JPH0398648A - Activation of sulfide precursor type hydrotreatment catalyst - Google Patents

Activation of sulfide precursor type hydrotreatment catalyst

Info

Publication number
JPH0398648A
JPH0398648A JP23517889A JP23517889A JPH0398648A JP H0398648 A JPH0398648 A JP H0398648A JP 23517889 A JP23517889 A JP 23517889A JP 23517889 A JP23517889 A JP 23517889A JP H0398648 A JPH0398648 A JP H0398648A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
sulfide
hydrogen sulfide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23517889A
Other languages
Japanese (ja)
Inventor
Tetsuo Kamo
哲郎 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP23517889A priority Critical patent/JPH0398648A/en
Publication of JPH0398648A publication Critical patent/JPH0398648A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the lowering of initial activity due to a temp. rise speed by supplying a hydrogen sulfide/hydrogen gaseous mixture containing a specific amount of hydrogen sulfide to a sulfide precursor type hydrotreatment catalyst at specific temp. at a specific linear velocity in the flow direction of a catalyst bed. CONSTITUTION:A sulfurization agent is contained in a catalyst wherein a metal of the Group VI of the Periodic Table and a metal of the Group VIII of the Periodic Table are supported on an inorg. oxide carrier to prepare a sulfide precursor type hydrotreatment catalyst. Subsequently, a hydrogen sulfide/ hydrogen gaseous mixture containing 0.1-30vol.% of hydrogen sulfide is supplied to the aforementioned sulfide precursor type hydrotreatment catalyst at linear velocity of 20cm/hr or more in the flow direction of a catalyst bed during a time from 150 deg.C to the start point of time of hydrodesulfurization to activate the catalyst. The pref. linear velocity of the aforementioned hydrogen sulfide/ hydrogen gaseous mixture in the flow direction of the catalyst bed is about 20-200cm/hr and the pref. total pressure of the hydrogen sulfide/hydrogen gaseous mixture is about 1-30atm as absolute pressure.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、有機イオウ化合物を含有せしめた硫化物前駆
体型水素化処理触媒を簡易な操作により、かつ、昇温速
度による初期活性低下をおこすことなく脱硫反応を開始
し得るような硫化物前駆体型水素化処理触媒の活性化方
法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a method for reducing the initial activity of a sulfide precursor-type hydrotreating catalyst containing an organic sulfur compound by a simple operation and due to a heating rate. The present invention relates to a method for activating a sulfide precursor-type hydrotreating catalyst that can initiate a desulfurization reaction without causing any damage.

(従来の技術〉 一般に、炭化水素油を水素の存在下で水添、脱硫、脱窒
素、分解などを行なういわゆる水素化処理には、アルミ
ナ、シリカーアルミナ、チタニアなどの無機酸化物担体
に、モリブデン、タングステンなどのような周期律表第
6族金属と、コバルト、ニッケルのような周期律表第8
族金属とを担持させた触媒が用いられている。しかして
、これらの触媒活性金属種は、通常、調製時には周期律
表第6族金属が6価の、周期律表第8族金属が2価ある
いは3価の酸化物として担持されており、そのままでは
活性がないために、水素化処理に供される前に活性金属
が酸化物形態から硫化物形態に転換して活性化する予備
硫化がなされている必要がある。しかも、この後、充填
される触媒は少なくとも1年間以上使用されるものであ
り、硫化処理が適切に行なわれたか否かが、この間の脱
硫活性を大きく左右するものである。この予備硫化処理
方法として、炭化水素油の脱硫反応前に硫化水素を用い
て硫化する方法が、硫化剤であるメルカプタン類のよう
な有機イオウ化合物を軽抽に混合し固定触媒層に通油す
る方法などが、もっとも一般的によく用いられる方法で
あり、多くの製泊所で行なわれている方法である。しか
しながら、これらの予備硫化方法では、硫化が完全に進
行するまでに必要とする時間がかり、しかも、硫化処理
の終了を判断することが困難であるという問題があり、
したがって、多くの場合、経験的な操作方法に頼って処
理温度や時間などの条件を選択せざるを得ないというの
が現状である。
(Prior art) In general, so-called hydrogenation treatment, in which hydrocarbon oil is subjected to hydrogenation, desulfurization, denitrification, decomposition, etc. in the presence of hydrogen, uses an inorganic oxide carrier such as alumina, silica alumina, titania, etc. Metals from group 6 of the periodic table such as molybdenum and tungsten, and metals from group 8 of the periodic table such as cobalt and nickel.
Catalysts supported on group metals are used. However, when these catalytically active metal species are prepared, metals from Group 6 of the Periodic Table are usually supported as hexavalent oxides, and metals from Group 8 of the Periodic Table are supported as divalent or trivalent oxides, and they can be used as they are. Since the metal has no activity, it is necessary to perform pre-sulfidation to activate the active metal by converting it from an oxide form to a sulfide form before being subjected to hydrogenation treatment. Moreover, the catalyst that is filled after this is used for at least one year, and whether or not the sulfurization treatment is properly performed greatly influences the desulfurization activity during this period. This pre-sulfurization treatment method involves sulfurizing hydrocarbon oil using hydrogen sulfide before the desulfurization reaction, in which organic sulfur compounds such as mercaptans, which are sulfurizing agents, are mixed with light extraction and the oil is passed through a fixed catalyst bed. This method is the most commonly used method and is used in many manufacturing facilities. However, these pre-sulfurization methods have the problem that it takes time for sulfurization to proceed completely, and furthermore, it is difficult to judge when the sulfurization process has finished.
Therefore, in many cases, the current situation is that conditions such as processing temperature and time must be selected by relying on empirical operating methods.

