JPH0398476A - Lining member for ultrasonic wave driving motor, and ultrasonic wave driving motor using same - Google Patents

Lining member for ultrasonic wave driving motor, and ultrasonic wave driving motor using same

Info

Publication number
JPH0398476A
JPH0398476A JP1235064A JP23506489A JPH0398476A JP H0398476 A JPH0398476 A JP H0398476A JP 1235064 A JP1235064 A JP 1235064A JP 23506489 A JP23506489 A JP 23506489A JP H0398476 A JPH0398476 A JP H0398476A
Authority
JP
Japan
Prior art keywords
friction coefficient
section
dynamic friction
driving motor
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1235064A
Other languages
Japanese (ja)
Inventor
Seiji Kurozumi
誠治 黒住
Shigenori Uda
宇田 成徳
Masatake Hirai
平井 正丈
Takeo Kimura
木村 豪男
Nobuyuki Yamamoto
信幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Panasonic Holdings Corp
Original Assignee
Teijin Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd, Matsushita Electric Industrial Co Ltd filed Critical Teijin Ltd
Priority to JP1235064A priority Critical patent/JPH0398476A/en
Publication of JPH0398476A publication Critical patent/JPH0398476A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To provide abrasion resistance and eliminate the generation of noise by forming a lining member of substance having the continuous porosity of 3-40% and having the Rockwell M hardness and dynamic friction coefficient in a specific range. CONSTITUTION:An ultrasonic wave driving motor consists of a stator section 1 and a rotor section 2, and by oscillating the the oscillation amplifying section 5 which in the projected section of a driving body 4, the rotor section 2 is driven via a lining member 9. The lining member 9 is formed of material having the continuous porosity of 3-40%, and having he Rockwell M hardness of 20-110, the dynamic friction coefficient of 0.10-0.50, and 2 or less of the value of a static friction coefficient divided by the dynamic friction coefficient, e.g. a polyamide. As a result, the vertical oscillation of a stator is properly absorbed, and rotational component only can be effectively taken out.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えば超音波振動を駆動源として弾性体に共
振を起こさせその共振運動を回転運動に変換する超音波
駆動モータなどに用いられるライニング材に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a lining material used in, for example, an ultrasonic drive motor that uses ultrasonic vibration as a driving source to cause resonance in an elastic body and converts the resonance motion into rotational motion. It is related to.

従来の技術 圧電体振動を励振部として利用し、固体中に共振を起こ
させその振動を回転運動に変換する圧電体駆動モータ、
いわゆる超音波駆動モータは、その構造の単純さが大き
な特徴となっており、電子機器,カメラ,医療用機器な
どに広範な応用が見込まれている。しかし、超音波駆動
モータは、超音波振動を回転運動等に変換して用いるた
め、振動運動から回転運動等への変換部において、2種
の接触する媒質の摩擦が必ず生じる。摩擦による騒音を
防ぐためにロックウェルM硬度20〜8oの合成高分子
を用いる提案がなされている。〈特開昭62−2010
73号〉 発明が解決しようとする課題 上記のライニング材を使用すると、騒音の軽減はある程
度達成出来るものの、その硬度範囲の樹脂はゴム弾性体
か、ゴム弾性体とフェノール,エポキシ樹脂等の混合物
に限定され、かかる樹脂組成物では、摩耗量が大きく、
実用上の耐久性に問題がある。
Conventional technology A piezoelectric drive motor uses piezoelectric vibration as an excitation part to cause resonance in a solid body and convert the vibration into rotational motion.
The so-called ultrasonic drive motor is characterized by its simple structure, and is expected to have a wide range of applications such as electronic equipment, cameras, and medical equipment. However, since the ultrasonic drive motor converts ultrasonic vibration into rotational motion or the like, friction between the two contacting media inevitably occurs at the part where the vibrational motion is converted into rotational motion or the like. In order to prevent noise caused by friction, a proposal has been made to use a synthetic polymer having a Rockwell M hardness of 20 to 8o. 〈Unexamined Japanese Patent Publication No. 62-2010
No. 73> Problems to be Solved by the Invention Although noise reduction can be achieved to some extent by using the above-mentioned lining material, the resin in that hardness range is either a rubber elastic body or a mixture of a rubber elastic body and phenol, epoxy resin, etc. However, such resin compositions have a large amount of wear,
There is a problem with practical durability.

本発明はかかる欠点を解決すべく、耐摩耗性にすぐれ、
かつ騒音の発生がなく、高トルクを実現するライニング
材を提供することを目的とするものである。
In order to solve these drawbacks, the present invention has excellent wear resistance,
The object of the present invention is to provide a lining material that does not generate noise and achieves high torque.

課題を解決するための手段 前記課題を解決するために本発明の超音波駆動モータ用
ライニング材は、ロックウエルM硬度が20〜110で
、かつ動摩擦係数が0.10〜0.50、また、静摩擦
係数を動摩擦係数で除した地が2.0以下で、3〜40
%の空隙率を有する構成としたものである。
Means for Solving the Problems In order to solve the above problems, the lining material for an ultrasonic drive motor of the present invention has a Rockwell M hardness of 20 to 110, a dynamic friction coefficient of 0.10 to 0.50, and a static friction coefficient of 20 to 110. The coefficient divided by the dynamic friction coefficient is 2.0 or less, 3 to 40
% of the porosity.

作用 上記構成によれば、本・発明の超音波駆動モータ用ライ
ニング材は耐摩耗性がすぐれかつ摩擦係数が適度でいわ
ゆるスティックスリップ現象の起こりにくい、しかも硬
さおよび曲げ弾性係数も適度であり、高速時のしゅう動
音も軽減される。
Effects According to the above configuration, the lining material for an ultrasonic drive motor of the present invention has excellent wear resistance and a moderate coefficient of friction, making it difficult for the so-called stick-slip phenomenon to occur, and also having moderate hardness and bending elastic modulus. Sliding noise at high speeds is also reduced.

実施例 次に、本発明のライニング材を超音波駆動モータに用い
た実施例を第1図を参照にして説明する。
EXAMPLE Next, an example in which the lining material of the present invention is used in an ultrasonic drive motor will be described with reference to FIG.

基本的には超音波駆動モータは、ステータ部1およびロ
ータ部2より成り立っている。ステータ部1は、励振部
となる圧電体3および圧電体3を接着した鉄あるいは他
の金属材料より成る駆動体4より構成されている。いま
、圧電体3をN個に分極し、それぞれ隣り合う電極に+
,−の電界を印加することにより、第2図のように圧電
体3と駆動体4を張り合わせた部分の円盤の中心から一
定半径部にあるリング状の最大変形部は第3図のように
リング全体が波打った振動を行い、駆動体4の最大変形
部に設けられた突出部である振動増幅部5を振動させる
ことにより振動増幅部5に接触するライニング材9を介
してロータ部2を駆動する。尚、第1図において、6は
ステータ支持部、7はステータ固定台、8はロータ部2
のシャフト、10は軸受、11は皿バネ12を介してシ
ャフト8に螺合されステータ部1とロータ部2を所定の
圧力で接触させるナットである。
Basically, an ultrasonic drive motor consists of a stator section 1 and a rotor section 2. The stator section 1 is composed of a piezoelectric body 3 serving as an excitation section and a driving body 4 made of iron or other metal material to which the piezoelectric body 3 is bonded. Now, the piezoelectric body 3 is polarized into N pieces, and each adjacent electrode has +
By applying an electric field of , -, the ring-shaped maximum deformation part located at a certain radius from the center of the disk where the piezoelectric body 3 and driving body 4 are bonded together as shown in Fig. 3 becomes as shown in Fig. 3. The entire ring vibrates in a wavy manner, vibrating the vibration amplification section 5, which is a protrusion provided at the maximum deformation section of the drive body 4, and thereby causing the rotor section 2 to vibrate through the lining material 9 that contacts the vibration amplification section 5. to drive. In FIG. 1, 6 is a stator support part, 7 is a stator fixing base, and 8 is a rotor part 2.
10 is a bearing, and 11 is a nut that is screwed onto the shaft 8 via a disc spring 12 and brings the stator section 1 and rotor section 2 into contact with each other under a predetermined pressure.

このモータの駆動原理を説明すると、ステータ部1の圧
電体3に電圧を印加することにより鉄等よりなる駆動体
4の振動増幅部5を振動させる。
To explain the driving principle of this motor, by applying a voltage to the piezoelectric body 3 of the stator section 1, the vibration amplifying section 5 of the driving body 4 made of iron or the like is vibrated.

この振動増幅一部5は軸方向および周方向の振動成分を
もち、振動増幅部5の各部は楕円軌跡を描く振動を生し
る。そのとき振動増幅部5にロータ部2の従動面に設け
たライニング材9を接触させるとロータ部2は軸方向成
分を吸収し周方向成分により一方向に回転する。ロータ
部2の回転を外部、に取り出すことにより超音波駆動モ
ータが実現する。
This vibration amplification part 5 has vibration components in the axial direction and the circumferential direction, and each part of the vibration amplification part 5 produces vibrations that describe an elliptical locus. At this time, when the lining material 9 provided on the driven surface of the rotor section 2 is brought into contact with the vibration amplifying section 5, the rotor section 2 absorbs the axial component and rotates in one direction due to the circumferential component. An ultrasonic drive motor is realized by extracting the rotation of the rotor section 2 to the outside.

本発明はこのような超音波駆動モータにおいて、ステー
タ部1の振動増幅部5と従動面即ち、ライニング材9の
材料の組合わせが重要なことを見いたしたもので、ステ
ータの上下振動を適度に吸収して回転戒分のみを有効に
取り出すことが出来るようにライニング材中に3%〜4
0%の空隙率を持つ様に工夫してある。空隙率が3%よ
り小さいと振動吸収能が小さく、騒音の発生を引き起こ
す。
The present invention is based on the recognition that in such an ultrasonic drive motor, the combination of materials of the vibration amplifying part 5 of the stator part 1 and the driven surface, that is, the lining material 9, is important, and it is possible to moderate the vertical vibration of the stator. The lining material contains 3% to 4% of
It has been devised to have a porosity of 0%. If the porosity is less than 3%, the vibration absorbing ability will be low and noise will be generated.

又、空隙率が40%より大きいとモータトルクの低下が
著しくかつモータロツク特性が悪化する。
On the other hand, if the porosity is greater than 40%, the motor torque will drop significantly and the motor locking characteristics will deteriorate.

モータロック特性とは、モータ停止状態で長期間放置し
た時,振動増幅部がライニング材に食い込みモータの起
動が出来なくなる事である。空隙によるクッション効果
により本発明のライニング材はロックウェルM硬度11
0以下の広い硬度範囲で騒音の発生がない。ロックウェ
ルM硬度が20以下となると、トルク特性及びモータロ
ック特性が悪化する。
The motor lock characteristic means that when the motor is left in a stopped state for a long period of time, the vibration amplification section bites into the lining material, making it impossible to start the motor. Due to the cushioning effect of the voids, the lining material of the present invention has a Rockwell M hardness of 11.
No noise is generated over a wide hardness range of 0 or less. When the Rockwell M hardness is 20 or less, torque characteristics and motor lock characteristics deteriorate.

更に高いモータトルクを実現するためには、動摩擦係数
が0.1以上必要である。しかしながら、動摩擦係数が
0.5を超えると摩耗量が大きくなり実用にたえない。
In order to achieve even higher motor torque, a dynamic friction coefficient of 0.1 or more is required. However, if the coefficient of dynamic friction exceeds 0.5, the amount of wear increases, making it impractical.

又、静摩擦係数と動摩擦係数の比が2。O以上になると
、スティックスリップ現象を起こしモータの回転むらを
生じる。
Also, the ratio of static friction coefficient to dynamic friction coefficient is 2. If the temperature exceeds 0, a stick-slip phenomenon occurs, causing uneven rotation of the motor.

次に本発明のライニング材の製法は、繊維,パルブ,粒
子を水中に分散させ、その水系スラリーから紙を抄造し
、得られた紙を積層し熱圧プレスする方法、融点の異な
る2種類以上の繊維から成る不織布あるいはフェルトを
低融点戒分が変形可能な温度で熱圧プレスする方法、あ
るいは融点の異なる2種以上の粉末を混合し低融点成分
が変形可能な温度で熱圧プレスする方法などがあるが、
この方法に限定されるものではない。
Next, the manufacturing method of the lining material of the present invention involves dispersing fibers, pulp, and particles in water, making paper from the aqueous slurry, laminating the obtained paper and hot-pressing it, and using two or more types with different melting points. A method of hot-pressing a nonwoven fabric or felt made of fibers at a temperature that allows the low-melting component to be deformed, or a method of mixing two or more powders with different melting points and hot-pressing the mixture at a temperature that allows the low-melting point component to deform. etc., but
The method is not limited to this method.

本発明のライニング材は、空隙を有するためにしゅう動
によって生じる熱の放散が悪化する。それゆえに素材と
しては、耐熱性の良いものが適当である。
Since the lining material of the present invention has voids, the dissipation of heat generated by sliding becomes worse. Therefore, materials with good heat resistance are appropriate.

ここで、有機およびもしくは無機耐熱素材として特定は
しないが、有機耐熱素材として、ポリイミド,ポリエー
テルエーテルケトン,ボリスルホン,ボリフェニレンス
ルファイド.ポリオキシベンジレン,ボリフェニレンオ
キシド,ポリエーテルスルホン,ポリアリレート,ポリ
エーテルイミド,ビスマレイミドトリアジン樹脂,ポリ
アミドイミノ,ボリアミノビスマレイミド,ボリブチレ
ンテレフタレート,ポリエチレンテレフタレート,ポリ
カーボネイト,ポリアセタール,ボリアミド,エボキシ
樹脂,フェノール樹脂,不飽和ポリエステル,ジアリル
フタレート樹脂,シリコーン樹脂,フッ素樹脂,ABS
樹脂,高分子量ポリエチレン,アクリル樹脂、ポリウレ
タン,フラン樹脂,メラミン樹脂,ユリア樹脂などが挙
げられる。
Although not specified as organic and/or inorganic heat-resistant materials, examples of organic heat-resistant materials include polyimide, polyether ether ketone, boris sulfone, and polyphenylene sulfide. Polyoxybenzylene, polyphenylene oxide, polyether sulfone, polyarylate, polyetherimide, bismaleimide triazine resin, polyamideimino, polyamino bismaleimide, polybutylene terephthalate, polyethylene terephthalate, polycarbonate, polyacetal, polyamide, epoxy resin, phenol Resin, unsaturated polyester, diallyl phthalate resin, silicone resin, fluororesin, ABS
Examples include resin, high molecular weight polyethylene, acrylic resin, polyurethane, furan resin, melamine resin, urea resin, and the like.

また、無機耐熱素材として、ガラス繊維(チョップドス
トランド,ガラスウール,ミルドファイバー等)、カオ
リン繊維,アルミナ繊維,シリカ繊維,シリカ.アルミ
ナ繊維,ロックウール繊維,酸化チタン繊維,チタン酸
カリウム繊維,ボーキサイト繊維,カヤナイト繊維,ホ
ウ素系繊維,石膏の針状結晶,マグネシア繊維,金属繊
維(鉄系,黄銅,ステンレス,銅など)、ドロマイト粉
末,ドーソナイト(繊維状,粉状),珪酸カルシウム(
繊維状,粉状),石膏粉末,カオリン粉末,タルク,雲
母、酸化マグネシウムおよびもしくは水酸化マグネシウ
ム,ガラス粉末,金属粉末,シリ力粉末,アルミナ粉末
,じや紋石粉末,バライト粉末,氷晶石粉末,炭酸カル
シウム等が挙げられる。
In addition, as inorganic heat-resistant materials, glass fiber (chopped strand, glass wool, milled fiber, etc.), kaolin fiber, alumina fiber, silica fiber, silica. Alumina fiber, rock wool fiber, titanium oxide fiber, potassium titanate fiber, bauxite fiber, kyanite fiber, boron-based fiber, gypsum needle crystal, magnesia fiber, metal fiber (iron-based, brass, stainless steel, copper, etc.), dolomite Powder, dawsonite (fibrous, powder), calcium silicate (
fibrous, powder), gypsum powder, kaolin powder, talc, mica, magnesium oxide and/or magnesium hydroxide, glass powder, metal powder, silicate powder, alumina powder, jadeite powder, barite powder, cryolite Examples include powder, calcium carbonate, etc.

また、摩擦調整材のために固体潤滑材として、黒鉛,二
硫化モリブデン,二硫化タングテスン,窒化ホウ素,フ
ッ化黒鉛,金属酸化物(一酸化鉛,三酸化モリブデン,
三酸化二コバルト,酸化亜鉛,酸化錫,酸化鋼,酸化カ
ドミウム,三酸化タングステン,三酸化二ランタン,四
酸化三鉄等)、金属フッ化物(フッ化カルシウム,フッ
化バリウム,フッ化リチウム,フッ化ナトリウム等〉、
窒化珪素、フッ素樹脂等を混合してもよい。
In addition, graphite, molybdenum disulfide, tungsten disulfide, boron nitride, graphite fluoride, metal oxides (lead monoxide, molybdenum trioxide,
Cobalt trioxide, zinc oxide, tin oxide, steel oxide, cadmium oxide, tungsten trioxide, dilanthanum trioxide, triiron tetroxide, etc.), metal fluorides (calcium fluoride, barium fluoride, lithium fluoride, fluoride, etc.) sodium chloride, etc.
Silicon nitride, fluororesin, etc. may be mixed.

第1表に種々の方法で作成したライニング材の特性を示
した。表中、ロックウェルM硬度はJIS K 7 2
 0 2に規定される方法で側定し、摩擦係数はロック
ウェルCスケール硬度62、表面粗さ2Sの焼入れ鋼の
表面を2 cm X 2 cmの平面を有する試料に6
50gの荷重を加え、5m/winの速度で移動させて
測定したものである。
Table 1 shows the properties of lining materials prepared by various methods. In the table, Rockwell M hardness is JIS K 7 2
The coefficient of friction was determined by the method specified in 0.2, and the friction coefficient was measured by applying a hardened steel surface with a Rockwell C scale hardness of 62 and a surface roughness of 2S to a sample with a 2 cm x 2 cm flat surface.
The measurement was carried out by applying a load of 50 g and moving at a speed of 5 m/win.

空隙率は試料の見掛け比重と試料を構戒する素材の比重
とを比較し算出したものである。
The porosity is calculated by comparing the apparent specific gravity of the sample with the specific gravity of the material surrounding the sample.

第1表に示されるライニング材を超音波駆動モータに取
りつけ実験をおこなった。使用した圧電セラミックの特
性は第2表に示すものを使用し、モータは第3表に示す
ものを使用した。その結果を第4表に示す。
An experiment was conducted by attaching the lining materials shown in Table 1 to an ultrasonic drive motor. The properties of the piezoelectric ceramic used are shown in Table 2, and the motor shown in Table 3 was used. The results are shown in Table 4.

第4表中、摩耗量は50rpmで5 0 0 8r駆動
後のライニング材の厚みを測定し、初期値と比較したも
のである。運転音は50rpmで運転時モータより4 
cra If!れた位置にマイクロホンを設置し測定し
た音圧レベルである。また、起動トルクとは通電時の最
大トルクであり、低速回転むらは0.5〜lrpm運転
時の回転がスムーズであるかどうか目視判定した。
In Table 4, the amount of wear is determined by measuring the thickness of the lining material after driving for 5008 hours at 50 rpm and comparing it with the initial value. The operating noise is 50rpm and the motor makes 4.
Cra If! This is the sound pressure level measured with a microphone installed at a certain position. In addition, the starting torque is the maximum torque when energized, and low-speed rotation unevenness was visually determined to see if the rotation was smooth during operation at 0.5 to 1 rpm.

(以 下 余 白〉 第2表 第4表 発明の効果 第4表の結果より、3〜40%の連続空隙を持ち曲げ弾
性率が150〜4 0 0kg/m−であり、かつ動摩
擦係数が0.10〜0.50であり、静摩擦係数を動摩
擦係数で除した値が2.0以下である3〜40%の空孔
を有するライニング材を装備したことを特徴とした超音
波駆動モータは耐久性があり、運転音が静かで、かつ、
高トルクで安定した回転が可能である。モータロック特
性も十分であり実用上のモータとして極めて有用である
(Left below) Table 2 Table 4 Effect of the Invention From the results in Table 4, it is clear that the material has a continuous void of 3 to 40%, a bending modulus of elasticity of 150 to 400 kg/m-, and a coefficient of dynamic friction. An ultrasonic drive motor is characterized in that it is equipped with a lining material having 3 to 40% pores with a value of 0.10 to 0.50 and a value obtained by dividing the static friction coefficient by the kinetic friction coefficient of 2.0 or less. Durable, quiet operation, and
Stable rotation with high torque is possible. It also has sufficient motor locking characteristics and is extremely useful as a practical motor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の超音波駆動モータの断面図
、第2図,第3図は同モータにおけるステータ部の振動
状態を示す断面図である。 1・・・・・・ステータ部、2・・・・・・ロータ部、
3・・・・・・圧電体、4・・・・・・駆動体、5・・
・・・・振動増幅部、9・・・・・・ライニング材。
FIG. 1 is a cross-sectional view of an ultrasonic drive motor according to an embodiment of the present invention, and FIGS. 2 and 3 are cross-sectional views showing the vibration state of a stator portion of the same motor. 1... Stator part, 2... Rotor part,
3... Piezoelectric body, 4... Drive body, 5...
... Vibration amplification section, 9 ... Lining material.

Claims (2)

【特許請求の範囲】[Claims] (1)ロックウェルM硬度が20〜110であり、かつ
動摩擦係数が0.10〜0.50であり、静摩擦係数を
動摩擦係数で除した値が2.0以下である3〜40%の
空隙率を有する超音波駆動モータ用ライニング材。
(1) 3 to 40% voids with a Rockwell M hardness of 20 to 110, a dynamic friction coefficient of 0.10 to 0.50, and a value obtained by dividing the static friction coefficient by the dynamic friction coefficient of 2.0 or less Lining material for ultrasonic drive motors with a
(2)振動成分をもつ励振部を有すると共に耐摩耗性か
つ靭性を有する駆動面を形成したステータ部と、前記駆
動面よりも柔らかくしかも耐摩耗性を有する従動面を前
記駆動面に接触させたロータ部とを備えた超音波駆動モ
ータにおいて、前記従動面にロックウェルM硬度が20
〜110であり、かつ動摩擦係数が0.10〜0.50
であり、静摩擦係数を動摩擦係数で除した値が2.0以
下である3〜40%の空隙率を有するライニングを装備
した超音波駆動モータ。
(2) A stator portion having an excitation portion having a vibration component and forming a drive surface having wear resistance and toughness, and a driven surface that is softer than the drive surface and has wear resistance in contact with the drive surface. In an ultrasonic drive motor having a rotor portion, the driven surface has a Rockwell M hardness of 20
~110 and a dynamic friction coefficient of 0.10 to 0.50
An ultrasonic drive motor equipped with a lining having a porosity of 3 to 40% and a value obtained by dividing a static friction coefficient by a dynamic friction coefficient of 2.0 or less.
JP1235064A 1989-09-11 1989-09-11 Lining member for ultrasonic wave driving motor, and ultrasonic wave driving motor using same Pending JPH0398476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235064A JPH0398476A (en) 1989-09-11 1989-09-11 Lining member for ultrasonic wave driving motor, and ultrasonic wave driving motor using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235064A JPH0398476A (en) 1989-09-11 1989-09-11 Lining member for ultrasonic wave driving motor, and ultrasonic wave driving motor using same

Publications (1)

Publication Number Publication Date
JPH0398476A true JPH0398476A (en) 1991-04-24

Family

ID=16980539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235064A Pending JPH0398476A (en) 1989-09-11 1989-09-11 Lining member for ultrasonic wave driving motor, and ultrasonic wave driving motor using same

Country Status (1)

Country Link
JP (1) JPH0398476A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253182A (en) * 1985-08-29 1987-03-07 Marcon Electronics Co Ltd Ultrasonic motor
JPS6426375A (en) * 1987-07-21 1989-01-27 Matsushita Electric Ind Co Ltd Lining material and ultrasonic driving motor using the lining material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253182A (en) * 1985-08-29 1987-03-07 Marcon Electronics Co Ltd Ultrasonic motor
JPS6426375A (en) * 1987-07-21 1989-01-27 Matsushita Electric Ind Co Ltd Lining material and ultrasonic driving motor using the lining material

Similar Documents

Publication Publication Date Title
JP2568564B2 (en) Lining material and ultrasonic drive motor using the lining material
Rehbein et al. Friction and wear behaviour of polymer/steel and alumina/alumina under high-frequency fretting conditions
US6463642B1 (en) Method of manufacturing a vibration type driving apparatus
Adachi et al. The micro-mechanism of friction drive with ultrasonic wave
JPH1042579A (en) Oscillatory wave motor
JPS6022479A (en) Stator of surface wave motor and improvement in movable element
Qiu et al. Tribological performance of ceramics in lubricated ultrasonic motors
JPS60200778A (en) Supersonic drive motor
JPH0532991B2 (en)
JPH01270776A (en) Moving body of ultrasonic motor
JPH0398476A (en) Lining member for ultrasonic wave driving motor, and ultrasonic wave driving motor using same
KR101531268B1 (en) Ultrasonic motor having lightweight vibrating element
Friend et al. A single-element tuning fork piezoelectric linear actuator
JPS62114481A (en) Ultrasonic motor
JPS61185081A (en) Drive device
JPH11172123A (en) Friction material for oscillatory wave motor, oscillatory wave motor and equipment using the same
JPS62114480A (en) Ultrasonic motor
JP2690101B2 (en) Lining material and ultrasonic drive motor using the lining material
JP2774613B2 (en) Ultrasonic motor
JPH06233567A (en) Vibrating motor
JPH01248975A (en) Ultrasonic-wave motor
JPH01238473A (en) Lining material and ultrasonic drive motor using the same material
Ding et al. Effect of hardness of frictional materials on properties of ultrasonic motors
JPH0279782A (en) Ultrasonic wave motor
JPH09191672A (en) Oscillation wave driver