JPH0398615A - Deodorizing device and its application - Google Patents

Deodorizing device and its application

Info

Publication number
JPH0398615A
JPH0398615A JP1233563A JP23356389A JPH0398615A JP H0398615 A JPH0398615 A JP H0398615A JP 1233563 A JP1233563 A JP 1233563A JP 23356389 A JP23356389 A JP 23356389A JP H0398615 A JPH0398615 A JP H0398615A
Authority
JP
Japan
Prior art keywords
odor
adsorption layer
deodorizing
gas
odor components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1233563A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawagoe
川越 博
Masaomi Tomomura
友村 政臣
Akira Kato
明 加藤
Hisao Yamashita
寿生 山下
Masae Kawashima
川島 正栄
Teruo Tsunoda
角田 照夫
Shoichi Kitahata
北畠 正一
Reiji Naka
礼司 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP1233563A priority Critical patent/JPH0398615A/en
Publication of JPH0398615A publication Critical patent/JPH0398615A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable an adsorption layer to be easily recycled without removal of the adsorption layer and improve its handling simplicity by installing an adsorption layer recycling device along with an odorous component adsorption layer of a deodorizing device. CONSTITUTION:A deodorizing device consists of the suction hole 2 which takes in a gas containing an odorous component to be deodorized, a discharged hole 7 which discharges the deodorized gas free from the odorous component, a flow path 8 which connects the suction hole 2 to the discharge hole 7 and a deodorizing device 4 which deodorizes the odorous component from a gas in the flow path 8. An odor adsorption layer 4b is arranged in the deodorizing device 4 to desorb the odorous component adsorbed by the adsorption layer 4b during the recycling of the adsorption layer 4b using a heating device 4e. Consequently, the adsorption layer can be easily recycled without removal of the adsorption layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気中の臭気成分を脱臭する脱臭装置およびそ
の用途に関する. 〔従来の技術〕 近年、空気清浄機、エアコン等の民生用機器または工場
の排ガス清浄機,し尿処理場の排気ガス等産業用機器か
ら排出される臭気が、問題にされている. ガス中に含まれる臭気成分を除去するための脱臭装置と
して,例えば集塵フィルタと脱臭フィルタとを有し、集
塵フィルタで除塵後、脱臭フィルタで脱臭するものがあ
る. 上記脱臭フィルタには、活性炭を化学処理した吸着剤を
用いて、臭気成分を化学吸着して脱臭するもの(特開昭
60−166020号)、臭気成分を活性炭と白金系合
金の触媒から或るフィルタを用いて,臭気を吸着後,該
フィルタを装置より取り出し、オーブン等によって加熱
し、吸着臭気を脱着,分解するもの(特開昭63−24
0923号)が知られている. 〔発明が解決しようとする課題〕 従来の脱臭フィルタは,吸着した臭気が飽和すると新し
いフィルタと交換するか、あるいは、フィルタを取り出
し加熱して臭気成分を脱着し、白金系触媒によって臭気
成分を分解するものである.前者は使い捨てであり、後
者のものは繰返し使用するものであるが、再生の都度、
装置から取り外すと云う手間がかかり,使い勝手が悪い
.また、臭気成分を脱着するために専用の加熱炉が必要
であると云う問題がある. 本発明の目的は,上記の問題が解決でき,フィルタの吸
着した臭気の脱着にフィルタを装置から取り外すことな
く、容易に行なうことができる脱臭装置およびこれを備
えた空調装置、空気清浄機を提供することにある. 〔課題を解決するための手段〕 本発明の要旨は、次のとおりである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a deodorizing device for deodorizing odor components in the air and its uses. [Prior Art] In recent years, odors emitted from consumer equipment such as air purifiers and air conditioners, and industrial equipment such as factory exhaust gas purifiers and human waste treatment plant exhaust gas have become a problem. Some deodorizing devices for removing odor components contained in gas include, for example, devices that have a dust collecting filter and a deodorizing filter, and after removing dust with the dust collecting filter, deodorizing is performed with the deodorizing filter. The above-mentioned deodorizing filters include those that chemically adsorb and deodorize odor components using an adsorbent obtained by chemically treating activated carbon (Japanese Patent Laid-Open No. 166020/1983); After adsorbing odors using a filter, the filter is removed from the device and heated in an oven or the like to desorb and decompose the adsorbed odors (Japanese Patent Laid-Open No. 63-24
No. 0923) is known. [Problem to be solved by the invention] With conventional deodorizing filters, when the adsorbed odors become saturated, the filter must be replaced with a new filter, or the filter must be removed and heated to desorb the odorous components, and then the odorous components can be decomposed using a platinum-based catalyst. It is something to do. The former is disposable, and the latter is reusable, but each time it is recycled,
It takes time and effort to remove it from the device, making it inconvenient to use. Another problem is that a dedicated heating furnace is required to desorb odor components. An object of the present invention is to provide a deodorizing device, an air conditioner, and an air purifier equipped with the deodorizing device, which can solve the above-mentioned problems and can easily remove and remove odor adsorbed by the filter without removing the filter from the device. It's about doing. [Means for Solving the Problems] The gist of the present invention is as follows.

脱臭すべき臭気成分を含む気体を取り入れる吸入口と、
前記臭気成分が脱臭された気体を吐出する吐出口と,前
記吸入口と吐出口を接続する流路と、該流路内に前記気
体中の臭気成分を脱臭する脱臭手段を有す脱臭装置にお
いて, 前記脱臭手段が臭気吸着層を有し、 前記吸着層の再生時に該吸着層に吸着された臭気成分を
脱着する加熱手段を有することを特徴とする脱臭装置、
および該脱臭装置を備えた空調装置、空気清浄機等にあ
る. 前記脱臭装置は、吸着層が臭気成分により飽和し,該臭
気が吸着されずに吐出した場合に、それを検出する臭気
センサを併設するのがよい.上記臭気センサによって、
吸着層の臭気成分を脱着再生するための加熱手段に信号
を送り,これを動作させて再生処理を行なう. 必要により、前記臭気センサの信号によって、臭気成分
を含む気体の吸入を阻止する遮断手段を動作し、吸入を
遮断することもできる.また、吸着層より脱着した臭気
を前記触媒層に接触して分解させる場合にも、臭気セン
サを設けることによって触媒層の加熱手段の作動,停止
の時期を制御することができる. 該臭気センサによって、再生処理による吸着層または触
媒層からの、脱着臭気または分解ガスの発生の有無を検
知し,吸着層の再生加熱手段を解除して、再び脱臭処理
を行なうこともできる。
an inlet that takes in gas containing odor components to be deodorized;
A deodorizing device comprising: a discharge port for discharging the gas from which the odor components have been deodorized; a flow path connecting the suction port and the discharge port; and a deodorization means for deodorizing the odor components in the gas within the flow path. , a deodorizing device characterized in that the deodorizing means has an odor adsorption layer, and a heating means for desorbing odor components adsorbed to the adsorption layer during regeneration of the adsorption layer,
and air conditioners, air purifiers, etc. equipped with the deodorizing device. The deodorizing device is preferably equipped with an odor sensor that detects when the adsorption layer is saturated with odor components and the odor is discharged without being absorbed. With the above odor sensor,
A signal is sent to the heating means to desorb and regenerate the odor components in the adsorption layer, and this is activated to perform the regeneration process. If necessary, a signal from the odor sensor can be used to operate a blocking means for preventing inhalation of gas containing odor components, thereby blocking inhalation. Further, even when odor desorbed from the adsorption layer is brought into contact with the catalyst layer and decomposed, by providing an odor sensor, it is possible to control when to start and stop the heating means for the catalyst layer. The odor sensor can detect whether or not desorbed odor or decomposed gas is generated from the adsorption layer or catalyst layer due to the regeneration process, and the regeneration heating means for the adsorption layer can be canceled to perform the deodorization process again.

臭気、特に室内空気中に含まれる臭気成分の吸着層とし
ては,吸着能が高い吸着剤、例えば、活性炭,ゼオライ
ト、アルミナ,シリカ、ジルコニア、チタニア、マグネ
シア等が使用できる.これら吸着層の形状は、粒状,板
、ハニカム状、三次元網目状等必要に応じて任意に選択
される。
As an adsorption layer for odors, especially odorous components contained in indoor air, adsorbents with high adsorption capacity, such as activated carbon, zeolite, alumina, silica, zirconia, titania, and magnesia, can be used. The shape of these adsorption layers can be arbitrarily selected as required, such as granular, plate, honeycomb, or three-dimensional mesh.