近時、これらの予備硫化方法よりも一段と効率のよい方
法として、活性金属が担持された触媒に、一般式R−S
(n)−R’  ( nは、3〜20の整数、R,Rは
水素原子又はl分子当り1〜150個の炭素原子を有す
る有機基)で表わされる有機多硫化物を含浸せしめた硫
化物前駆体型水素化処理触媒(以下、水素化処理触媒と
いう)を、水素ガスの不存在下、65〜275゜C,0
.5〜70バールの圧力下で熱処理する方法(特開昭6
1−111144号)、さらに、硫化剤としての有機イ
オウ化合物を過剰量添加した水素化処理触媒(特開昭6
3−310639号〜310642号〉が開示されてい
る。この方法によれば、水素化処理触媒に含浸された多
硫化物が、熱処理によって活性金属を硫化するので、実
操業用反応器内で予備硫化する場合に較べ、操作が容易
になり、反応器外で予備硫化処理した水素化処理触媒を
反応器に充填すれば直ちに水素化処理操業を開始できる
とされている。
Recently, as a method that is even more efficient than these presulfidation methods, a catalyst with the general formula R-S is used to support an active metal.
(n)-R' (n is an integer of 3 to 20, R and R are hydrogen atoms or organic groups having 1 to 150 carbon atoms per molecule) sulfide impregnated with an organic polysulfide A precursor-type hydrotreating catalyst (hereinafter referred to as a hydrotreating catalyst) was heated at 65 to 275°C and 0 in the absence of hydrogen gas.
.. A method of heat treatment under a pressure of 5 to 70 bar (Japanese Patent Application Laid-open No.
No. 1-111144), and a hydrogenation catalyst to which an excessive amount of an organic sulfur compound as a sulfiding agent was added (JP-A No. 6
No. 3-310639 to No. 3-310642> are disclosed. According to this method, the polysulfide impregnated into the hydrotreating catalyst sulfurizes the active metal through heat treatment, making the operation easier than pre-sulfiding in the reactor for actual operation. It is said that hydrotreating operations can be started immediately by filling a reactor with a hydrotreating catalyst that has been pre-sulfurized outside.

(発明が解決しようとする課題〉 しかしながら、硫化剤として有機イオウ化合物を添加し
て調製した水素化処理触媒は、予備硫化のために昇温す
る際に、昇温速度がゆっくりであるほど、水素化脱硫活
性が十分発揮されず、従来の予備硫化方法で活性化され
た場合の脱硫活性と較べて、同等かそれ以下の活性にな
ってしまうという問題を生じた。
(Problems to be Solved by the Invention) However, when a hydrogenation catalyst prepared by adding an organic sulfur compound as a sulfurizing agent is heated for pre-sulfurization, the slower the temperature rise rate, the more hydrogen A problem occurred in that the desulfurization activity was not sufficiently exhibited, and the desulfurization activity was equal to or lower than the desulfurization activity when activated by the conventional presulfurization method.

これは、含有された有機イオウ化合物が活性金属を硫化
する前に分解・脱離してしまうために、未硫化の酸化物
形態の活性金属が多く残存することになり初期活性が低
くなるからであり、又、一方で、活性金属は、加圧水素
雰囲気下にあると、不働態化してしまうことから、長時
間、強い還元雰囲気にさらすことは、触媒活性に対して
好ましくないことによるものである。
This is because the contained organic sulfur compound decomposes and desorbs before sulfiding the active metal, leaving a large amount of the active metal in the form of an unsulfurized oxide, resulting in a low initial activity. On the other hand, since active metals become passivated when exposed to a pressurized hydrogen atmosphere, prolonged exposure to a strong reducing atmosphere is unfavorable for catalyst activity.

この問題を解決するためには、水素化処理触媒の昇温は
、極力短時間ですますことが要求されることになるが、
実際には、製油所の反応塔の昇温能力には限界があり、
昇温度の限界値は、50℃/′hrまでとされている。
In order to solve this problem, it is necessary to raise the temperature of the hydrotreating catalyst in as short a time as possible.
In reality, there is a limit to the heating capacity of reaction towers in refineries.
The limit value of temperature increase is set to 50°C/'hr.

したがって、常用の脱硫反応温度〈315〜350℃〉
までには、7時間以上を要することになり、このような
長時間水素化処理触媒を還元雰囲気下にさらすことにな
り、水素化処理触媒中の・2−須のイオウ分が損失され
る結果となることは避けられず、木来発現すべき脱硫活
性を十分に発押し得ないことになり、実用的な解決法と
はならないものである。これは、硫化剤を過剰量添加し
たものでも避けられない問題である。
Therefore, the commonly used desulfurization reaction temperature <315-350°C>
It will take more than 7 hours to complete the process, and the hydrogenation catalyst will be exposed to a reducing atmosphere for such a long time, resulting in loss of the 2-sulphur content in the hydrogenation catalyst. This is unavoidable, and the desulfurization activity that should be developed cannot be sufficiently developed, so this is not a practical solution. This is a problem that cannot be avoided even when an excessive amount of sulfurizing agent is added.

本発明は、前記問題を解決し、活性化操作の簡便さを失
なうことなく、かつ、活性化時の昇温条件による影響を
受けることがないような手段を得ることを目的とするも
のて′ある。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned problems and provide a means that does not lose the simplicity of the activation operation and is not affected by the temperature increase conditions during activation. There is.

(課題を解決するための手段) 本発明者は、前記問題を解決し、前記目的を達成するた
めに、水素化処理触媒の活性化方法について鋭意研究を
重ねた結果、特定範囲の温度と時間の間、特定量の硫化
水素を含有させた水索一硫化水素混合ガスを特定範囲の
速度で供給しながら活性化処理することによって目的を
達し得ることを見出して本発明を完成するに至った。す
なわら、本発明は、無機酸化物担体に周期律表第6族金
属と周期律表第8族金属とを担持させた触媒に硫化剤を
含有せしめて調製された硫化物前駆体型水素化処理触媒
を活性化する方法において、少なくとも150℃から水
素化脱硫開始時点までの間、0.1vol%〜30 v
ol%の硫化水素を含有する硫化水素一水素混合ガスを
、触媒層流通方向線速度を20cm/’hr以上として
供給しながら活性化する硫化物前駆体型水素化処理触媒
の活性化方法である。
(Means for Solving the Problems) In order to solve the above problems and achieve the above objects, the present inventor has conducted intensive research on a method for activating a hydrotreating catalyst, and has found that During this period, the inventors discovered that the objective could be achieved by carrying out an activation treatment while supplying a water line-hydrogen sulfide mixed gas containing a specific amount of hydrogen sulfide at a specific speed range, leading to the completion of the present invention. . In other words, the present invention provides a sulfide precursor type hydrogenation method prepared by containing a sulfiding agent in a catalyst in which a metal of group 6 of the periodic table and a metal of group 8 of the periodic table are supported on an inorganic oxide carrier. In the method of activating a treatment catalyst, from at least 150°C to the start of hydrodesulfurization, 0.1 vol% to 30 v
This is a method for activating a sulfide precursor-type hydrotreating catalyst, in which a hydrogen sulfide-hydrogen mixed gas containing 1 ol% of hydrogen sulfide is activated while being supplied at a linear velocity in the catalyst layer flow direction of 20 cm/'hr or more.

このように本発明では、硫化剤によって硫化されずに残
存する活性金属の酸化物を、昇温時に供給される硫化水
素によって硫化するものであって、同時に、硫化後も水
素化処理触媒をとりまく還元性雰囲気を調整するもので
ある。したがって、昇温速度が遅い場合でも、活性金属
の硫化速度を阻害せしめることなく脱硫反応を開始し得
るものである。
In this way, in the present invention, the active metal oxides remaining without being sulfurized by the sulfurizing agent are sulfurized by the hydrogen sulfide supplied when the temperature is raised, and at the same time, even after sulfurization, the active metal oxides surrounding the hydrotreating catalyst are sulfurized. This is to adjust the reducing atmosphere. Therefore, even if the temperature increase rate is slow, the desulfurization reaction can be started without inhibiting the sulfidation rate of the active metal.

又、本発明における硫化水素を添加する時間は、水素化
処理触媒が昇温される間、すなわち、反応塔が反応温度
に昇温するまでの間でよく、それも、昇星中、少なくと
も150℃で硫化水素の添加を開始し、水素化脱硫反応
の開始時点までで終了するのが適当である。これは、硫
化水素の添加開始温度が150゜C未満では、含有され
る活性金属が添加される硫化水素とは、ほとんど相互作
用せず、水素化脱硫反応が開始されれば、もはや硫化水
素を添加する必要がないからであり、原料油中のイオウ
分は、脱離されれば硫化水素となって水素化処理触媒表
面に拡散するからである。ここに、水素化脱硫反応の開
始時とは、気相のみで水素化処理触媒が昇温される場合
、原料油の種類や反応条件によって変化するが、ほぼ3
15〜350℃の温度である所定の水素化脱硫反応温度
へ昇温後に、原料浦を流入開始する時点を指すものであ
る。又、原料泊を流通しながら昇温する場合には、昇温
中に水素化脱硫反応が進行し始めるので、この反応が顕
著となる温度(約300℃)を水素化脱硫反応開始時点
とし、この時点で硫化水素の添加を終了することができ
る。
Further, the time for adding hydrogen sulfide in the present invention may be while the temperature of the hydrotreating catalyst is rising, that is, until the temperature of the reaction tower is rising to the reaction temperature. Suitably, the addition of hydrogen sulfide is started at a temperature of 0.degree. This is because when the hydrogen sulfide addition start temperature is below 150°C, the active metals contained will hardly interact with the added hydrogen sulfide, and once the hydrodesulfurization reaction starts, they will no longer release hydrogen sulfide. This is because there is no need to add it, and the sulfur content in the feedstock oil becomes hydrogen sulfide when desorbed and diffuses onto the surface of the hydrotreating catalyst. Here, the start time of the hydrodesulfurization reaction is approximately 30% when the temperature of the hydrotreating catalyst is raised only in the gas phase, although it varies depending on the type of feedstock oil and reaction conditions.
This refers to the point in time when the raw material port starts to flow after the temperature has been raised to a predetermined hydrodesulfurization reaction temperature of 15 to 350°C. In addition, when the temperature is increased while circulating the raw material, the hydrodesulfurization reaction begins to proceed during the temperature rise, so the temperature at which this reaction becomes noticeable (approximately 300 ° C.) is set as the starting point of the hydrodesulfurization reaction, At this point, the addition of hydrogen sulfide can be terminated.

昇温時に流通される硫化水素一水素混合ガスの硫化水素
濃度は、気相全圧の0.1vol%・〜30 vol%
であればよい。これは、硫化水素濃度が0.1vol%
未溝では、未硫化の活性金属が硫化させ得すに昇温され
るために初期活性が低下するからであり、逆に硫化水素
濃度が高くなるほど活性金属の硫化は完全なものとなる
が、多くとも30 vol%の濃度までとすることで十
分であり、これ以上の硫化水素の添加は無意味であり、
あまり硫化水素の割合が増すと、逆に水素分圧の減少に
伴ない、硫化剤の分解によって脱離すべき炭素質を水素
化処理触媒表面上に残留せしめることになり好ましくな
い?らである。
The hydrogen sulfide concentration of the hydrogen sulfide-hydrogen mixed gas flowing during temperature rise is 0.1 vol% to 30 vol% of the total gas phase pressure.
That's fine. This means that the hydrogen sulfide concentration is 0.1 vol%
This is because in an unsulfurized groove, the unsulfurized active metal can be sulfurized and the initial activity is lowered due to the increased temperature; conversely, the higher the hydrogen sulfide concentration, the more complete the sulfidation of the active metal is. It is sufficient to have a concentration of at most 30 vol%, and adding more hydrogen sulfide is meaningless.
If the proportion of hydrogen sulfide increases too much, the hydrogen partial pressure decreases, and carbonaceous matter that should be desorbed by the decomposition of the sulfurizing agent remains on the surface of the hydrotreating catalyst, which is undesirable. It is et al.

又、硫化水素一水素混合ガスの触媒層流通線速度は、2
0〜200 cyn/’Flrの範囲とするものであっ
て、これは、20■■■/’hr未満では、硫化剤の分
解に伴なう炭素質脱離に支障をきたすので好ましくなく
、逆に線速度は速くなるほど硫化度を損失せずに硫化剤
の分解を促進することができるが、200 cxn/’
hrで十分であり、これ以上の速度で流通させることは
無意味であるからである。
In addition, the linear velocity of the hydrogen sulfide-hydrogen mixed gas flowing through the catalyst layer is 2
The range is 0 to 200 cyn/'Flr, and if it is less than 20■■■/'hr, it is not preferable because it will interfere with the desorption of carbonaceous matter accompanying the decomposition of the sulfurizing agent, and vice versa. The higher the linear velocity, the faster the decomposition of the sulfiding agent can be without loss of sulfidity;
This is because hr is sufficient, and it is meaningless to circulate at a faster rate than this.

なお、硫化水素一水素混合ガスの全圧は、絶対圧■気圧
〜30気圧の範囲にすることが好ましく、活性化に際し
て必要とされる全圧が1気圧未満とは減圧下を意味し工
業的には現実的でなく不適当であり、全圧が30気圧を
超えることは、常川の設定圧力を超えるので装置の保全
上好ましくないものである。
In addition, the total pressure of the hydrogen sulfide-hydrogen mixed gas is preferably in the range of absolute pressure - 30 atm, and the total pressure required for activation is less than 1 atm, which means under reduced pressure and is not suitable for industrial use. It is unrealistic and inappropriate for the total pressure to exceed 30 atmospheres, and it is undesirable for the maintenance of the equipment because it exceeds the set pressure of Tsunekawa.

さらに、硫化水索一水素混合ガスの全圧及び流通速度は
、各製泊所で行なわれている常川の条件に咽して選定す
ることが可能である。
Further, the total pressure and flow rate of the sulfurized water line-hydrogen mixed gas can be selected depending on the conditions used at each manufacturing facility.

本発明の方法は、アルミナ、シリカーアルミナ、チタニ
アなどのような無機酸化物担体に、モリブデン、タング
ステンなどのような周期律表第6族金属とコバルトニッ
ケルなどのような周期律表第8族金属とを活性物質とし
て担持させ、さらに、前記特許公開公報記載のような有
機イオウ化合物を硫化剤として担持させた硫化物前駆体
型水素化処理触媒の活性化に有効に適用できるものであ
る。
The method of the present invention uses metals from group 6 of the periodic table such as molybdenum, tungsten, etc. and metals from group 8 of the periodic table such as cobalt nickel on inorganic oxide supports such as alumina, silica alumina, titania, etc. The present invention can be effectively applied to the activation of a sulfide precursor-type hydrogenation catalyst in which a metal is supported as an active substance and an organic sulfur compound as a sulfurizing agent as described in the above-mentioned patent publication.

又、本発明の方法では、硫化水素の供給が不可欠である
が、供給装置自体は複雑となることはなく、しかも、硫
化水素の添加は、水素化処理触媒の昇温時だけでよいの
で、活性化の時間が長くなることはなく、硫化水素添加
濃度は、前記範囲内であれば厳密に一定濃度に限定保持
する必要はない。したがって、本発明に使用する水素化
処理触媒の有する活性化の簡便さの利点を失なうことな
く、操業を開始することができるものである。
Furthermore, in the method of the present invention, it is essential to supply hydrogen sulfide, but the supply device itself is not complicated, and hydrogen sulfide only needs to be added when the temperature of the hydrotreating catalyst is raised. The activation time does not become long, and the concentration of hydrogen sulfide added does not need to be kept strictly constant as long as it is within the above range. Therefore, operations can be started without losing the advantage of the ease of activation of the hydrotreating catalyst used in the present invention.

(実施例) 次に、本発明の実施例を述べる。(Example) Next, examples of the present invention will be described.

実施例 ■ 1)水素化処理触媒の調製 三酸化モリブデン29.0g、炭酸コバルト12.5g
、85%正リン酸24.1g、85%メルカプト酢酸8
2.3gを添加して調製した水溶液を、140gの擬ベ
ーマイ1・(水酸化アルミニウム)と混練し、直径2M
の円筒型に成形した後、100’Cで18時間乾燥した
後、平均長さ3Bになるように整粒して水素化処理触媒
を調製した。
Example 1) Preparation of hydrogenation catalyst Molybdenum trioxide 29.0g, cobalt carbonate 12.5g
, 24.1 g of 85% orthophosphoric acid, 85% mercaptoacetic acid
The aqueous solution prepared by adding 2.3 g of aluminum hydroxide was kneaded with 140 g of pseudo-boehmy 1 (aluminum hydroxide), and the
After molding into a cylindrical shape, it was dried at 100'C for 18 hours, and then sized to have an average length of 3B to prepare a hydrogenation catalyst.

2)予備硫化活性化処理 1)で調製した水素化処理触媒を、直径1.5(7)の
反応管に15CCを充填して、これを流通系反応装置に
連結した。ついで、室温から330℃までの間、10 
vol%hS−h混合ガスを流通方向線速度150 a
n/′hr、かつ、30kg/’cx2−Gで流通しな
から昇温速度で330′Cまで昇温した。昇温に要した
時間は8時間であった。
2) Presulfurization Activation Treatment 15 CC of the hydrogenation catalyst prepared in 1) was filled into a reaction tube with a diameter of 1.5 (7), and this was connected to a flow system reactor. Then, from room temperature to 330°C,
vol%hS-h mixed gas at a linear velocity of 150 a in the flow direction
The temperature was raised to 330'C at a heating rate of n/'hr and 30kg/'cx2-G. The time required to raise the temperature was 8 hours.

3)水素化脱硫反応条件 通浦時空間速度(LI1SV) : 2 (hr−”)
水素圧力    : 30 ( kg/ an2−G)
水素流通方向線速度 :150((1)/’hr)反応
温度、時間   :48時間、330℃反応原料泊  
   :クウエート常圧軽泊(イオウ含有率:1.55
%) 4)水素化脱硫反応及び結果 2)項の活性化処理において、温度か330℃に達した
後、直ちに原料浦であるクウェート常圧軽油を流入し、
同時に、lI23−112混合ガスの供給を止め、水素
ガスに切換えて流通し、3)項に示した反応条件によっ
て水素化脱硫反応を行なった。
3) Hydrodesulfurization reaction conditions Tsuura time space velocity (LI1SV): 2 (hr-”)
Hydrogen pressure: 30 (kg/an2-G)
Hydrogen flow direction linear velocity: 150 ((1)/'hr) Reaction temperature, time: 48 hours, 330°C reaction raw material night
: Kuwait normal pressure light overnight (sulfur content: 1.55
%) 4) Hydrodesulfurization reaction and results In the activation treatment described in section 2), immediately after the temperature reached 330°C, Kuwait atmospheric gas oil, which is the raw material, was introduced.
At the same time, the supply of the lI23-112 mixed gas was stopped, the flow was switched to hydrogen gas, and a hydrodesulfurization reaction was carried out under the reaction conditions shown in section 3).

反応の結果、平均脱硫活性値は、反応次数1.75とし
て計算された速度測定値kn−1.75にして、10.
2て′あった。これは10 vo1%II2s−142
ガスて゛圧力30kg/’cm2−G,流通方向線速度
150 an/ilr、昇温時間20時間の条件で活性
化した後の水素化脱硫反応の速度定数10.0と較べて
、ほぼ同等であることが認められた。
As a result of the reaction, the average desulfurization activity value is 10.1, with the rate measurement value kn-1.75 calculated as reaction order 1.75.
There were two. This is 10 vo1% II2s-142
This is almost equivalent to the rate constant of 10.0 for the hydrodesulfurization reaction after activation under the conditions of gas pressure 30 kg/'cm2-G, linear velocity 150 an/ilr, and temperature rise time 20 hours. This was recognized.

実施例 2 実施例1−(1)と同様にして調製した水素化処理触媒
を使用して、昇温を一定速度(2.75゜C/′min
 )で昇温しながら活性化処理を行ない、330℃まで
昇温するのに20時間を要した以外は、実施例1−(2
)と同様に活性化処理を行ない、実施例1−(3)の条
件によって、実施例1−(4)と同様に水素化脱硫反応
を行なった。
Example 2 Using a hydrotreating catalyst prepared in the same manner as in Example 1-(1), the temperature was raised at a constant rate (2.75°C/'min).
Example 1-(2) except that the activation treatment was carried out while raising the temperature at
), and a hydrodesulfurization reaction was carried out in the same manner as in Example 1-(4) under the conditions of Example 1-(3).

反応の結果、平均脱硫活性値は、反応次数が1.75と
して計算された速度定数値にして、10. 0であった
As a result of the reaction, the average desulfurization activity value is 10. It was 0.

比較例 1 実施例1−(1)と同様にして調製した水素化処理触媒
を使用して、活性化処理を30kg7’(1)” −G
の加圧水素を使用した以外は、実施例1−(2)と同様
にして行なった。330℃までの昇温所要時は、8時間
であった。以後、実施例1−(3)の条件で水素化脱硫
反応を行なった。
Comparative Example 1 Using a hydrotreating catalyst prepared in the same manner as in Example 1-(1), activation treatment was carried out at 30 kg7'(1)''-G
The same procedure as in Example 1-(2) was carried out except that pressurized hydrogen of 100% was used. It took 8 hours to raise the temperature to 330°C. Thereafter, a hydrodesulfurization reaction was carried out under the conditions of Example 1-(3).

反応の結果、平均脱硫活性値は、反応次数を1.75と
して計算された反応速度定数kn= 1. 75が8.
2であった。
As a result of the reaction, the average desulfurization activity value was calculated using the reaction rate constant kn=1.75 as the reaction order. 75 is 8.
It was 2.

比較例 2 活性化処理における昇温に要した時間が20時間であっ
た以外は、比較例1と同様にして水素化脱硫反応を行な
った。
Comparative Example 2 A hydrodesulfurization reaction was carried out in the same manner as in Comparative Example 1, except that the time required to raise the temperature in the activation treatment was 20 hours.

反応の結果、平均脱硫活性値は、反応次数を1.75と
して計算された反応速度定数kn=1.75にして7.
5であった。
As a result of the reaction, the average desulfurization activity value is 7.5, with the reaction rate constant kn = 1.75 calculated with the reaction order being 1.75.
It was 5.

これらの結果から、本発明の方法によって活性化すれば
、活性化時の昇温速度は、脱硫活性に影響しないことが
示され、しかも、前記の実施例1、2で行なわれる活性
化の操作は、比較例■、2と較べても、硫化水素が添加
された点が異なるだけであって、操作方法が煩雑化する
ようなこともないことが認められた。
These results show that when activated by the method of the present invention, the temperature increase rate during activation does not affect the desulfurization activity, and moreover, the activation operation performed in Examples 1 and 2 above does not affect the desulfurization activity. Comparing Comparative Examples 1 and 2, the only difference was that hydrogen sulfide was added, and it was found that the operating method was not complicated.

(発明の効果〉 本発明は、硫化水索一水素混合ガスを使用して特定条件
で硫化物前駆体型水素化処理触媒を活性化するものであ
るから、活性化操作の簡便さを失なうことなく、かつ、
昇温速度によって初期活性が低下することがなく脱硫反
応を開始し得るものであって、顕著な効果が認められる
(Effects of the Invention) Since the present invention activates a sulfide precursor-type hydrotreating catalyst under specific conditions using a sulfide water-hydrogen mixed gas, the simplicity of the activation operation is lost. without, and
The desulfurization reaction can be started without decreasing the initial activity depending on the heating rate, and a remarkable effect is observed.

Claims (1)

【特許請求の範囲】[Claims] 1)無機酸化物担体に周期律表第6族金属と周期律表第
8族金属とを担持させた触媒に硫化剤を含有せしめて調
製された硫化物前駆体型水素化処理触媒を活性化する方
法において、少なくとも150℃から水素化脱硫開始時
点までの間、0.1vol%〜30vol%の硫化水素
を含有する硫化水素・水素混合ガスを、触媒層流通方向
線速度を20cm/hr以上として供給しながら活性化
することを特徴とする硫化物前駆体型水素化処理触媒の
活性化方法。
1) Activate a sulfide precursor-type hydrogenation catalyst prepared by incorporating a sulfiding agent into a catalyst in which a group 6 metal of the periodic table and a group 8 metal of the periodic table are supported on an inorganic oxide carrier. In the method, a hydrogen sulfide/hydrogen mixed gas containing 0.1 vol% to 30 vol% hydrogen sulfide is supplied at a linear velocity in the catalyst bed flow direction of 20 cm/hr or more from at least 150°C until the start of hydrodesulfurization. A method for activating a sulfide precursor-type hydrotreating catalyst, characterized by activating a sulfide precursor-type hydrotreating catalyst.
JP23517889A 1989-09-11 1989-09-11 Activation of sulfide precursor type hydrotreatment catalyst Pending JPH0398648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23517889A JPH0398648A (en) 1989-09-11 1989-09-11 Activation of sulfide precursor type hydrotreatment catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23517889A JPH0398648A (en) 1989-09-11 1989-09-11 Activation of sulfide precursor type hydrotreatment catalyst

Publications (1)

Publication Number Publication Date
JPH0398648A true JPH0398648A (en) 1991-04-24

Family

ID=16982222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23517889A Pending JPH0398648A (en) 1989-09-11 1989-09-11 Activation of sulfide precursor type hydrotreatment catalyst

Country Status (1)

Country Link
JP (1) JPH0398648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075830A (en) * 2004-09-08 2006-03-23 Inst Fr Petrole Process for sulfurizing hydrotreatment catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075830A (en) * 2004-09-08 2006-03-23 Inst Fr Petrole Process for sulfurizing hydrotreatment catalyst

Similar Documents

Publication Publication Date Title
JP3244692B2 (en) Method for producing catalyst for hydrotreating hydrocarbon oil
US5395812A (en) Silver catalyst for production of ethylene oxide and method for production of the catalyst
TWI329033B (en) Process for activating a hydrotreating catalyst
US6059956A (en) Off-site pretreatment of a hydrocarbon treatment catalyst
JP2006075830A5 (en)
JPH03217235A (en) Preparation and use of sulfidized catalyst
KR20120061853A (en) Concentrated solutions comprising group vi metal, group viii metal, and phosphorus
US5814293A (en) Catalyst for the selective oxidation of sulfur compounds to elemental sulfur, process for preparing such catalyst and process for the selective oxidation of sulfur compounds to elemental sulfur
KR20200034753A (en) Hydration catalyst using titanium-containing carrier and sulfur-containing organic additive
US3761397A (en) Sulfide precipitated catalysts
KR20030082547A (en) A new aluminum trihydroxide phase and catalysts made therefrom
JPH0398648A (en) Activation of sulfide precursor type hydrotreatment catalyst
JPS60209256A (en) Preparatory sulfurization of hydrocarbon treating catalyst
JP2936753B2 (en) Method for producing hydrotreating catalyst
JPH04166231A (en) Production of catalyst for hydrogenation treatment
JP4644351B2 (en) Metal compound-supported refractory inorganic oxide support and hydrotreating catalyst using the support
EP2723494B1 (en) Method of making a hydroprocessing catalyst
CN109777486B (en) Hydrocracking start-up method
JP2575168B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
JPH04166233A (en) Production of catalyst for hydrogenation treatment
JPH0427439A (en) Catalyst for hydrodesulfurization
JP2817622B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
WO2021122999A1 (en) A method for activating a catalytically active material
JPH04135643A (en) Pre-sulfiding type hydrogenation catalyst and its production
JP2817626B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof