脂(エビコート1009
.平均分子量3750.エボキシ当量2650)溶液と
上記レゾール型フェノールホルムアルデヒド樹脂溶液と
を固形分重量比が70 : 30の量比で混合し、予備
縮合bttて,接着プライマー塗料を調整した. −ミ ート の1゛ 厚み25μmの二輪延伸ポリエチレンテレフタレート/
イソフタレート(エチレンイソフタレート成分モル分率
20%.融点216℃)共重合ポリエステルフィルムの
片面に前記接着プライマー塗料を固形分として1 0 
a+g/da”の塗布量となる様に塗布し、120℃で
乾燥させた. 板厚0.30mm.テンパーT−2.5の冷延鋼板の両
面公知の方法で2.8 g7m”の錫めっきを施し、そ
の上層に公知の重クロム酸中での陰極処理により7.0
 mg/m”のクロム永和酸化物層からなる皮膜を形成
させた.この表面処理鋼板を215℃に加熱し、その片
面に前記共重合ポリエステルフィルムの接着プライマー
塗布面とが対面するように供給して熱圧着し、ラミネー
ト後水冷した.次いで、このラミネート材を226℃に
加熱して、直ちに水冷し、共重合ポリエステルフィルム
中のアンチブロッキング剤粒子をフィルム表面下に埋没
させた被覆鋼板を得た. 見上思丑玉1 得られたポリエステル樹脂被覆鋼板をDI缶内面ポリエ
ステル樹脂被覆面になるように、下記に示す成形条件で
絞りしごき加工を実施した.0成形条件 ラミネート鋼板を約140mmの径の円板に打ち抜き、
常法に従い絞りポンチと絞りダイスの間で内径が約87
m■のコップ状に成形する.次いでディンプル形状(深
さl um)の表面を有するしごきポンチと、しごきダ
イスとの組合せでしごき加工(1分間当たり230缶の
製缶速度)した,この缶胴の諸寸法を以下に示す.胴壁
部厚み     0. 105一一缶胴内径     
 65.71園 缶胴高さ      124mm 得られたDI缶について,脱脂.洗浄,乾燥,外面印刷
後195℃で焼き付け、その後ネッキング.フランジン
グ加工を実施し、下記の項目について評価した.結果を
第1表に示す. ■缶内面金属露出評価 上記DI缶を1%食塩水を電解液とし缶内面を陽極,対
極にステンレス捧を用いてこの間に6.30ボルトの電
圧をかけ、4秒後に流れている電流値で金属露出の程度
を評価した.測定は各n=20缶実施した. ■アンチブロッキング剤粒子表面突出数の評価ラミネー
ト後,ポリエステル樹脂表面の電子顕微鏡写真(倍率X
 1000)をlO視野撮り、これらの写真より表面に
突出した100μm平方当たりの粒子数の平均で評価し
た. ■実缶バック試験 炭酸飲料(市販のスプライト)を充填し常法に従いアル
ミニウム蓋を巻締め、37℃−3ケ月貯蔵後開缶機で巻
締部を切断し、蓋を缶胴から離した後、缶内面の腐食状
態,孔食の有無を観察した. (実施例2) 冷延14@のラミネート面に0.5g/m”の錫めっき
を施した点を除いては実施例lと同様にDI缶を成形し
、同様の評価を実施した.得られた結果を第1表に示す
. (比較例l) 実施例lと同様にラミネート材を製造した。ただし,ア
ンチブロッキング剤粒子を埋没させる後加熱は行なわな
かった.実施例lと同様にこの材料を用いてDI缶を成
形し、同様の評価を実施した.得られた結果を第1表に
示す. (実施例3) 板厚0.30mm.テンパーT−2.5の冷延鋼板のラ
ミネート面に公知の電解クロム酸処理で上層がクロム量
として2 0 B7m”のクロム水和酸化物層、下層が
l O O rag/ta”の金属クロム層からなる皮
膜を形成させ、ついで他の面に公知の方法で2.8g/
m”の錫めっきを施した.この表面処理鋼板を215℃
に加熱し、その片面に厚み25μmの二軸延伸ポリエチ
レンテレフタレート/セバケート共重合ポリエステルフ
ィルム(エチレンセバケート成分のモル分率23%.融
点220℃)を電解クロム酸処理層を有する面と対面す
るように供給して熱圧着し、次いで、このラミネート材
を235℃に加熱して,直ちに水冷し、共重合ポリエス
テルフィルム中のアンチブロッキング剤粒子をフィルム
表面下に埋没させた被覆鋼板を得た.この被rfi鋼板
を実施例1と同様の成形条件で絞りしごき缶を作り、同
様の評価を実施した.結果を第1表に示す. (実旅例4) 実施例3において、電解クロム酸処理の上層がクロム量
として2 0 B7m”のクロム永和酸化物層、下層が
ioIlg/m”の金属クロム層からなる皮膜を鋼板に
形成させた点を除いては実施例3と同様にDI缶を成形
し、同様の評価を実施した。結果を第1表に示す. (実施例5) 実施例3において、冷延鋼板のラミネート側面に公知の
方法で0. 1g/*”のニッケルめっきを施し、つい
で0.5g/m”の錫めっきを施した上に公知の電解ク
ロム酸処理により上層がクロム量として2 0 rag
/rs”のクロム永和酸化物層、下層が20mg/一の
金属クロム層からなる皮膜を形成させた点、及び二軸延
伸ポリエチレンテレフタレート/イソフタレート(エチ
レンイソフタレート成分モル分率14%.融点225℃
)共重合ポリエステルフィルムを使用した点を除いては
、実施例3と同様にDI缶を成形し、同様な試験を実施
した.結果を第1表に示す. (実施例6) 235℃に加熱したアルミニウム合金板(板厚0.32
on.材質呼称A3ロ04H 3 9材.表面にクロム
酸リン酸処理をクロム量として2 0 trrg/ra
2実施した板)に膜厚l5μmの二軸延伸ポリエチレン
テレフタレート/イソフタレート(エチレンイソフタレ
ート成分モル分率10%.融点240℃)共重合ポリエ
ステルフィルムを実施例1と同様プライマーを使用しラ
ミネートし、ついで250℃に加熱、水冷し,共重合ポ
リエステルフィルム中のアンチブロッキング剤粒子をフ
ィルム表面下に埋没させた被覆アルミ合金板を作った.