また、脱臭すべき臭気によっては、モレキュラシーブ等
を使用することができる. 吸着時の吸着層の温度は、一般に低温ほど好まし<40
℃未満がよい.40℃以上になると吸着能力が低下して
くる. 吸着層から臭気成分を脱着し再生するための加熱温度は
、高いほど効率的ではあるが,吸着層が変質しない40
〜300℃の範囲が好ましい.従って,吸着層を加熱す
る手段としては、上記の範囲で任意に制御できるものが
好ましい.上記吸着層の加熱手段とレては、吸着層自体
の通電加熱、ヒータによる加熱、赤外線照射による加熱
、あるいは加熱したガスによる加熱等特に限定するもの
ではないが、これらの脱着再生処理は脱臭装置内で吸着
層を取付けたまま処理できるようにする. 前記触媒層は、前記吸着層が再生時に脱着した臭気成分
の分解を助けるものである. こうした触媒としては、アルミナ、マグネシア、シリカ
、ジルコニア、カルシア、バリア,チタニア等の無機酸
化物の一種以上と,マンガン、コバルト,銅,銀、ニッ
ケル,鉄、白金族等の金属、金属酸化物の一種以上とか
ら構威される.前記触媒中、マンガン、コバルト、銅、
銀,ニッケル、鉄は、酸化物の形で全触媒重量当り1〜
30重量%、特に臭気濃度が高い場合は5重量%以上が
好ましい.また,30重量%よりも多くしてもそれ以上
の効果は得られない. 白金族は、金属の形で、全触媒重量当り 0.0 5〜
1重量%、特に臭気濃度が高い場合は0.1重量%以上
が好ましい.また、l重量%を超えると凝集し易くなり
、活性が低下する. これら触媒層の形状は、粒状,板状、ハニカム状、三次
元網目状等特に限定されない.また、触媒層は吸着層に
併設して設けるのが,吸着層の再生脱着処理と同時に臭
気成分の分解を行なうことができるので好ましい. 触媒層における脱着臭気成分の分解反応の温度は、40
〜300℃が好ましい.40℃未満では臭気成分の分解
が十分ではなく,また、300℃を超えると触媒自体の
劣化或いは分解が起る恐れがあるので好ましくない. 触媒量に対する処理ガスの吸入量は、触媒単位体積当り
Zoo−100,OOOh−”の範囲が望ましい. 前記臭気センサとしては、吸入ガスの種類および吸着臭
気成分によって選択する必要がある。
Also, depending on the odor to be deodorized, molecular sieves etc. can be used. Generally, the temperature of the adsorption layer during adsorption is preferably lower than <40°C.
Preferably less than ℃. At temperatures above 40°C, the adsorption capacity decreases. The higher the heating temperature for desorbing and regenerating odor components from the adsorption layer, the more efficient it is, but it is important to avoid deterioration of the adsorption layer40.
A range of 300°C to 300°C is preferable. Therefore, as a means for heating the adsorption layer, it is preferable to use a method that can be controlled arbitrarily within the above range. The means for heating the adsorption layer is not particularly limited, such as electrical heating of the adsorption layer itself, heating with a heater, heating with infrared irradiation, or heating with heated gas, but these desorption and regeneration treatments can be performed using a deodorizing device. This allows processing to be performed inside the chamber with the adsorption layer attached. The catalyst layer helps decompose the odor components desorbed by the adsorption layer during regeneration. Such catalysts include one or more inorganic oxides such as alumina, magnesia, silica, zirconia, calcia, barrier, and titania, and metals and metal oxides such as manganese, cobalt, copper, silver, nickel, iron, and platinum group. It consists of one or more types. In the catalyst, manganese, cobalt, copper,
Silver, nickel, and iron in the form of oxides range from 1 to 1 per total catalyst weight.
30% by weight, preferably 5% by weight or more when the odor concentration is particularly high. Further, even if the amount exceeds 30% by weight, no further effect can be obtained. Platinum group metals, in metal form, range from 0.05 to 0.05 per total catalyst weight.
1% by weight, preferably 0.1% by weight or more when the odor concentration is particularly high. Moreover, if it exceeds 1% by weight, it tends to aggregate and the activity decreases. The shape of these catalyst layers is not particularly limited, such as granular, plate-like, honeycomb-like, or three-dimensional network shape. Further, it is preferable to provide the catalyst layer in parallel with the adsorption layer, since it is possible to decompose odor components at the same time as the regeneration and desorption treatment of the adsorption layer. The temperature of the decomposition reaction of desorbed odor components in the catalyst layer is 40
~300°C is preferred. If the temperature is lower than 40°C, the odor components will not be sufficiently decomposed, and if the temperature exceeds 300°C, the catalyst itself may deteriorate or decompose, which is not preferable. The intake amount of the process gas relative to the catalyst amount is preferably in the range of Zoo-100, OOOh-'' per unit volume of catalyst. The odor sensor needs to be selected depending on the type of intake gas and the adsorbed odor components.

例えば,大気中のアセトアルデヒドを吸着する場合の臭
気センサとしては、SnO,からなる酸化物半導体を用
いることができる.アンモニア等を吸着する場合の臭気
センサとしては.ZnOと吸着媒体からなる圧電体セン
サが、また、NOX等の場合には,隔膜式ガラス電極セ
ンサが使用される。
For example, an oxide semiconductor made of SnO can be used as an odor sensor for adsorbing acetaldehyde in the atmosphere. As an odor sensor when adsorbing ammonia etc. A piezoelectric sensor consisting of ZnO and an adsorption medium is used, and a diaphragm type glass electrode sensor is used in the case of NOx, etc.

また、臭気センサの取り付け位置は、吸着層の近傍、あ
るいはガス吐出口など、臭気センサの構造、脱臭装置の
構造,ガスの流通方向等に応じて適当な個所に取付ける
ことができる. 上記臭気センサから取り出した信号は、前記脱臭装置の
それぞれ部分を動作させる制御手段に,プログラムされ
た電算機を介して制御信号として入力し、所定の制御を
行なうのがよい.【作用〕 本発明の脱臭装置は、吸着層を脱臭装置から着脱するこ
となく長期間使用することができるのは、臭気吸着層に
再生手段を併設したことにある.また,本発明の脱臭装
置が優れた脱臭性能を維持することができるのは,臭気
センサを用いることによって、吸着層の再生時期を正確
に判断できる点にある. 次に,本発明を実施例に基づき説明する.〔実施例 1
〕 第工図は、本発明の脱臭素子を備えた空気清浄機の縦断
面模式図、第2図は前記脱臭素子の分解斜視図である. (1)脱臭モード 臭気成分を含む室内空気1は吸入口(吸入グリル)2か
ら吸入されて、静電フィルタ3に導入される.該静電フ
ィルタ3には、放電電極と集塵電極が備えられており,
放@電極と集Ill電極に印加される数kVの直流電圧
により、コロナ放電が発生するようになっている. 導入空気中の塵埃は,上記コロナ放電によって負帯電さ
れ,正帯電させた集塵電極に吸引されて除塵される. 上記静電フィルタ3では取り除くことができなかった臭
気成分は,次の脱臭素子4に導入される.脱臭素子は第
2図に示すように、触媒層4aと吸着層4bとが、臭気
センサ4cを挾むようにして配置され、吸着層4bには
加熱用ヒータ4eが併設されている.加熱用ヒータ4e
は,加熱温度が100℃以下であり、ヒータとしては比
較的低温で、ガラスクロスでニクロム線をサンドイッチ
状に挾持したもので十分本発明の目的を達或することが
できる. また、吸着層4bの下流には臭気センサ4dが配置され
ている. 前記吸着層4bにより臭気成分が吸着され、再生清浄化
された空気は,吸排ファン5,ダクト8,風向板6によ
って吐出口7より吐出され、室内へ戻される構造となっ
ている. (2)再生モード 吸着WI4bが、前記臭気成分の吸着によって飽和する
と,臭気成分が吸着されずに吸着層を通って吐出し始め
る.これは,吸着層4bの下流に配置された臭気センサ
4dによって検知される.前記臭気センサからの信号は
、マイクロコンピュータを備えた制御手段(@示せず)
に送り、該信号と予め設定されたプログラムに基づき、
吸排ファン5が停止されて、臭気を含む室内空気の吸入
を遮断するとともに,加熱ヒータ4eが作動して前記吸
着層4bが加熱される. 加熱に伴って,吸着されていた臭気成分が吸着層から脱
着され、隣接して設けられた触媒層4aに導かれる. 触媒層4aは、吸着層4bから加熱脱着された臭気ガス
によって加熱されて活性化し、該臭気ガスを分解する.
分解されたガスは、空気吐出口、または吸入口を経て排
出される. また,分解ガスは必要に応じて水あるいは他の吸収手段
に吸収させてもよい. 吸着層4bでの脱着終了の判定は、臭気センサ4cによ
って検出され、その検出信号は前記制御手段9に送られ
て、再生モードが完了したと判断されると,制御手段か
らの指令によって、前記(1)の脱臭モードに切り換え
られる. 上記脱臭モードと再生モードを繰り返すことによって、
長期間の脱臭をメンテナンスフリーで、かつ効率的に行
なうことができる. なお、上記の吸着,脱着,分解の一連の操作は第3図の
フロー図に示すように、臭気センサとマイクロコンピュ
ータを備えた制御装置とを用いることによって自動化す
ることができる.〔実施例 2〕 次に、アルミナ触媒層に含浸させた活性触媒の臭気成分
であるアセトアルデヒドの分解性能の比較実験例につい
て説明する. アルミナ製のハニカム構造の触媒層(厚さ20mm t
 X 7 5mmX 1 5 0mm)を焼成し、該触
媒層に活性触媒として、Co,04を20重量%,Li
,0 を5重量%含浸した. 含浸方法は、Coa04とLi,Oを前記比率で混合し
て50重量%の水溶液とし、これを前記アルミナ触媒層
に含浸した.次いでこれを工50℃,2時間乾燥後.3
00℃で2時間焼成して触媒層を作成した. なお、前記活性触媒として第1表に示すものを用いて同
様に含浸し、5種の触媒層を作成した。
Furthermore, the odor sensor can be installed at an appropriate location, such as near the adsorption layer or the gas outlet, depending on the structure of the odor sensor, the structure of the deodorizing device, the direction of gas flow, etc. It is preferable that the signals taken out from the odor sensor are inputted as control signals via a programmed computer to the control means for operating the respective parts of the deodorizing device to perform predetermined control. [Function] The reason why the deodorizing device of the present invention can be used for a long period of time without having to remove the adsorption layer from the deodorizing device is that the odor adsorption layer is provided with a regenerating means. Furthermore, the reason why the deodorizing device of the present invention can maintain excellent deodorizing performance is that by using an odor sensor, it is possible to accurately determine when to regenerate the adsorption layer. Next, the present invention will be explained based on examples. [Example 1
] The first construction drawing is a schematic vertical cross-sectional view of an air cleaner equipped with the deodorizing element of the present invention, and FIG. 2 is an exploded perspective view of the deodorizing element. (1) Deodorizing mode Indoor air 1 containing odor components is taken in through an intake port (intake grille) 2 and introduced into an electrostatic filter 3. The electrostatic filter 3 is equipped with a discharge electrode and a dust collection electrode,
Corona discharge is generated by a DC voltage of several kV applied to the discharge @ electrode and the collector Ill electrode. The dust in the introduced air is negatively charged by the corona discharge, and is removed by being attracted to the positively charged dust collection electrode. Odor components that could not be removed by the electrostatic filter 3 are introduced into the next deodorizing element 4. As shown in FIG. 2, the deodorizing element has a catalyst layer 4a and an adsorption layer 4b arranged to sandwich an odor sensor 4c, and the adsorption layer 4b is provided with a heating heater 4e. Heating heater 4e
The heating temperature is 100° C. or lower, which is a relatively low temperature heater, and a nichrome wire sandwiched between glass cloth is sufficient to achieve the object of the present invention. Further, an odor sensor 4d is arranged downstream of the adsorption layer 4b. The odor components are adsorbed by the adsorption layer 4b, and the regenerated and purified air is discharged from the outlet 7 by the suction/exhaust fan 5, duct 8, and wind direction plate 6, and returned to the room. (2) Regeneration mode When the adsorption WI 4b is saturated by the adsorption of the odor components, the odor components are not adsorbed and begin to be discharged through the adsorption layer. This is detected by an odor sensor 4d placed downstream of the adsorption layer 4b. The signal from the odor sensor is transmitted to a control means (not shown) comprising a microcomputer.
and based on the signal and a preset program,
The suction/exhaust fan 5 is stopped to block the intake of odor-containing indoor air, and the heater 4e is activated to heat the adsorption layer 4b. With heating, the adsorbed odor components are desorbed from the adsorption layer and guided to the adjacent catalyst layer 4a. The catalyst layer 4a is heated and activated by the odorous gas thermally desorbed from the adsorption layer 4b, and decomposes the odorous gas.
The decomposed gas is exhausted through the air outlet or intake port. Additionally, cracked gases may be absorbed into water or other absorption means if necessary. Determination of completion of desorption in the adsorption layer 4b is detected by the odor sensor 4c, and the detection signal is sent to the control means 9. When it is determined that the regeneration mode is completed, the regeneration mode is determined by a command from the control means. Switches to deodorizing mode (1). By repeating the above deodorizing mode and regeneration mode,
Long-term deodorization can be performed maintenance-free and efficiently. The series of operations of adsorption, desorption, and decomposition described above can be automated by using a control device equipped with an odor sensor and a microcomputer, as shown in the flow diagram of FIG. [Example 2] Next, a comparative experimental example of the decomposition performance of acetaldehyde, which is an odor component, of an active catalyst impregnated into an alumina catalyst layer will be explained. Alumina honeycomb structure catalyst layer (thickness 20 mm)
x 7 5 mm x 1 50 mm), and 20% by weight of Co,04 and Li
, 0 was impregnated at 5% by weight. In the impregnation method, Coa04, Li, and O were mixed at the above ratio to form a 50% by weight aqueous solution, and this was impregnated into the alumina catalyst layer. This was then dried at 50°C for 2 hours. 3
A catalyst layer was created by firing at 00°C for 2 hours. Incidentally, five types of catalyst layers were prepared by impregnating in the same manner using the active catalysts shown in Table 1.

上記ハニカム形状の触媒層は、20mmX20mmX2
0mmの大きさに切断加工し、触媒試料とした. 第4図に示すように、上記の触媒試料11を,内径32
mmφ×長さ4 0 0 m mの石英耐熱ガラス製反
応管12内に設置した。
The honeycomb-shaped catalyst layer has a size of 20mm x 20mm x 2.
It was cut to a size of 0 mm and used as a catalyst sample. As shown in FIG. 4, the above catalyst sample 11 was
It was placed in a reaction tube 12 made of heat-resistant quartz glass and having a diameter of mmφ and a length of 400 mm.

該反応管外壁にはリボン状ヒータ(図示せず)を巻きつ
け加熱できるようにした. また、上記触媒試料l1の中央部には,該触媒層の温度
を測定できるよう熱電対13を取り付けた. 次に模擬ガスとして、アセトアルデヒド150ppmを
含む空気を調製し、反応管12内に通して、管の入口に
おけるアセトアルデヒドの濃度(Nin)と,出口にお
けるアセトアルデヒドの濃度(Nout)を測定し、次
式[I)により反応率Rを求めた. なお、上記において,模擬ガスの吸入速度は1000h
−”(触媒単位体積当りのガス供給量:ガス流量(n/
b)/触媒量(j2))とし,加熱温度は40℃で行な
った. 結果を第1表に示す. 第   1   表 C o3 04 + C u○,MnO,は20重量%
、Li20は5重量%、ptは0.1重量%配合?実施
例 3〕 前記実施例lの空気清浄機を用い、模擬ガスを用いて脱
臭試験を行なった. 第1図の空気清浄機の脱臭素子4として、ハニカム構造
のヒータ付き吸着層(活性炭吸着剤;20mrnX75
mmX150mm)と、触媒層(前記実施例2の第1表
No.1の活性触媒を含む;20mmX75mmX15
0mm)とをガラスクロス(厚さ0.5mmtX75m
mX150mm)2枚を介して上下に重ね,その中央部
にSnO■からなる半導体センサがサンドイッチされて
吸着層の上流側に配置されるように構或した。
A ribbon heater (not shown) was wrapped around the outer wall of the reaction tube to heat it. Furthermore, a thermocouple 13 was attached to the center of the catalyst sample 11 so as to measure the temperature of the catalyst layer. Next, prepare air containing 150 ppm of acetaldehyde as a simulated gas, pass it into the reaction tube 12, measure the acetaldehyde concentration (Nin) at the inlet of the tube, and the acetaldehyde concentration (Nout) at the outlet, and calculate the following equation [ The reaction rate R was determined using I). In addition, in the above, the suction speed of the simulated gas is 1000 h.
-” (gas supply amount per unit volume of catalyst: gas flow rate (n/
b)/catalyst amount (j2)), and the heating temperature was 40°C. The results are shown in Table 1. Table 1 Co3 04 + Cu○, MnO, is 20% by weight
, 5% by weight of Li20 and 0.1% by weight of PT? Example 3 Using the air cleaner of Example 1 above, a deodorization test was conducted using a simulated gas. As the deodorizing element 4 of the air purifier shown in FIG.
mm x 150 mm) and a catalyst layer (containing the active catalyst No. 1 in Table 1 of Example 2; 20 mm x 75 mm x 15
0mm) and glass cloth (thickness 0.5mmt x 75m)
The structure was such that two sheets (m x 150 mm) were stacked one on top of the other, and a semiconductor sensor made of SnO was sandwiched in the center thereof and placed on the upstream side of the adsorption layer.

さらに同じ型のセンサを吸着層の下流側にも配し,ほぼ
第2図に示すような構成の脱臭素子を作或した. これら2組のセンサおよび吸着層に取付けたヒータは、
それぞれマイクロコンピュータを備えた制御手段に接続
した. 上記の空気清浄機を運転して吸込みグリル2から,アセ
トアルデヒドを100ppm含む空気を吸入させた.吐
出口7に設けたガスサンプリングバッグにより吐出空気
を採取し、ガスクロマトグラフによりアセトアルデヒド
の濃度を分析した.また、吸着層の脱着,再生時に前記
触媒層の上流の空気も分析できるよう、脱臭素子4の上
流にガスサンプリングノズルを設けた. 運転の初期においては、吐出口7からの吐出空気中には
、ほとんどアセトアルデヒドは検出されなかった. 運転開始から5時間後になって,約1ppmのアセトア
ルデヒドが検出され、同時に吸着層下流に設けた臭気セ
ンサがアセトアルデヒドを感知し、その信号によって前
記制御手段によって吸排ファン5が停止した. 次いで吸着層に設けたヒータが動作し、吸着層が加熱さ
れ,再生モードが開始された.吸着層の加熱によって脱
着された前記臭気は約50℃に加熱され,煙突効果によ
り上昇し、吸着層の上部に設けられた前記触媒層を加熱
されてアセトアルデヒドが分解される。
Furthermore, the same type of sensor was placed on the downstream side of the adsorption layer to create a deodorizing element with a configuration similar to that shown in Figure 2. These two sets of sensors and the heater attached to the adsorption layer are
Each was connected to a control means equipped with a microcomputer. The above air purifier was operated to inhale air containing 100 ppm of acetaldehyde from the intake grille 2. The discharged air was sampled using a gas sampling bag provided at the discharge port 7, and the concentration of acetaldehyde was analyzed using a gas chromatograph. Furthermore, a gas sampling nozzle was provided upstream of the deodorizing element 4 so that the air upstream of the catalyst layer could also be analyzed during desorption and regeneration of the adsorption layer. At the beginning of operation, almost no acetaldehyde was detected in the air discharged from the discharge port 7. Five hours after the start of operation, about 1 ppm of acetaldehyde was detected, and at the same time, an odor sensor installed downstream of the adsorption layer detected acetaldehyde, and in response to that signal, the control means stopped the suction/exhaust fan 5. Next, the heater installed in the adsorption layer was activated, heating the adsorption layer and starting the regeneration mode. The odor desorbed by the heating of the adsorption layer is heated to about 50° C. and rises due to the chimney effect, and the catalyst layer provided above the adsorption layer is heated to decompose acetaldehyde.

加熱分解中に脱臭素子上部で採取した空気中のアセトア
ルデヒドを分析したところ,約4PPmであり、アセト
アルデヒドがほとんど分解されていることが分かる. 吸着層からのアセトアルデヒドの脱着は、約60分で終
了し、同時に触媒層と吸着層にサンドイッチ状に設置し
た前記臭気センサによって,加熱用ヒータの電流が遮断
され、ファンが回転を始め、脱臭モードが開始された。
When the acetaldehyde in the air collected at the top of the deodorizing element during thermal decomposition was analyzed, it was found to be approximately 4 PPm, indicating that most of the acetaldehyde had been decomposed. Desorption of acetaldehyde from the adsorption layer is completed in about 60 minutes, and at the same time, the odor sensor installed in a sandwich between the catalyst layer and the adsorption layer cuts off the current to the heater, the fan starts rotating, and the deodorization mode is activated. has been started.

前記の工程を約1カ月間繰返したが,触媒層および吸着
層とも特に異状はなく、優れた吸着,脱着性能を示した
. なお、本実施例においては、吸着層に吸着された臭気を
分解する触媒層を設けているが、脱着臭気を大気中に直
接放散できる,あるいは他の吸着手段(例えば水等に吸
収させる)を備えたものにおいては、前記の触媒層を設
けなくともよい.また,脱臭装置の構造によっては,前
記触媒層は別個に設けてもよいが、使い勝ってか良いと
云う点では、本実施例のような両者が一体の脱臭素子が
好ましい. 〔発明の効果〕 、脱臭装置の臭気成分吸着層に、吸着層再生手段を併設
したことによって、吸着層を取り外すことなく,該吸着
層を容易に再生することができるので,取扱性に優れた
脱臭装置を提供することができる.
The above process was repeated for about one month, but there were no particular abnormalities in the catalyst layer or adsorption layer, and excellent adsorption and desorption performance was exhibited. In this example, a catalyst layer is provided to decompose the odor adsorbed on the adsorption layer. In those equipped with the above-mentioned catalyst layer, it is not necessary to provide the above-mentioned catalyst layer. Further, depending on the structure of the deodorizing device, the catalyst layer may be provided separately, but from the standpoint of ease of use, a deodorizing element in which both are integrated as in this embodiment is preferable. [Effects of the invention] By providing an adsorption layer regeneration means to the odor component adsorption layer of the deodorizing device, the adsorption layer can be easily regenerated without removing the adsorption layer, resulting in excellent handling. We can provide deodorizing equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の脱臭素子を備えた空気清浄機の縦断
模式図、第2図は脱臭素子の分解斜視略図、第3図は本
発明の吸着,脱着の一連の操作を示すフロー図,第4図
は本発明の実施例の試験装置の断面図である. 1・・・室内空気、2・・・吸入口(吸入グリル),3
・・・静電フィルタ、4・・・脱臭素子、4a・・・触
媒層、4b・・・吸着層、4c,4c・・・臭気センサ
、4e・・・ヒータ、5・・・吸排ファン,6・・・風
向板,7・・・吐出口、8・・・ダクト、11・・・触
媒試料、l2・・・反応管、13・・・熱電対、14・
・・入口側バルブ,15・・・出口側バルブ,16・・
・石英砂、17・・・ガラスフィルタ.第1図 6 第2図 4e・・・・・・・・・・・・加熱用ヒータ第 3 図 第 4 図
Fig. 1 is a vertical cross-sectional schematic diagram of an air cleaner equipped with the deodorizing element of the present invention, Fig. 2 is a schematic exploded perspective view of the deodorizing element, and Fig. 3 is a flow diagram showing a series of operations for adsorption and desorption of the present invention. , FIG. 4 is a sectional view of a test device according to an embodiment of the present invention. 1... Indoor air, 2... Inlet (intake grill), 3
... Electrostatic filter, 4 ... Deodorizing element, 4a ... Catalyst layer, 4b ... Adsorption layer, 4c, 4c ... Odor sensor, 4e ... Heater, 5 ... Suction and exhaust fan, 6... Wind direction plate, 7... Discharge port, 8... Duct, 11... Catalyst sample, l2... Reaction tube, 13... Thermocouple, 14...
...Inlet side valve, 15...Outlet side valve, 16...
・Quartz sand, 17...Glass filter. Fig. 1 6 Fig. 2 4e Heating heater Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】 1、脱臭すべき臭気成分を含む気体を取り入れる吸入口
と、前記臭気成分が脱臭された気体を吐出する吐出口と
、前記吸入口と吐出口を接続する流路と、該流路内に前
記気体中の臭気成分を脱臭する脱臭手段を有す脱臭装置
において、前記脱臭手段が臭気吸着層を有し、 前記吸着層の再生時に該吸着層に吸着された臭気成分を
脱着する加熱手段を有することを特徴とする脱臭装置。 2、脱臭すべき臭気成分を含む気体を取り入れる吸入口
と、前記臭気成分が脱臭された気体を吐出する吐出口と
、前記吸入口と吐出口を接続する流路と、該流路内に前
記気体中の臭気成分を脱臭する脱臭手段を有す脱臭装置
において、前記脱臭手段が臭気吸着層と該臭気を分解す
る触媒層を有し、 前記吸着層の再生時に該吸着層に吸着された臭気成分を
脱着、分解する加熱手段を有することを特徴とする脱臭
装置。 3、脱臭すべき臭気成分を含む気体を取り入れる吸入口
と、前記臭気成分が脱臭された気体を吐出する吐出口と
、前記吸入口と吐出口を接続する流路と、該流路内に前
記気体中の臭気成分を脱臭する脱臭手段を有す脱臭装置
において、前記脱臭手段が臭気吸着層を有し、 前記吸着層の再生時に該吸着層に吸着された臭気成分を
脱着する加熱手段を有し、 前記吸着層の後段に該吸着層を通過した気体中の臭気成
分残存量を検出する臭気センサを有し、 前記臭気センサの検出結果に基づき前記吸着層の再生脱
着を行なう制御手段を有することを特徴とする脱臭装置
。 4、脱臭すべき臭気成分を含む気体を取り入れる吸入口
と、前記臭気成分が脱臭された気体を吐出する吐出口と
、前記吸入口と吐出口を接続する流路と、該流路内に前
記気体中の臭気成分を脱臭する脱臭手段を有す脱臭装置
において、前記脱臭手段が臭気吸着層と該臭気を分解す
る触媒層を有し、 前記吸着層の再生時に該吸着層に吸着された臭気成分を
脱着、分解する加熱手段を有し、前記吸着層の後段に該
吸着層を通過した気体中の臭気成分残存量を検出する臭
気センサを有し、 前記臭気センサの検出結果に基づき前記吸着層の再生脱
着を行なう制御手段を有することを特徴とする脱臭装置
。 5、室内空気を取り入れる吸入口と、吸入した室内空気
を吐出する吐出口と、前記室内空気を吸入吐出するファ
ンと、取り入れた室内空気の温度または/および湿度を
調節する調節手段を有する空調装置において、 前記吸入口と吐出口との間に取り入れた室内空気中の臭
気成分を脱臭する脱臭装置を有し、該脱臭装置は臭気吸
着層を有し、 前記吸着層の再生時に該吸着層に吸着された臭気成分を
脱着する加熱手段を設けたことを特徴とする空調装置。 6、室内空気を取り入れる吸入口と、吸入した室内空気
を吐出する吐出口と、前記室内空気を吸入吐出するファ
ンと、取り入れた室内空気中の塵埃を除去する塵埃除去
手段を有する空気清浄機において、 前記吸入口と吐出口との間に取り入れた室内空気中の臭
気成分を脱臭する脱臭装置を有し、該脱臭装置は臭気吸
着層を有し、 前記吸着層の再生時に該吸着層に吸着された臭気成分を
脱着する加熱手段を設けたことを特徴とする空気清浄機
。 7、室内の脱臭すべき臭気成分を含む空気を取り入れ、
前記臭気成分を吸着剤により吸着脱臭し、脱臭後の空気
を室内に戻す室内空気の清浄化方法において、 前記吸着剤の脱臭力が飽和したら空気の取 り入れを中断する工程、 前記臭気が飽和した脱臭剤を空気清浄装置 内で加熱して吸着されている臭気成分を脱着する工程、 加熱された前記脱着臭気により触媒を加熱 して活性化し、該臭気を分解する工程、 を含む室内空気の清浄化方法。
[Scope of Claims] 1. An inlet that takes in gas containing odor components to be deodorized, an outlet that discharges the gas from which the odor components have been deodorized, and a flow path that connects the inlet and outlet; In the deodorizing device having a deodorizing means for deodorizing the odor components in the gas in the flow path, the deodorizing means has an odor adsorption layer, and when the adsorption layer is regenerated, the odor components adsorbed by the adsorption layer are removed. A deodorizing device characterized by having a heating means for desorption. 2. An inlet for taking in gas containing odor components to be deodorized, an outlet for discharging the gas from which the odor components have been deodorized, a channel connecting the inlet and the outlet; A deodorizing device having a deodorizing means for deodorizing odor components in gas, wherein the deodorizing means has an odor adsorption layer and a catalyst layer for decomposing the odor, and when the adsorption layer is regenerated, the odor adsorbed by the adsorption layer is removed. A deodorizing device characterized by having heating means for desorbing and decomposing components. 3. An inlet for taking in gas containing odor components to be deodorized, an outlet for discharging the gas from which the odor components have been deodorized, a channel connecting the inlet and the outlet; A deodorizing device having a deodorizing means for deodorizing odor components in a gas, wherein the deodorizing means has an odor adsorption layer, and a heating means for desorbing the odor components adsorbed to the adsorption layer during regeneration of the adsorption layer. and an odor sensor that detects the amount of odor components remaining in the gas that has passed through the adsorption layer downstream of the adsorption layer, and a control means that performs regeneration and desorption of the adsorption layer based on the detection result of the odor sensor. A deodorizing device characterized by: 4. An inlet for taking in gas containing odor components to be deodorized, an outlet for discharging the gas from which the odor components have been deodorized, a channel connecting the inlet and the outlet; A deodorizing device having a deodorizing means for deodorizing odor components in gas, wherein the deodorizing means has an odor adsorption layer and a catalyst layer for decomposing the odor, and when the adsorption layer is regenerated, the odor adsorbed by the adsorption layer is removed. It has heating means for desorbing and decomposing the components, and it has an odor sensor downstream of the adsorption layer that detects the amount of odor components remaining in the gas that has passed through the adsorption layer, and the adsorption is performed based on the detection result of the odor sensor. A deodorizing device characterized by having a control means for regenerating and desorbing a layer. 5. An air conditioner having an inlet for taking in indoor air, an outlet for discharging the indoor air, a fan for inhaling and discharging the indoor air, and a regulating means for adjusting the temperature and/or humidity of the indoor air taken in. The deodorizing device includes a deodorizing device that deodorizes odor components in indoor air taken in between the inlet and the outlet, the deodorizing device has an odor adsorption layer, and when the adsorption layer is regenerated, the deodorization device deodorizes the odor components in the indoor air. An air conditioner characterized by being provided with heating means for desorbing adsorbed odor components. 6. In an air purifier having an inlet for taking in indoor air, an outlet for discharging the inhaled indoor air, a fan for inhaling and discharging the indoor air, and a dust removal means for removing dust from the inhaled indoor air. , a deodorizing device that deodorizes odor components in indoor air taken in between the inlet and the outlet; the deodorizing device has an odor adsorption layer; An air purifier characterized by being provided with heating means for desorbing odor components. 7. Intake air containing odor components that should be deodorized indoors,
In the indoor air purification method, the odor component is adsorbed and deodorized by an adsorbent, and the deodorized air is returned indoors, comprising: stopping the intake of air when the deodorizing power of the adsorbent is saturated; Purification of indoor air, comprising the steps of: heating the agent in an air purifying device to desorb the adsorbed odor components; and heating and activating a catalyst with the heated desorbed odor to decompose the odor. Method.
JP1233563A 1989-09-09 1989-09-09 Deodorizing device and its application Pending JPH0398615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233563A JPH0398615A (en) 1989-09-09 1989-09-09 Deodorizing device and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233563A JPH0398615A (en) 1989-09-09 1989-09-09 Deodorizing device and its application

Publications (1)

Publication Number Publication Date
JPH0398615A true JPH0398615A (en) 1991-04-24

Family

ID=16957031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233563A Pending JPH0398615A (en) 1989-09-09 1989-09-09 Deodorizing device and its application

Country Status (1)

Country Link
JP (1) JPH0398615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105122A (en) * 2005-10-11 2007-04-26 Fujitsu General Ltd Air cleaner
JP2007107807A (en) * 2005-10-13 2007-04-26 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105122A (en) * 2005-10-11 2007-04-26 Fujitsu General Ltd Air cleaner
JP4640096B2 (en) * 2005-10-11 2011-03-02 株式会社富士通ゼネラル Air cleaner
JP2007107807A (en) * 2005-10-13 2007-04-26 Matsushita Electric Ind Co Ltd Air conditioner

Similar Documents

Publication Publication Date Title
CN202270445U (en) Air filtering device
GB2426469A (en) Cabin air purifier
JP2002276999A (en) Air ventilating-cleaning device
JPH11221442A (en) Composite deodorizing and dust collecting filter
JPH0398615A (en) Deodorizing device and its application
JPH0368419A (en) Deodorizing device and air cleaner using it
JP2000217897A (en) Air purifying material and air purifying device using same
JP3918243B2 (en) Air conditioner with air purifying function
JP2003135582A (en) Air cleaner
JP6092733B2 (en) Equipment
KR0138712B1 (en) Deodorizing filter
JP2002177373A (en) Air cleaner
JP2003062055A (en) Air cleaner
JP2001070732A (en) Air cleaning apparatus, air cleaner and air conditioner
JPH10290923A (en) Air cleaner
JP4309162B2 (en) Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition
JP2001327585A (en) Deodorant body, dust collecting and deodorizing device using the same and method for using deodorant body
JP3804193B2 (en) Air conditioner with air purifying function
EP1775013B1 (en) Air conditioner using deodorising composition with cobalt oxide
CN209054697U (en) A kind of bidirectional flow central air handling system
JPH04126522A (en) Deodorizer
JPH0716579B2 (en) Deodorizer
JPH10314542A (en) Air cleaner
JP2000121162A (en) Fan heater with air cleaning function and deodorizing method
JP2001070733A (en) Air purification apparatus, air cleaning apparatus, and air conditioning apparatus