この材料より、下記に示す成形条件でアルミDI缶を成
形し、同様な試験を実施した.結果を第l表に示す. 0成形条件 アルミラミネート板を約140+w+wの径の円板に打
ち抜き,常法に従い絞りポンチと絞りダイスの間で内径
が約87mmのコップ状に成形する.次いでディンプル
形状(深さlμm)の表面を有するしごきポンチと、し
ごきダイスとの組合せでしごき加工した.この缶胴の諸
寸法を以下に示す. 胴壁部厚み     0.125aui缶胴内径   
   65.7ma+ 缶胴高さ      124mm (比較例2) 実施例6と同様のアルミ合金板を255℃に加熱し、そ
の片面に二軸延伸ポリエチレンテレフタレートフィルム
をアルミ合金板と接着プライマー塗布面とが対面するよ
うに供給して熱圧着し、ラミネート後水冷した.次いで
,このラミネート材を275℃に加熱し直ちに水冷した
.この材料で実施例6と同様にDI缶の成形試験を実施
したが、抜け性が悪く内面にきすが入ったため以後の試
験を中止した. (比較例3) 実施例lで第2工程絞り加工及び最終しごき工程で用い
るポンチの表面処理を阻面仕上げから鏡面仕上げ(Ra
=0.1以下)にした点を除いては、実施例lと同様に
DI缶の成形試験を実施したが、抜け性が悪く内面にき
ずが入ったため以後の試験を中止した. (比較例4) 実施例6で第2工程絞り加工及び最終しごき工程で用い
るポンチの表面処理を阻面仕上げから鏡面仕上げ(Ra
=0.1以下)にした点を除いては、実施例6と同様に
DI缶の成形試験を実施したが、抜け性が悪く内面にき
ずが入ったため以後の試験を中止した. (実施例7) 195℃に加熱したぶりき(板厚0. 20mm.テン
パーT−2.5.冷延鋼板の両面に公知の方法で2.8
 g/m”の錫めっきを施し,その上層に公知の重クロ
ム酸中での陰極処理により70劃g/一のクロム水和酸
化物層からなる皮膜を形成させた.)に実施例l同様の
プライマーを塗布した厚み12μmの二軸延伸ポリエチ
レンテレフタレート/セバケート共重合ポリエステルフ
ィルム(エチレンセバケート成分のモル分率30%.融
点200℃)をラミネートし、このラミネート材を21
5℃に加熱後水冷し、共重合ポリエステルフィルム中の
アンチブロッキング剤粒子をフィルム表面下に埋没させ
た被覆鋼板を作った.このラミネート材の非ラミネート
ぶりき面に2酸化チタン含有ポリエステル系塗料をロー
ルコーターで乾燥塗膜厚8μmになるように塗装し、1
90℃−10分間焼付け後、バラフィンワックスを両面
にl a+g/d一塗布し、下記方法で円型テーバー缶
を製造し実施例lと同様な試験を実施した.(ただし、
実缶試験内容物はグレープゼリー:85℃−30分湯殺
菌)結果を第1表に示す. 刑テーバー の1゛告 ポリエステルフィルム面が缶の内面側となる様に3段絞
り成形法で円型テーバー缶を作成した.+11第l段絞
り工程 底部径60.3mm、開口部径73.7mm、高さ16
.0mmのカップに絞る. (2)第2段絞り工程 底部径60. 3mm、開口部径70. 4mm、高さ
26.7mmのカップに絞る. (3)第3段絞り工程 底部径60.3m++m.開口部径74.211!1、
高さ33.0+amの開口部より5ms+下の部分にス
テップを有する円型テーバーカップを成形した。
As the light metal plate, an aluminum alloy plate is used in addition to a so-called pure aluminum plate. An aluminum-based alloy plate excellent in corrosion resistance and workability is Mn:O. O to 1.5
Weight %, Mg: 0. O to 5% by weight, Zn: 0.0
1 to 0.3% by weight, Cu: 0.01 to 0.25
, and Cr: 0.01 to 0.25% by weight, the balance being A1. These light metal plates also
It is desirable to perform surface treatment from the viewpoint of paint film or film adhesion and corrosion resistance, and these surface treatments include chromium treatment, zirconium treatment, phosphoric acid treatment, alumite treatment, acrylic acid treatment, etc. Among these, it is desirable that chromic acid treatment or chromic acid/phosphoric acid treatment is performed such that the amount of chromium is 5 to 300 B/tm in terms of metallic chromium. Base thickness of metal plate (A) varies depending on the type of metal, the purpose of the container, and the size, but generally ranges from 0.IO to 0.0.
It is preferable to have a thickness of 50 mm, within which the thickness is 0.10 to 0.40 mm in the case of surface-treated steel sheets, and 0.10 to 0.40 mm in the case of light metal sheets. It is preferable to have a thickness of l5 to 0.50+wm. The copolymerized polyester used is mainly composed of ethylene terephrate units and contains small amounts of other ester units. In general, 7 of the dibasic acid components in copolymerized polyester
0 mol % or more, especially 75 mol % or more of the terephthalic acid component, 70 mol % or more, especially 75 mol % or more of the dihydric acid component consists of ethylene glycol, and the dibasic acid component and/or the terephthalic acid component consists of ethylene glycol. 1 to 30 mol%, especially 5 to 25 mol% of the components are dibasic acid components other than terephthalic acid and/or
Or, it is preferable that it consists of a diol component other than ethylene glycol. Dibasic acids other than terephthalic acid include isophthalic acid,
Aromatic dicarboxylic acids such as phthalic acid and naphthalene dicarboxylic acid; Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; and Aliphatic dicarboxylic acids such as succinic acid, adibic acid, sebacic acid, and dodecanedioic acid. Combinations of the above may be mentioned, and dioxylic components other than ethylene glycol include propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexylene glycol, cyclohexanedimethanol, and ethylene oxide addition of bisphenol A. Examples include one or more types of things. Of course, the combination of these comonomers must be such that the melting point of the copolyester falls within the above range. The copolyester used should have a molecular weight sufficient to form a film, for which it should have an intrinsic viscosity (1.V.) of 0.55 to t. 9 dl/
g, preferably in the range of 0.65 to 1.4 dl/g. This copolyester film contains an anti-blocking agent which is known per se.
Examples of anti-blocking agents include amorphous silica,
Inorganic particles such as zeolite, non-quality alumina silica, etc. are used, with particle sizes ranging from 0.05 to 10μ, especially 0.1
Those in the range of 5μ to 5μ apex are used. The content of the anti-blocking agent is generally 100% of the copolymerized polyester.
It is within the range of 0.01 to 065 parts by weight, particularly 0.03 to 0.1 parts by weight. It is important that the copolyester film is biaxially stretched. The degree of biaxial orientation can be confirmed by polarized fluorescence method, birefringence method, density gradient tube method, etc. In the present invention, the copolyester film has a density of 1.345 g/cm" to 1.3 g/cm".
It is desirable that the molecules are oriented to have a density in the range of 95 g/c1. In addition, the thickness of the film is 5 to 50 μ-, especially l2
It is desirable that the thickness be between 40 μm and 40 μm. In order to improve the adhesion of the film, it is generally desirable to subject the surface of the biaxially oriented copolyester film to a corona discharge treatment. The degree of corona discharge treatment is preferably such that the wetting tension is 4 4 dyne/c@ or more. In addition, it is also possible to perform adhesion-improving surface treatments known per se such as plasma treatment and flame treatment on the film, or adhesion-improving coating treatments such as urethane resin-based or modified polyester resin-based coatings. When directly thermally bonding a film and a metal material, the metal material is preheated to a temperature near or above the melting point of the copolyester, and the heated metal material and film are laminated and pressure bonded. rear. This is rapidly cooled and laminated. It is also possible to thermally bond the two using an adhesive primer. The adhesive primer used in the present invention exhibits excellent adhesion to both the metal material and the copolyester film. Typical primer paints with excellent adhesion and corrosion resistance are phenol-epoxy paints, which are made of resol-type phenol-aldehyde resins derived from various phenols and formaldehyde, and bisphenol-type epoxy resins. Yes, especially phenol resin and epoxy resin in a weight ratio of 50:50 to 5:95, especially 4
It is a paint containing a weight ratio of 0:60 to 10:90. The adhesive primer layer generally has a thickness of 0.3 to 5
It is best to provide it at a thickness of 1 μm. According to the present invention, at least the surface of the film of the laminate is heated to a temperature equal to or higher than the melting point of the copolyester and then rapidly cooled to embed the anti-blocking agent particles.
Since the embedding treatment of the anti-blocking agent particles is carried out almost during the g1 period at the same time as the surface layer of the film is melted, a very short treatment time is sufficient. The temperature of the film is
The melting point of the copolyester is m. When closed, m, +l
O0°C, especially m, +5°C to m. , +80°C is suitable, and the heating time is 0.1 to 600 seconds, especially 0.1 to 600 seconds.
A range of 1 to 60 seconds is appropriate. Furthermore, the fact that the film is in a molten state at the free interface is effective in embedding the anti-blocking agent particles. Heating of the film can be performed using a hot air circulation furnace, an infrared kneading furnace, resistance heating, high frequency induction heating, etc., and rapid cooling after heating can be performed using water cooling, air cooling, cooling with liquid nitrogen, dry ice, etc. It can be carried out. The rapid cooling is preferably carried out so that the molten copolymerized polyester passes through the polyester crystallization temperature range (100 to 200°C) within 30 seconds, particularly within 10 seconds. Drawing and ironing The laminate material that has been immersed as described above is subjected to drawing or drawing-ironing by means known per se, but in this case. It is preferable to use the following conditions. First, drawing or drawing and ironing is preferably carried out at an appropriate stretching temperature for the copolyester, particularly at a temperature of 30 to 80°C, most preferably at a temperature of 40 to 70°C. That is, in this temperature range, the copolymerized polyester undergoes plastic flow during squeezing, effectively oriented the molecules in the axial direction, and is effectively thinned during squeezing. In addition, the drawing or drawing-iron process is performed using a combination of a punch and a die, and the punch has an average roughness (Ra) of 0.01 to 3μ, especially 0.1 to 2μ.
It is preferable to use a punch with side surfaces of Generally, a dot-like (dimple-like) roughness pattern is preferred. Furthermore, it is preferable that the lubricant used has as low a viscosity as possible, and in general, lubricants of 100 to 400 SUS (Saybolt Universal Seconds) (40°C) are advantageously used in terms of ease of removal. The can body of the present invention is manufactured by a method known per se, except for using the laminate material described above. That is, the laminate is sheared into a shape such as a disk, and subjected to one-stage or multi-stage drawing between a drawing punch and a drawing die. Drawing forming can also be performed by deep drawing forming into a large diameter shallow cup and deep drawing forming into a small diameter deep drawn cup.In this deep drawing process, the upper part of the cup side wall is drawn to make the wall thickness uniform. It is also possible to apply a slight strain to the material, or to apply tensile force in the axial direction by selecting a drawing die such as Girasias. In the case of deep-drawn cans, the drawing process can be performed in one stage or in multiple stages, and is expressed by the following formula D R o = d where D is the diameter of the laminate material cut in front, and d is the diameter of the punch. It is preferable that the aperture ratio R0 defined by R0 is in the range of 1.2 to 2.5 for one stage. The ironing process can be performed in one stage or in multiple stages, and the following formula io is used. The ironing rate defined by (R.l is preferably 20 to 40% in one stage ironing process.In the case of multi-stage ironing, set the ironing rate as high as possible in the first ironing process, and It is better to set the ironing rate in the final ironing ring in the range of 3 to 20% from the viewpoint of the ease with which the cup can be pulled out afterwards.After the resulting drawing or drawing cup goes through processes such as trimming and washing as necessary, A can body that can be tightened with a can lid by netting and flanging processing. (Effects of the invention) According to the present invention, a biaxially stretched film of a specific copolyester polyester laminated on a metal material is produced. Heating to a temperature at least above the surface and its melting point, followed by rapid cooling, makes it possible to bury the anti-blocking agent particles that have been protruding from the surface below the film surface; By subjecting the treated laminate to deep drawing or drawing and ironing, the occurrence of internal coating defects such as bottle holes, cracks, breaks, and peeling was prevented. (Example 1) Primer' Bisphenol 8% by weight 75%. A mixed phenol consisting of 25% P-cresol and formaldehyde were reacted in the presence of a base catalyst. Purification. A solution of resol type phenol formaldehyde resin was produced by dissolving it in a solvent. Bisphenol A type epoxy resin (Ebicoat 1009)
.. Average molecular weight 3750. An adhesive primer paint was prepared by mixing the epoxy equivalent (2650) solution and the above resol type phenol formaldehyde resin solution at a solid content weight ratio of 70:30 and precondensing btt. - Meat 1゛thickness 25μm two-wheel stretched polyethylene terephthalate/
The solid content of the adhesive primer paint is 10 on one side of an isophthalate (ethylene isophthalate mole fraction 20%, melting point 216°C) copolyester film.
a+g/da" and dried at 120°C. Both sides of a cold-rolled steel plate with a thickness of 0.30 mm and a temper of T-2.5 were coated with 2.8 g/7 m" of tin using a known method. 7.0 by plating and cathodic treatment of the upper layer in dichromic acid.
A film consisting of a chromium permanent oxide layer with a concentration of 1.0 mg/m" was formed. This surface-treated steel plate was heated to 215°C and supplied so that one side of the copolyester film faced the adhesive primer-coated side of the copolyester film. The laminated material was then heated to 226°C and immediately cooled with water to obtain a coated steel plate in which the anti-blocking agent particles in the copolyester film were buried under the surface of the film. .Migamishiugama 1 The obtained polyester resin-coated steel plate was drawn and ironed under the following forming conditions so that the inner surface of the DI can was coated with polyester resin. Punch out a disc of
According to the usual method, the inner diameter between the drawing punch and the drawing die is approximately 87mm.
Shape into m■ cup shape. The dimensions of this can body, which was then ironed using a combination of an ironing punch with a dimple-shaped surface (depth lum) and an ironing die (making speed of 230 cans per minute), are shown below. Body wall thickness 0. 105-11 Can body inner diameter
65.71 Can body height 124mm Degrease the obtained DI can. After cleaning, drying, and printing on the outside, bake at 195℃, then neck. The flanging process was performed and the following items were evaluated. The results are shown in Table 1. ■Evaluation of metal exposure inside the can The above DI can was used with 1% saline as the electrolyte, and the inside of the can was used as an anode and a stainless steel plate as the counter electrode. During this time, a voltage of 6.30 volts was applied, and the current flowing after 4 seconds was measured. The degree of metal exposure was evaluated. Measurements were carried out for each n = 20 cans. ■Evaluation of the number of anti-blocking agent particles protruding from the surface After lamination, an electron micrograph of the polyester resin surface (magnification
1000) was taken in 1O field, and the average number of particles protruding from the surface per 100 μm square was evaluated from these photographs. ■Actual can bag test Fill with carbonated beverage (commercially available Sprite), tighten the aluminum lid according to the usual method, store at 37℃ for 3 months, then cut the tightened part with a can opening machine and remove the lid from the can body. The state of corrosion on the inner surface of the can and the presence or absence of pitting corrosion were observed. (Example 2) A DI can was molded in the same manner as in Example 1, except that the laminate surface of cold-rolled 14@ was plated with 0.5 g/m'' of tin, and the same evaluation was carried out. The results are shown in Table 1. (Comparative Example 1) A laminate material was produced in the same manner as in Example 1. However, heating was not performed after embedding the anti-blocking agent particles. A DI can was formed using the material and the same evaluation was carried out.The obtained results are shown in Table 1. (Example 3) A cold rolled steel plate with a thickness of 0.30 mm and a temper of T-2.5. A film is formed on the laminate surface by a well-known electrolytic chromic acid treatment, consisting of an upper layer of a chromium hydrated oxide layer with a chromium content of 20B7m" and a lower layer of a metallic chromium layer with a chromium content of 10B7m". 2.8g/ by a known method on the surface
This surface-treated steel sheet was heated to 215°C.
A biaxially oriented polyethylene terephthalate/sebacate copolyester film (mol fraction of ethylene sebacate component 23%, melting point 220°C) with a thickness of 25 μm was placed on one side of the film so as to face the side having the electrolytic chromic acid treatment layer. Then, this laminate material was heated to 235°C and immediately cooled with water to obtain a coated steel plate in which the anti-blocking agent particles in the copolyester film were buried under the surface of the film. A drawn and ironed can was made from this RFI steel plate under the same forming conditions as in Example 1, and the same evaluation was performed. The results are shown in Table 1. (Actual Journey Example 4) In Example 3, a film was formed on a steel plate by electrolytic chromic acid treatment, in which the upper layer was a chromium permanent oxide layer with a chromium content of 20 B7m", and the lower layer was a metallic chromium layer with a chromium content of ioIlg/m". A DI can was molded in the same manner as in Example 3, except for the following points, and the same evaluation was performed. The results are shown in Table 1. (Example 5) In Example 3, the laminate side surface of the cold-rolled steel sheet was coated with 0.0% by a known method. Nickel plating of 1g/*" was applied, followed by tin plating of 0.5g/m", and the upper layer was treated with a known electrolytic chromic acid treatment to reduce the amount of chromium to 20 rag.
/rs'' chromium permanent oxide layer, the lower layer is a 20mg/rs'' metal chromium layer, and biaxially oriented polyethylene terephthalate/isophthalate (ethylene isophthalate mole fraction 14%. melting point 225). ℃
) DI cans were molded in the same manner as in Example 3, except that a copolymerized polyester film was used, and the same tests were conducted. The results are shown in Table 1. (Example 6) Aluminum alloy plate heated to 235°C (thickness 0.32
on. Material name: A3RO 04H 3 9 material. The amount of chromium treated with chromic acid phosphoric acid on the surface is 20 trrg/ra.
A biaxially oriented polyethylene terephthalate/isophthalate (mol fraction of ethylene isophthalate component: 10%, melting point: 240°C) copolyester film having a film thickness of 15 μm was laminated onto the plate (2) using a primer in the same manner as in Example 1. The film was then heated to 250°C and cooled with water to produce a coated aluminum alloy plate in which the anti-blocking agent particles in the copolyester film were buried beneath the surface of the film.
Aluminum DI cans were molded from this material under the molding conditions shown below, and similar tests were conducted. The results are shown in Table I. 0 Forming Conditions Punch an aluminum laminate plate into a disc with a diameter of approximately 140 + w + w, and form it into a cup shape with an inner diameter of approximately 87 mm between a drawing punch and a drawing die according to the usual method. Next, ironing was performed using a combination of an ironing punch with a dimple-shaped surface (depth 1 μm) and an ironing die. The dimensions of this can body are shown below. Body wall thickness: 0.125aui Can body inner diameter
65.7 ma + can body height 124 mm (Comparative Example 2) The same aluminum alloy plate as in Example 6 was heated to 255°C, and a biaxially stretched polyethylene terephthalate film was placed on one side of the plate so that the aluminum alloy plate and the surface coated with the adhesive primer faced each other. The material was supplied in such a manner as to be hot and press-bonded, and after lamination, it was cooled with water. Next, this laminate material was heated to 275°C and immediately cooled with water. A DI can molding test was conducted using this material in the same manner as in Example 6, but the subsequent tests were discontinued due to poor release properties and scratches on the inner surface. (Comparative Example 3) In Example 1, the surface treatment of the punch used in the second drawing process and the final ironing process was changed from cross-surface finish to mirror finish (Ra
A molding test of a DI can was carried out in the same manner as in Example 1, except that the molding temperature was 0.1 or less), but the subsequent tests were discontinued due to poor release properties and scratches on the inner surface. (Comparative Example 4) In Example 6, the surface treatment of the punch used in the second process drawing process and final ironing process was changed from cross-surface finish to mirror finish (Ra
A molding test of a DI can was carried out in the same manner as in Example 6, except that the molding temperature was 0.1 or less), but the subsequent tests were discontinued due to poor release properties and scratches on the inner surface. (Example 7) Tinplate heated to 195°C (plate thickness 0.20 mm. Tempered T-2.5. Tempered T-2.8 on both sides of a cold-rolled steel plate by a known method.
As in Example 1, a film consisting of a chromium hydrated oxide layer of 70 g/m was formed on the top layer by a known cathodic treatment in dichromic acid. A 12 μm thick biaxially oriented polyethylene terephthalate/sebacate copolyester film (mol fraction of ethylene sebacate component: 30%, melting point 200°C) coated with a primer of
After heating to 5°C and cooling with water, a coated steel plate was prepared in which the anti-blocking agent particles in the copolyester film were buried under the surface of the film. A polyester paint containing titanium dioxide was applied to the non-laminated tin surface of this laminated material using a roll coater to a dry film thickness of 8 μm.
After baking at 90°C for 10 minutes, paraffin wax was applied to both sides at a rate of 1 a+g/d, and a circular Taber can was manufactured using the method described below, and the same test as in Example 1 was conducted. (however,
The contents of the actual can test were grape jelly (sterilized in hot water at 85°C for 30 minutes) and the results are shown in Table 1. A circular Taber can was made using a three-stage drawing method so that the polyester film surface of the Taber was on the inside of the can. +11 1st stage drawing process Bottom diameter 60.3mm, opening diameter 73.7mm, height 16
.. Squeeze into a 0mm cup. (2) Second stage drawing process bottom diameter 60. 3mm, opening diameter 70. Squeeze into a cup 4mm wide and 26.7mm high. (3) 3rd stage drawing process bottom diameter 60.3m++m. Opening diameter 74.211!1,
A circular Taber cup with a step 5 ms+ below the opening with a height of 33.0+ am was molded.

この円型テーバーカップを常法に従い、開口端部のトリ
ミング.リフランジ加工を行ない、ステップを有する円
型テーバー缶を製造した.(実施例8) 冷延鋼板の両面に公知の方法で1.0 g/+”の錫め
っきを施し、次いで、公知の電解クロム酸処理で両面に
上層がクロム量として2 0 o+g/m”のクロム水
和酸化物層、下層が2 0 B/+”の金属クロム層か
らなる皮膜を形成させた.この表面処理鋼板を215℃
に加熱し、厚さ12μmの二輪延伸ポリエチレンテレフ
タレート/セバケート(エチレンセバケート成分のモル
分率23%.融点220℃)共重合ポリエステルフィル
ムをラミネートし、ついでこのラミネート材を230℃
に加熱後水冷した.この材料を実施例7と同様に外面塗
装後円型テーバー缶を製造し、同様の試験を実施した。
Trim the open end of this circular Taber cup using the usual method. A circular Taber can with steps was manufactured by reflanging. (Example 8) Both sides of a cold-rolled steel sheet were plated with 1.0 g/+" of tin by a known method, and then the upper layer was coated on both sides with a chromium content of 20 o+g/m" by a known electrolytic chromic acid treatment. A film was formed consisting of a chromium hydrated oxide layer and a 20 B/+" metallic chromium layer as the lower layer.
A two-wheel stretched polyethylene terephthalate/sebacate (mole fraction of ethylene sebacate component: 23%, melting point 220°C) copolyester film with a thickness of 12 μm was laminated thereon, and this laminate material was then heated at 230°C.
After heating, it was cooled in water. This material was coated on the outside in the same manner as in Example 7, and circular Taber cans were manufactured and the same tests were conducted.

結果を第1表に示す. (実施例9) 冷延鋼板の両面に、公知の方法で電解クロム酸処理によ
り、上層がクロム量として2 0 rag/1のクロム
水和酸化物層,下層が1 0 0 tag/ra”の金
属クロム層からなる皮膜を形成させた.この材料を23
5℃に加熱し、実施例l同様のプライマーを塗布した厚
さ12μmの二軸延伸ポリエチレンテレフタレート/イ
ソフタレート(エチレンイソフタレート成分モル分率8
%,融点245℃)共重合ポリエステルフィルムをラミ
ネートした後260℃に加熱した.実施例7と同様に、
外面塗装後円型テーバー缶を製造し、同様の試験を実施
した.結果を第I表に示す。
The results are shown in Table 1. (Example 9) Both sides of a cold-rolled steel sheet were treated with electrolytic chromic acid using a known method to form a chromium hydrated oxide layer with an upper layer having a chromium content of 20 rag/1, and a lower layer with a chromium content of 100 tag/ra''. A film consisting of a metallic chromium layer was formed.This material was
A 12 μm thick biaxially oriented polyethylene terephthalate/isophthalate (ethylene isophthalate mole fraction: 8
%, melting point 245°C) copolymerized polyester film was laminated and then heated to 260°C. Similar to Example 7,
After painting the outside, circular Taber cans were manufactured and similar tests were conducted. The results are shown in Table I.

(比較例5) 実施例7同様ラミネート材を作った。但し、アンチブロ
ツキング剤粒子を埋没させる後加熱は行なわなかった5
実施例7と同様に円型テーバー缶を製造し,同様の試験
を実施した.結果を第1表に示す, (比較例6) 実施例7において二軸延伸ポリエチレンテレフタレート
/イソフタレート共重合ポリエステルフィルム(エチレ
ンイソフタレート成分モル分率32%,融点165℃)
を160℃に加熱した表面処理鋼板にラミネートした.
ついでこのラミネート材を175℃に加熱し,実施例7
と同様に円型テーバー缶を製造し.同様の試験を実施し
た.結果を第1表に示す。
(Comparative Example 5) A laminate material was made in the same manner as in Example 7. However, heating was not performed after embedding the anti-blocking agent particles5.
A circular Taber can was manufactured in the same manner as in Example 7, and the same test was conducted. The results are shown in Table 1. (Comparative Example 6) In Example 7, a biaxially oriented polyethylene terephthalate/isophthalate copolymer polyester film (ethylene isophthalate mole fraction 32%, melting point 165°C)
was laminated onto a surface-treated steel plate heated to 160°C.
Next, this laminate material was heated to 175°C, and Example 7 was prepared.
Similarly, a circular Taber can is manufactured. A similar test was conducted. The results are shown in Table 1.

(実施例10) 上層がクロム量として15mg/m”のクロム永和酸化
物層、下層が1 0 0 mg/s”の金属クロム層か
らなる板厚[1.1851111 .テンパーDR−8
の電解クロム酸処理冷延鋼板に実施例1と同様にプライ
マーを塗布した厚さ30μmの二軸延伸ポリエチレンテ
レフクレート/イソフタレート(エチレンイソフタレー
ト成分モル分率20%.融点216℃)共重合ポリエス
テルフィルムをラミネートし、続いて融点以上の温度2
26℃に加熱し、直ちに急冷しラミネート材を作った.
このラミネート材の非ラミネートTFS面にポリエステ
ル系塗料をロールコーターで乾燥塗膜厚5μmになるよ
うに塗装し、190℃一lO分間焼付け、絞り時に、軸
方向に引張り力を与えカップ側壁板厚の増加を阻止し、
さらには元板厚より減少させた深絞り缶を製造した.実
施例1と同様な試験を実施し、結果を第1表に示す. 叉緩ユ盃坐里孟 ポリエステルフイルム面が缶の内面側となる様に3段成
形法で深絞り缶を作製した. +11第1段工程(絞り) 缶胴外径111.5wn .高さ41.4mmのカップ
に絞る. (2)第2段工程(第1段再絞り) 缶胴外径84.5mm、高さ70. 1mmのカップに
絞る. (3)第3段工程(第2段再絞り) 缶胴外径65.I3mm、高さ101.6+amのカッ
プに絞る. このカップを常法に従い,ボトム成形.開口端部のトリ
ミングを行ない、深絞り缶を製造した。
(Example 10) The upper layer is a chromium permanent oxide layer with a chromium content of 15 mg/m", and the lower layer is a metallic chromium layer with a chromium content of 100 mg/s". The plate thickness is [1.1851111. Temper DR-8
A 30 μm thick biaxially oriented polyethylene terephthalate/isophthalate (ethylene isophthalate mole fraction 20%, melting point 216°C) copolymer polyester was prepared by applying a primer to an electrolytic chromic acid treated cold rolled steel sheet in the same manner as in Example 1. The film is laminated and then heated to a temperature above the melting point 2
It was heated to 26°C and immediately quenched to make a laminate.
A polyester paint was applied to the non-laminated TFS surface of this laminate material using a roll coater so that the dry film thickness was 5 μm, and baked at 190°C for 10 minutes. During squeezing, a tensile force was applied in the axial direction to reduce the thickness of the cup side wall. prevent the increase,
Furthermore, we manufactured deep-drawn cans with reduced thickness compared to the original plate thickness. A test similar to that in Example 1 was conducted and the results are shown in Table 1. A deep-drawn can was produced using a three-stage forming method so that the polyester film surface was on the inside of the can. +11 1st stage process (drawing) Can body outer diameter 111.5wn. Squeeze into a cup with a height of 41.4 mm. (2) Second stage process (first stage re-drawing) Can body outer diameter 84.5 mm, height 70. Squeeze into a 1mm cup. (3) Third stage process (second stage re-drawing) Can body outer diameter 65. Narrow it down to a cup with I3mm and height 101.6+am. Form the bottom of this cup according to the conventional method. The open end was trimmed to produce a deep drawn can.

この缶の側壁板厚は. 0.18mmであった6(実施
例11) 実施例lOと同様の表面処理鋼板を210℃に加熱し、
共重合ポリエステルフィルムを直接ラミネートした.こ
のラミネート材を226℃に加熱し、直ちに急冷しラミ
ネヘト材を作った.実施例10と同様にこの材料を用い
て深絞り缶を成形し,同様の評価を実施した.得られた
結果を第1表に示す. (比較例7) 実施例10同様ラミネート材を作った.但し、アンチブ
ロッキング剤粒子を埋没させる後加熱は行なわなかった
.実施例IOと同様に絞り時に軸方向に引張り力を与え
、カップ側壁板厚の増加を阻止し,さらに元板厚より減
少させた深絞り缶を製造し、同様の試験を実施した.結
果を第1表に示す.
The side wall thickness of this can is. 6 (Example 11) The same surface treated steel plate as in Example 1O was heated to 210°C,
Copolymerized polyester film was directly laminated. This laminate material was heated to 226°C and immediately quenched to produce a laminate material. A deep-drawn can was formed using this material in the same manner as in Example 10, and the same evaluation was performed. The results obtained are shown in Table 1. (Comparative Example 7) A laminate material was made in the same manner as in Example 10. However, no heating was performed after embedding the anti-blocking agent particles. Similar to Example IO, a deep drawn can was produced in which a tensile force was applied in the axial direction during drawing to prevent the cup side wall thickness from increasing, and the thickness was further reduced from the original thickness, and similar tests were conducted. The results are shown in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる積層体の一例の断面構造を示す
断面図であり、 第2図は本発明に用いる積層体の他の例の断面構造を示
す断面図であり、 第3図は未処理積層体のポリエステル表面の走査型電子
顕微鏡による見取図(上面図)であり、第4図は本発明
に従い処理を行った積層体のポリエステル表面の走査型
電子顕微鏡による見取図である. 1は積層体、2は金属基体、4は共重合ポリエステル層
、5はアンチプロッキング剤粒子である。
FIG. 1 is a cross-sectional view showing the cross-sectional structure of one example of the laminate used in the present invention, FIG. 2 is a cross-sectional view showing the cross-sectional structure of another example of the laminated body used in the present invention, and FIG. FIG. 4 is a scanning electron microscope sketch (top view) of the polyester surface of an untreated laminate, and FIG. 4 is a scanning electron microscope sketch of the polyester surface of a laminate treated according to the present invention. 1 is a laminate, 2 is a metal substrate, 4 is a copolyester layer, and 5 is an anti-blocking agent particle.

Claims (2)

【特許請求の範囲】[Claims] (1)金属素材と該金属素材の少なくとも缶内面となる
側に直接或いは接着用プライマーを介して設けられたエ
チレンテレフタレート単位を主体とし他のエステル単位
の少量を含む融点が170乃至252℃の共重合ポリエ
ステルフィルムとの積層体の絞り乃至絞り−しごき成形
で形成され、該共重合ポリエステルフィルムはアンチブ
ロッキング剤粒子を含有するフィルムであって、該アン
チブロッキング剤粒子はフィルム表面より下に埋没され
ていることを特徴とする絞り乃至絞り−しごき缶。
(1) A metal material and a copolymer with a melting point of 170 to 252°C, which is mainly composed of ethylene terephthalate units and contains a small amount of other ester units, provided directly or via an adhesive primer on at least the inner surface of the metal material. It is formed by drawing or drawing-iron forming a laminate with a polymerized polyester film, and the copolymerized polyester film is a film containing anti-blocking agent particles, and the anti-blocking agent particles are buried below the surface of the film. A squeezing or squeezing can characterized by the fact that
(2)エチレンテレフタレート単位を主体とし他のエス
テル単位の少量を含む融点が170乃至252℃の共重
合ポリエステルから成り且つアンチブロッキング剤粒子
を含有する二軸延伸フィルムを金属素材の少なくとも缶
内面となる側に直接或いは接着用プライマーを介して熱
接着させて積層体を製造し、 この積層体の少なくともフィルム表面を共重合ポリエス
テルの融点以上の温度に加熱し、次いで急冷してアンチ
ブロッキング剤粒子をフィルム表面より下に埋没させ、
処理後の積層体を絞り乃至絞り−しごき加工に賦するこ
とを特徴とする絞り乃至絞り−しごき缶の製法。
(2) A biaxially stretched film made of a copolyester containing mainly ethylene terephthalate units and a small amount of other ester units and having a melting point of 170 to 252°C and containing anti-blocking agent particles is used as at least the inner surface of the metal can. A laminate is produced by thermally adhering the anti-blocking agent particles to the side directly or via an adhesive primer, and at least the film surface of this laminate is heated to a temperature higher than the melting point of the copolyester, and then rapidly cooled to bond the anti-blocking agent particles to the film. buried below the surface,
A method for producing a drawn or drawn-ironed can, characterized in that the treated laminate is subjected to drawing or drawn-ironed processing.
JP23290689A 1989-09-11 1989-09-11 Squeezing or squeezing from laminated material-ironing can and its manufacturing method Expired - Fee Related JPH06102464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23290689A JPH06102464B2 (en) 1989-09-11 1989-09-11 Squeezing or squeezing from laminated material-ironing can and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23290689A JPH06102464B2 (en) 1989-09-11 1989-09-11 Squeezing or squeezing from laminated material-ironing can and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0398844A true JPH0398844A (en) 1991-04-24
JPH06102464B2 JPH06102464B2 (en) 1994-12-14

Family

ID=16946694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23290689A Expired - Fee Related JPH06102464B2 (en) 1989-09-11 1989-09-11 Squeezing or squeezing from laminated material-ironing can and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH06102464B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139436A (en) * 1991-11-12 1993-06-08 Toyo Seikan Kaisha Ltd Thin-walled drawn can
WO2007046240A1 (en) * 2005-10-19 2007-04-26 Toyo Seikan Kaisha, Ltd. Easy open lid
WO2008053944A1 (en) * 2006-10-27 2008-05-08 Jfe Steel Corporation Laminate steel sheet for two-piece can body, two-piece can body made of laminate steel sheet, and method for production of the two-piece can body
WO2008096613A1 (en) * 2007-02-06 2008-08-14 Jfe Steel Corporation Laminate steel sheet for two-piece can, method for production of two-piece can, and two-piece laminate can

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168643A (en) * 1984-02-14 1985-09-02 東洋製罐株式会社 Coated steel plate for drawing die can and drawing die can
JPH01136738A (en) * 1987-11-25 1989-05-30 Nippon Steel Corp Laminated steel plate for can excellent in corrosion resistance
JPH01192545A (en) * 1988-01-28 1989-08-02 Nippon Steel Corp Laminated steel plate for can excellent in processability and corrosion resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168643A (en) * 1984-02-14 1985-09-02 東洋製罐株式会社 Coated steel plate for drawing die can and drawing die can
JPH01136738A (en) * 1987-11-25 1989-05-30 Nippon Steel Corp Laminated steel plate for can excellent in corrosion resistance
JPH01192545A (en) * 1988-01-28 1989-08-02 Nippon Steel Corp Laminated steel plate for can excellent in processability and corrosion resistance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139436A (en) * 1991-11-12 1993-06-08 Toyo Seikan Kaisha Ltd Thin-walled drawn can
WO2007046240A1 (en) * 2005-10-19 2007-04-26 Toyo Seikan Kaisha, Ltd. Easy open lid
US8221872B2 (en) 2005-10-19 2012-07-17 Toyo Seikan Kaisha, Ltd. Easy-open end
WO2008053944A1 (en) * 2006-10-27 2008-05-08 Jfe Steel Corporation Laminate steel sheet for two-piece can body, two-piece can body made of laminate steel sheet, and method for production of the two-piece can body
JP2008105724A (en) * 2006-10-27 2008-05-08 Jfe Steel Kk Production method of two-piece can body and of laminated steel plate for can body and two-piece laminated can
US20100025283A1 (en) * 2006-10-27 2010-02-04 Yasuhide Oshima Laminated steel sheet for two-piece can body, two-piece can body made of laminated steel sheet, and method of producing the two-piece can body
US20130119057A1 (en) * 2006-10-27 2013-05-16 Jfe Steel Corporation Two-piece can body made of laminated steel sheet, and method of producing the two-piece can body
US8727155B2 (en) 2006-10-27 2014-05-20 Jfe Steel Corporation Two-piece can body made of laminated steel sheet, and method of producing the two-piece can body
WO2008096613A1 (en) * 2007-02-06 2008-08-14 Jfe Steel Corporation Laminate steel sheet for two-piece can, method for production of two-piece can, and two-piece laminate can
JP2008188905A (en) * 2007-02-06 2008-08-21 Jfe Steel Kk Laminated steel plate for 2-piece can, manufacturing method of 2-piece can and 2-piece laminated can
US10252319B2 (en) 2007-02-06 2019-04-09 Jfe Steel Corporation Method for production of two-piece can

Also Published As

Publication number Publication date
JPH06102464B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
JP5673860B2 (en) Laminated metal plate and canned food containers
JPH03101930A (en) Coated metallic sheet for drawn can and drawn can
JP3146973B2 (en) Laminated plate and can making method using the same
JPH03133523A (en) Manufacture of thinned drawn can
JP2677172B2 (en) Laminated squeeze container with excellent aroma retention and impact resistance
JPH0225784B2 (en)
JP4631111B2 (en) Aluminum can materials, cans and can lids
JPS60170532A (en) Manufacture of drawn and ironed can
JPH0398844A (en) Contracted or contracted-stroked can of laminated material and manufacture thereof
JPH0332835A (en) Drawn squeezed can
JP3262031B2 (en) Laminate and container using the same
JPH06155660A (en) Polyester resin coated metal panel excellent in hot water resistance
JP3876459B2 (en) Polyester film, laminated metal plate, method for producing the same, and metal container
JP6070903B2 (en) Film laminated metal plate for food containers, and twist cap and can lid using the same
JP3033578B2 (en) Polyester film for bonding steel plates
JP2006160999A (en) Polyester film for lamination of metal plate, laminated metal plate and metal container
JP2941628B2 (en) Seamless cans
JPH0387249A (en) Polyester resin coated metal plate excellent in processability and production thereof
JPH02242738A (en) Can formed of laminated tin plate material
JPH11157007A (en) Film-coated metallic sheet for molding
JP3826450B2 (en) Method for producing film-coated metal plate for can manufacturing process and method for producing printing can
JP3893240B2 (en) Polyester film laminated metal plate, method for producing the same, and metal container
JP3796110B2 (en) Polyester film laminate metal plate and metal container
JP3846989B2 (en) Two piece can
JP3915187B2 (en) Laminated body and container using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees