JPH11172123A - Friction material for oscillatory wave motor, oscillatory wave motor and equipment using the same - Google Patents

Friction material for oscillatory wave motor, oscillatory wave motor and equipment using the same

Info

Publication number
JPH11172123A
JPH11172123A JP9362371A JP36237197A JPH11172123A JP H11172123 A JPH11172123 A JP H11172123A JP 9362371 A JP9362371 A JP 9362371A JP 36237197 A JP36237197 A JP 36237197A JP H11172123 A JPH11172123 A JP H11172123A
Authority
JP
Japan
Prior art keywords
wave motor
friction material
vibration wave
friction
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9362371A
Other languages
Japanese (ja)
Inventor
Yutaka Maruyama
裕 丸山
Takashi Kai
丘 甲斐
Ichiro Chiba
一郎 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9362371A priority Critical patent/JPH11172123A/en
Priority to US09/162,378 priority patent/US6463642B1/en
Publication of JPH11172123A publication Critical patent/JPH11172123A/en
Priority to US09/729,701 priority patent/US20010000940A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject friction material comprising a specific resin composition, used in a friction contact part of an oscillating body for forming oscillatory waves in an oscillatory wave motor and a contact body brought into friction contact with the oscillatory body and relatively moving with the oscillatory body by the oscillation and useful for the oscillatory wave motor and equipment. SOLUTION: This friction material is used in a friction contact part of an oscillatory body for forming oscillatory waves in an oscillatory wave motor, and a contact body brought into friction contact with the oscillatory body and relatively moving with the oscillatory body by the oscillation comprises a resin composition containing a heat-resistant resin (preferably a fluororesin or a polyimide resin) and mesophase pitch-based carbon fibers. The mesophase pitch-based carbon fibers are carbonaceous and preferably comprise staple fibers. The content of the mesophase pitch-based carbon fibers in the resin composition is preferably 10-30 wt.%. At least one of molybdenum disulfide and a polyimide powder is preferably contained in the resin composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、振動波モータ用摩
擦材、それを用いた振動波モータおよび機器に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a friction material for a vibration wave motor, a vibration wave motor and a device using the same.

【0002】[0002]

【従来の技術】一般に振動波モータは、振動体の表面粒
子に円又は楕円運動を起こさせ、これに押圧された接触
体を摩擦駆動するものである。
2. Description of the Related Art In general, a vibration wave motor causes a surface particle of a vibrating body to make a circular or elliptical motion, and frictionally drives a contact body pressed by the particle.

【0003】進行性振動波を利用した振動波モータの原
理的概要は下記のようである。全長がある長さλの整数
倍であるような金属等の弾性体材料でリング状に形成さ
れた弾性体の片面に、周方向に配列された二群の複数個
の圧電素子を接着したものを振動体(ステータ)とす
る。
The principle outline of a vibration wave motor using a traveling vibration wave is as follows. A ring-shaped elastic body made of an elastic material such as metal whose total length is an integral multiple of a certain length λ, and two groups of multiple piezoelectric elements arranged in the circumferential direction bonded to one surface of an elastic body. Is a vibrating body (stator).

【0004】これらの圧電素子は、各群内ではλ/2の
ピッチにて、かつ交互に逆の伸縮極性となるように配列
されており、また両群間にはλ/4の奇数倍のずれがあ
るように配列されている。圧電素子の両群にはそれぞれ
電極膜が施されている。
These piezoelectric elements are arranged in each group at a pitch of λ / 2 and alternately have opposite expansion and contraction polarities. Between the two groups, an odd multiple of λ / 4 is provided. They are arranged so that there is a shift. Both groups of piezoelectric elements are provided with electrode films.

【0005】いずれかの一群(以下A相と称す)のみに
交流電圧を印加すれば、上記振動体は、前記A相の各圧
電素子の中央点及びそこからλ/2おきの点が腹の位
置、また前記腹の位置間の中央点が節の位置であるよう
な曲げ振動の定在波(波長λ)が弾性体の全周にわたっ
て発生する。また、他の一群(以下B相と称す)のみに
交流電圧を印加すると、同様に定在波が発生するが、そ
の腹及び節の位置はA相による定在波に対して、位置的
にλ/4ずれた位相になる。
If an AC voltage is applied to only one of the groups (hereinafter, referred to as the A phase), the vibrating body is arranged such that the center point of each of the A phase piezoelectric elements and points every λ / 2 therefrom are located at the antinodes. A standing wave (wavelength λ) of bending vibration is generated over the entire circumference of the elastic body such that the position, or the center point between the antinode positions, is the position of the node. When an AC voltage is applied only to the other group (hereinafter, referred to as B phase), a standing wave is generated in the same manner. The phase is shifted by λ / 4.

【0006】両A、B相に、周波数が同じで、かつ互い
に90°の時間的位相差を有する交番信号を同時に印加
すると、両者の定住波の合成の結果、弾性体には周方向
に振動する曲げ振動の進行波(波長λ)が発生し、この
とき、厚みを有する上記弾性体の各点は楕円運動をす
る。
When alternating signals having the same frequency and having a time phase difference of 90 ° from each other are simultaneously applied to both the A and B phases, as a result of the synthesis of the resident waves of both, the elastic body vibrates in the circumferential direction. A traveling wave (wavelength λ) of bending vibration is generated, and at this time, each point of the elastic body having a thickness performs an elliptical motion.

【0007】よって、振動体の片面に接触体(例えば移
動体としてのロータ)として、例えばリング状の接触体
を直接加圧接触させておけば、前記接触体は振動体から
の周方向の摩擦力を受け回転駆動される。そして実際に
は、振動体および接触体とも、互に接触する部分には各
々摩擦材を設け摩擦力が有効に発生するように工夫され
ている。
Therefore, if a contact body (for example, a rotor as a moving body), for example, a ring-shaped contact body is brought into direct pressure contact with one surface of the vibrating body, the contact body will have a circumferential friction from the vibrating body. It is rotated and driven by the force. Actually, both the vibrating body and the contacting body are provided with friction materials at portions where they come into contact with each other, so that a frictional force is effectively generated.

【0008】このような原理に基づく振動波モータは低
速高トルクのモータ特性を有し、高精度回転や高精度位
置決めに適している。このような振動波モータの摩擦接
触部分に用いられる摩擦材は、一般に耐摩耗性が良く、
摩擦係数が大きくかつ安定していることが望ましい。
A vibration wave motor based on such a principle has low-speed and high-torque motor characteristics and is suitable for high-precision rotation and high-precision positioning. The friction material used for the friction contact portion of such a vibration wave motor generally has good wear resistance,
It is desirable that the coefficient of friction is large and stable.

【0009】従来から多種多様の摩擦材か提案されてい
るが、上述の特徴を有するものとして、例えば特開平5
−239442号公報、特開平4−49872号公報に
は、炭素繊維を含有する樹脂材料が、摩耗性が良く、長
期の耐久寿命と摩擦係数の安定性から振動波モータ用の
摩擦材に適した材料として開示されている。
Conventionally, various kinds of friction materials have been proposed.
JP-A-239442 and JP-A-4-49872 disclose that a resin material containing carbon fiber is suitable for a friction material for a vibration wave motor because of its good abrasion, long durability life and stable friction coefficient. It is disclosed as a material.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、振動波
モータが多種多様の用途に使われるなかで、種々の環境
下での振動波モータの性能評価を行ってきたところ、特
に湿度の変化の影響で摩擦材の耐摩耗性が、つまり摩擦
材の摩耗量が著しく変化することがわかってきた。その
ため、振動波モータの寿命は摩擦材の耐久寿命に大きく
依存し、特に使用環境における湿度の変化の影響を受け
て大きく変化することがわかってきた。
However, as the vibration wave motor is used for various applications, the performance of the vibration wave motor under various environments has been evaluated. It has been found that the wear resistance of the friction material, that is, the amount of wear of the friction material changes significantly. For this reason, it has been found that the life of the vibration wave motor greatly depends on the durability life of the friction material, and in particular, is greatly affected by the change in humidity in the use environment.

【0011】本発明の目的は、前記した問題を解決する
もので、低湿度や高湿度下の環境下、また湿度変化のあ
る環境下等の湿度の変化の影響に対して安定な振動波モ
ータ用摩擦材、それを用いた振動波モータおよび機器を
提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to provide a vibration wave motor that is stable against the influence of humidity changes in an environment of low humidity or high humidity, or in an environment with a change in humidity. An object of the present invention is to provide a friction material for vibration, a vibration wave motor and a device using the same.

【0012】[0012]

【課題を解決するための手段】即ち、本発明は、振動波
モータに振動波を形成する振動体と、該振動体と摩擦接
触し、振動によって前記振動体と相対移動する接触体と
の摩擦接触部分に用いる摩擦材であり、耐熱性樹脂とメ
ソフェーズピッチ系炭素繊維を含有する樹脂組成物から
なることを特徴とする振動波モータ用摩擦材である。
That is, the present invention relates to a vibration member which forms a vibration wave in a vibration wave motor, and a friction member which comes into frictional contact with the vibration member and moves relative to the vibration member by vibration. A friction material for a vibration wave motor, which is a friction material used for a contact portion and is made of a resin composition containing a heat-resistant resin and mesophase pitch-based carbon fibers.

【0013】また、本発明は、振動を形成する振動体
と、該振動体と摩擦接触し、振動によって前記振動体と
相対移動する接触体とを有する振動波モータに於いて、
前記振動体又は接触体の少なくとも一方の摩擦接触部分
に上記の摩擦材を設けたことを特徴とする振動波モータ
である。さらに、本発明は、上記の振動波モータを駆動
源として設けた機器である。
Further, the present invention relates to a vibration wave motor having a vibrating body for generating vibration, and a contact body which comes into frictional contact with the vibrating body and moves relatively to the vibrating body by vibration.
A vibration wave motor characterized in that the friction material is provided on at least one friction contact portion of the vibration body or the contact body. Further, the present invention is an apparatus provided with the above-mentioned vibration wave motor as a driving source.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の振動波モータ用摩擦材は、振動波モータに振動
波を形成する振動体と、該振動体と摩擦接触し、振動に
よって前記振動体と相対移動する接触体との摩擦接触部
分に用いる摩擦材であり、その摩擦材に特定の樹脂組成
物を用いることを特徴とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
A friction material for a vibration wave motor according to the present invention is used for a frictional contact portion between a vibration body that forms a vibration wave in a vibration wave motor and a contact body that makes frictional contact with the vibration body and relatively moves with the vibration body by vibration. A friction material, wherein a specific resin composition is used for the friction material.

【0015】すなわち、本発明の振動波モータ用摩擦材
は、耐熱性樹脂とメソフェーズピッチ系炭素繊維を含有
する樹脂組成物からなる材質のものを用いることを特徴
とする。
That is, the friction material for the vibration wave motor of the present invention is characterized by using a material made of a resin composition containing a heat-resistant resin and mesophase pitch-based carbon fibers.

【0016】本発明の振動波モータにおける摩擦材は、
その材料に含有する炭素繊維の種類をメソフェーズピッ
チ系炭素繊維に限定した樹脂材料とすることにより、湿
度変化に対する摩擦材の摩耗量の変化をできるだけ少な
くしたことにある。
The friction material in the vibration wave motor of the present invention is
By using a resin material in which the type of carbon fiber contained in the material is limited to mesophase pitch-based carbon fiber, a change in the amount of wear of the friction material due to a change in humidity is minimized.

【0017】本発明の摩擦材に用いられる樹脂組成物に
含有される耐熱性樹脂としては、フッ素樹脂、ポリイミ
ド樹脂、アルキド樹脂、ポリエステル樹脂、アクリル樹
脂、アミノ樹脂、ポリアミド樹脂、エポキシ樹脂、フェ
ノール樹脂、ユリア樹脂、ポリウレタン樹脂、ポリアミ
ドイミド樹脂、ポリエーテルイミド樹脂、シリコーン樹
脂から選ばれた一種または二種以上の樹脂が挙げられ
る。これらの樹脂の中でフッ素樹脂、ポリイミド樹脂が
好ましく、特に好ましくはフッ素樹脂である。これらの
樹脂は、高い耐久性、耐熱性、疎水性を備えているため
に、振動波モータに最適な摩擦特性が得られる。また、
耐熱性樹脂には、その他の添加材、例えば有機系、無機
系等のファイバーを添加することで耐久性の向上も図れ
る。その他、固体潤滑材を還元添加することも別の効果
が期待できる。
The heat-resistant resin contained in the resin composition used for the friction material of the present invention includes fluorine resin, polyimide resin, alkyd resin, polyester resin, acrylic resin, amino resin, polyamide resin, epoxy resin, phenol resin. , A urea resin, a polyurethane resin, a polyamideimide resin, a polyetherimide resin, and a silicone resin. Among these resins, a fluororesin and a polyimide resin are preferable, and a fluororesin is particularly preferable. Since these resins have high durability, heat resistance, and hydrophobicity, friction characteristics optimal for a vibration wave motor can be obtained. Also,
The durability can be improved by adding other additives, for example, organic or inorganic fibers to the heat-resistant resin. In addition, another effect can be expected from the addition of a solid lubricant by reduction.

【0018】本発明の摩擦材に用いられる樹脂組成物に
含有されるメソフェーズピッチ系炭素繊維としては、ピ
ッチ系炭素繊維の中のメソフェーズピッチ系の炭素繊維
が用いられる。
As the mesophase pitch-based carbon fibers contained in the resin composition used in the friction material of the present invention, mesophase pitch-based carbon fibers among the pitch-based carbon fibers are used.

【0019】すなわち、一般に炭素繊維は出発原料によ
りその性質が大きく影響され原料名で区別されることが
多い。現在のところ工業的なスケールで製造販売されて
いるのはアクリル繊維(ポリアクリロニトリル、以下、
「PAN」と記す)を出発原料とするPAN系炭素繊維
と、石炭の乾留の際に得られるタールや原油の蒸留ある
いは熱分解の残渣油を熱処理により重合したピッチから
作られるピッチ系炭素繊維の2種であり、そのシェアは
圧倒的にPAN系炭素繊維が多いが、安価で汎用の炭素
繊維として市販されているものはほとんどピッチ系炭素
繊維である。そして、さらに黒鉛化処理をされ黒鉛質に
なったものと、その黒鉛化処理がされていない炭素質の
ものとに分類されている。
That is, in general, the properties of carbon fibers are greatly affected by the starting materials, and are often distinguished by the names of the starting materials. At present, acrylic fibers (polyacrylonitrile, hereafter,
PAN-based carbon fiber starting from “PAN”) and pitch-based carbon fiber produced from pitch obtained by heat-treating tar or crude oil distilled or pyrolyzed residual oil obtained during coal dry distillation by heat treatment. There are two types, the share of which is overwhelmingly PAN-based carbon fiber, but most of the commercially available inexpensive and general-purpose carbon fiber is pitch-based carbon fiber. The graphite is further classified into those that have been graphitized to be graphitic and those that have not been graphitized.

【0020】ピッチ系炭素繊維においては、さらに2つ
に分けられ、ピッチを加熱して液相から固相へ変化する
際に、光学的に異方性を示す液晶相(メソフェーズ)を
発生するメソフェーズピッチから作られる炭素繊維をメ
ソフェーズピッチ系炭素繊維と呼び、メソフェーズを発
生しないで光学的に等方性のピッチから作られるものを
等方性ピッチ系炭素繊維と呼び区別している。この異方
性と等方性の相違は、炭素材料の微細組織(結晶子)の
配向性やその程度に著しい違いがみられ、炭素繊維の性
質を大きく変える。とりわけ、メソフェーズピッチ系は
炭素繊維の微細組織は軸方向やその断面方向に顕著な配
向性を有しており、その結果その機械的な性質、たとえ
ば引張弾性率、圧縮強度などを大きくすることが可能で
材料の特性として注目されている。
The pitch-based carbon fiber is further divided into two types. When the pitch is heated to change from a liquid phase to a solid phase, a mesophase which generates an optically anisotropic liquid crystal phase (mesophase) is generated. Carbon fibers made from pitch are called mesophase pitch-based carbon fibers, and those made from optically isotropic pitch without generating mesophase are called and distinguished from isotropic pitch-based carbon fibers. The difference between the anisotropy and the isotropicity shows a remarkable difference in the orientation and degree of the microstructure (crystallite) of the carbon material, and greatly changes the properties of the carbon fiber. In particular, in the mesophase pitch system, the microstructure of the carbon fiber has a remarkable orientation in the axial direction and its cross-sectional direction, and as a result, its mechanical properties, such as tensile modulus and compressive strength, may be increased. It is possible and is attracting attention as a material property.

【0021】しかしながら、これらの炭素繊維の機械的
な性質から、振動波モータにおける特殊な摩擦摩耗の現
象はもちろんのこと一般の摩擦摩耗の現象を予測するこ
とははなはだ難しく、実際に各種の材料を製作し、振動
波モータを使って評価を行い、その違いを調べることに
より、振動波モータの湿度条件の使用環境が変化した場
合、湿度に対する影響を受けにくい材料としてメソフェ
ーズピッチ系炭素繊維が最適であることを見だした。
However, from the mechanical properties of these carbon fibers, it is very difficult to predict general friction and wear phenomena as well as special friction and wear phenomena in vibration wave motors. By manufacturing and evaluating using a vibration wave motor and examining the difference, when the usage environment of the humidity condition of the vibration wave motor changes, mesophase pitch-based carbon fiber is the most suitable material that is not easily affected by humidity. I found something.

【0022】本発明に用いられるメソフェーズピッチ系
炭素繊維の具体例としては、炭素質には、商品名MC−
249、大阪ガス(株)が挙げられ、また黒鉛化処理し
た黒鉛質には商品名MGII−249、大阪ガス(株)
が挙げられる。
As a specific example of the mesophase pitch-based carbon fiber used in the present invention, carbonaceous materials are available under the trade name MC-
249, Osaka Gas Co., Ltd., and the graphitized graphite is MGII-249, Osaka Gas Co., Ltd.
Is mentioned.

【0023】本発明における前記樹脂組成物中のメソフ
ェーズピッチ系炭素繊維の含有量は通常2〜50重量
%、好ましくは5〜40重量%、さらに好ましくは10
〜30重量%が望ましい。2重量%未満では、摩擦材が
湿度に対する影響を受けやすく、また50重量%を越え
ると樹脂組成物の強度が落ちるなどして好ましくない。
In the present invention, the content of the mesophase pitch-based carbon fibers in the resin composition is usually 2 to 50% by weight, preferably 5 to 40% by weight, more preferably 10% by weight.
-30% by weight is desirable. If it is less than 2% by weight, the friction material is easily affected by humidity, and if it exceeds 50% by weight, the strength of the resin composition is undesirably reduced.

【0024】本発明における前記樹脂組成物には、上記
の各成分の他に、必要に応じてさらにその他の添加剤を
添加することができる。添加剤としては、例えば三硫化
モリブデン、カーボン粉末、PTFE粉末などの固体潤
滑材や、ポリイミド粉末その他高耐熱性材料粉末などの
高分子材料や、アルミナ、炭化ケイ素その他の無機材料
粉末が挙げられる。これらの添加剤を添加すると、耐久
性や摩擦摩耗の安定性、その他各種特性を向上させるこ
とができるので好ましい。
[0024] In addition to the above components, other additives can be added to the resin composition of the present invention, if necessary. Examples of the additive include a solid lubricant such as molybdenum trisulfide, carbon powder, and PTFE powder; a polymer material such as a polyimide powder and other highly heat-resistant material powder; and an alumina, silicon carbide and other inorganic material powder. It is preferable to add these additives because durability, stability of friction and wear, and other various properties can be improved.

【0025】本発明の振動波モータは、振動を形成する
振動体と、該振動体と摩擦接触し、振動によって前記振
動体と相対移動する接触体とを有する振動波モータに於
いて、前記振動体又は接触体の少なくとも一方の摩擦接
触部分に上記の耐熱性樹脂とメソフェーズピッチ系炭素
繊維を含有する樹脂組成物からなる摩擦材を設けたこと
を特徴とする。
According to the vibration wave motor of the present invention, there is provided a vibration wave motor comprising: a vibrating member for forming vibration; and a contact member which comes into frictional contact with the vibrating member and moves relative to the vibrating member by vibration. A friction material made of a resin composition containing the above heat-resistant resin and mesophase pitch-based carbon fiber is provided on at least one friction contact portion of the body or the contact body.

【0026】図1は本発明の振動波モータの一実施の形
態を示す断面図である。図中、1は振動体でステンレス
鋼からなるリング状の金属弾性体3の一端面に、前述の
様にリング状で複数個に分極された2群の圧電素子4を
耐熱性のエボキシ樹脂系接着剤で接着し、金属弾性体3
のもう一方の端面には摩擦材5が同様に接着して形成さ
れている。
FIG. 1 is a sectional view showing an embodiment of the vibration wave motor of the present invention. In the drawing, reference numeral 1 denotes a vibrating body, and two groups of ring-shaped polarized piezoelectric elements 4 as described above are heat-resistant on an end surface of a ring-shaped metal elastic body 3 made of stainless steel. Glued with an adhesive, metal elastic body 3
A friction material 5 is similarly adhered to the other end face of.

【0027】一方、移動体2側のアルミニウム合金から
なるリング状の接触体6の摩擦摺動面には摩擦材6aを
設けてある。接触体6はゴムリング7を介して支持体8
に取付けてあり、支持体8はネジ11により出力軸12
に固定されている。そして、振動体1の摩擦材5と接触
体6の摩擦材6aは接触して摩擦摺動面を形成し、加圧
用の板バネ16により、軸方向に総圧で5kgfの荷重
で加圧されている。9はベアリング、13はカバー、1
4、15は与圧カラー、17はカラーでネジ11aによ
り出力軸12に固定されている。
On the other hand, a friction material 6a is provided on the friction sliding surface of the ring-shaped contact body 6 made of an aluminum alloy on the moving body 2 side. The contact member 6 is supported by a support member 8 via a rubber ring 7.
The support 8 is attached to the output shaft 12 by screws 11.
It is fixed to. Then, the friction material 5 of the vibrating body 1 and the friction material 6a of the contact body 6 come into contact with each other to form a friction sliding surface, and are pressed by a plate spring 16 for pressing with a total pressure of 5 kgf in the axial direction. ing. 9 is a bearing, 13 is a cover, 1
Reference numerals 4 and 15 denote pressurized collars, and 17 denotes a collar, which is fixed to the output shaft 12 by a screw 11a.

【0028】摩擦材5の形状の一例を示すと、摩擦材5
に円周状の段差5aを設け、その高さCは0.15mm
である。また、図1の摩擦材5と6aの接触部(摺動
面)の幅aは0.8mm、接触部(摺動面)の直径bは
30mmである。
An example of the shape of the friction material 5 is as follows.
Is provided with a circumferential step 5a, the height C of which is 0.15 mm.
It is. The width a of the contact portion (sliding surface) between the friction materials 5 and 6a in FIG. 1 is 0.8 mm, and the diameter b of the contact portion (sliding surface) is 30 mm.

【0029】そして、交互に厚み方向に分極処理された
2群の圧電素子4に振動体1に固有の周波数の交流電圧
を印加すると、振動体1は共振を起こし、その周方向に
進行性振動波を生じ、摩擦材5を介して摩擦材6aに摩
擦力が作用し、移動体2は回転駆動する。
When an AC voltage having a specific frequency is applied to the vibrating body 1 to the two groups of piezoelectric elements 4 alternately polarized in the thickness direction, the vibrating body 1 resonates, and the vibrating body 1 vibrates progressively in its circumferential direction. A wave is generated, and a frictional force acts on the friction material 6a via the friction material 5, so that the moving body 2 is driven to rotate.

【0030】本発明の摩擦材は、摩擦材5および6aの
両方に使用してもよく、またいずれか一方に使用しても
よい。一方に本発明の摩擦材を使用した場合には、もう
一方には通常の摩擦材を使用することができる。通常の
摩擦材としては、硬質でじん性があり摩耗のほとんどな
いアルミ−シリコン合金、焼入鋼、セラミックス、超硬
合金等が挙げられる。
The friction material of the present invention may be used for both of the friction materials 5 and 6a, or may be used for either one of them. When the friction material of the present invention is used for one, a normal friction material can be used for the other. Examples of ordinary friction materials include aluminum-silicon alloys that are hard, tough, and hardly wear, hardened steel, ceramics, and cemented carbides.

【0031】この様に本発明の構成では、振動波モータ
の接触体又は振動体の少なくとも一方の摩擦接触する摩
擦材に、耐熱性樹脂とメソフェーズピッチ系炭素繊維を
含有する樹脂組成物からなる摩擦材を使用しているの
で、振動モータは低湿度や高湿度下の環境下、また湿度
変化のある環境下等の湿度の変化の影響に対して安定な
駆動が可能で、振動モータの寿命の安定化も可能となり
振動波モータの信憑性を一段と高めることができる。
As described above, in the configuration of the present invention, at least one of the contact member and the vibration member of the vibration wave motor is brought into friction contact with the friction material made of the resin composition containing the heat-resistant resin and the mesophase pitch-based carbon fiber. Since the vibration motor is made of a material, the vibration motor can be driven stably under the influence of humidity changes in the environment of low humidity and high humidity, and the environment where the humidity changes. Stabilization is also possible, and the credibility of the vibration wave motor can be further improved.

【0032】また、本発明は、上記の摩擦材を設けた振
動波モータを駆動源として各種の機器に用いることがで
きる。機器の具体例としては、カメラなどの光学機器、
プリンター,複写機等の事務機器、パワーウインドー,
アクティブサスペンション等の自動車関連機器が挙げら
れる。
Further, the present invention can be used for various devices using a vibration wave motor provided with the above friction material as a drive source. Specific examples of devices include optical devices such as cameras,
Office equipment such as printers and copiers, power windows,
Automotive-related devices such as active suspensions.

【0033】[0033]

【実施例】以下に実施例を挙げて本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0034】実施例1 摩擦材を以下の様にして作製した。ポリテトラフルオロ
エチレン(以下PTFEと記す)樹脂粉末80重量%
に、表1に示す炭素繊維(短繊維)および黒鉛化処理し
た炭素繊維(短繊維)20重量%を均一に分散混合した
後、圧力500kg/cm2 でプレス加圧して直径8c
m、内径1cm、高さ10cmの成形体を作り、温度3
60℃で3時間焼成し円筒状の焼成体を得た。その円筒
状の焼成体を切削装置によりカットし、厚さ0.5mm
の円筒状のシートを作製した。そのシートを打ち抜き加
工し図1のリング状の摩擦材5として使用した。
Example 1 A friction material was produced as follows. 80% by weight of polytetrafluoroethylene (hereinafter referred to as PTFE) resin powder
After uniformly dispersing and mixing 20% by weight of the carbon fibers (short fibers) and the graphitized carbon fibers (short fibers) shown in Table 1, the mixture was press-pressed at a pressure of 500 kg / cm 2 to have a diameter of 8 c.
m, inner diameter 1cm, height 10cm, and temperature 3
It was fired at 60 ° C. for 3 hours to obtain a cylindrical fired body. The cylindrical fired body is cut by a cutting device and has a thickness of 0.5 mm.
Was produced. The sheet was stamped and used as the ring-shaped friction material 5 in FIG.

【0035】なお、使用した炭素繊維の寸法は直径約1
0μm〜13μm、長さ約100μm〜130μmの短
繊維である。
The size of the carbon fiber used was about 1 in diameter.
It is a short fiber having a length of 0 μm to 13 μm and a length of about 100 μm to 130 μm.

【0036】[0036]

【表1】 [Table 1]

【0037】(注1)表1中で、No.1、2は実施例
を示し、No.3、4、5(*印)は比較例を示す。 (注2)表1中で、試料No.1のメソフェーズピッチ
系炭素繊維は商品名MC−249、大阪ガス(株)社製
を用いた。試料No.2のメソフェーズピッチ系+黒鉛
化処理は商品名MGII−249、大阪ガス(株)社製
を用いた。試料No.3の等方性ピッチ系炭素繊維は商
品名SG−249、大阪ガス(株) 社製を用いた。試
料No.4の等方性ピッチ系+黒鉛化処理は商品名LX
X−941、大阪ガス(株) 社製を用いた。試料N
o.5のポリアクリロニトリル系炭素繊維は商品名トレ
カ MLD−300、東レ(株)社製を用いた。
(Note 1) In Table 1, No. Nos. 1 and 2 show the examples. 3, 4, and 5 (* marks) indicate comparative examples. (Note 2) In Table 1, sample No. As the mesophase pitch-based carbon fiber No. 1, MC-249 (trade name) manufactured by Osaka Gas Co., Ltd. was used. Sample No. For the mesophase pitch system 2 and the graphitization treatment of No. 2, MGII-249 (trade name) manufactured by Osaka Gas Co., Ltd. was used. Sample No. The isotropic pitch-based carbon fiber No. 3 used was trade name SG-249, manufactured by Osaka Gas Co., Ltd. Sample No. 4 isotropic pitch system + graphitization treatment is trade name LX
X-941, manufactured by Osaka Gas Co., Ltd. was used. Sample N
o. The polyacrylonitrile-based carbon fiber No. 5 used was a trade name, trade name MLD-300, manufactured by Toray Industries, Inc.

【0038】表1の中で、No.1、3、5は各原料を
紡糸後、不融化又は安定化処理後(不活性雰囲気中で8
00〜1200℃で処理)、炭素化され炭素質になった
繊維であり、No.2、4はさらに不活性雰囲気中で2
000〜3000℃で黒鉛化処理して黒鉛質になった繊
維である。
In Table 1, no. Nos. 1, 3, and 5 are obtained after spinning, infusibilizing or stabilizing each raw material (8 in an inert atmosphere).
No. 00-1200 ° C.), carbonized and carbonaceous fiber. 2 and 4 are 2 in an inert atmosphere
It is a fiber that has been graphitized at 000 to 3000 ° C. and has become graphitic.

【0039】摩擦材5の形状は、図1に示す様に、摩擦
材5に円周状の段差5aを設け、その高さcは0.15
mmである。また、図1の摩擦材5と6aの接触部(摺
動面)の幅aは0.8mm、接触部(摺動面)の直径b
は30mmである。
As shown in FIG. 1, the friction material 5 has a circumferential step 5a provided on the friction material 5 and has a height c of 0.15.
mm. The width a of the contact portion (sliding surface) between the friction materials 5 and 6a in FIG. 1 is 0.8 mm, and the diameter b of the contact portion (sliding surface).
Is 30 mm.

【0040】摩擦材5はステンレス鋼の材質からなる金
属弾性体3に接着剤(エポキシ系熱硬化型)で固定し、
またアルミの材質からなる接触体6の摩擦材6aには溶
射によるコバルト含有のタングステンカーバイトの材質
からなるものを用いて図1に示す振動波モータを作製し
た。
The friction material 5 is fixed to the metal elastic body 3 made of stainless steel with an adhesive (an epoxy thermosetting type).
The vibration wave motor shown in FIG. 1 was manufactured by using a friction material 6a of the contact body 6 made of aluminum material made of a tungsten carbide material containing cobalt by spraying.

【0041】以下に記述する摩擦材の評価は、振動波モ
ータを回転数300rpm、トルク300g−cmで連
続100時間駆動して得られた値である。その結果を図
2に示す。
The evaluation of the friction material described below is a value obtained by driving the vibration wave motor continuously at a rotation speed of 300 rpm and a torque of 300 g-cm for 100 hours. The result is shown in FIG.

【0042】図2は表1の各炭素繊維を含むPTFE材
からなる摩擦材を用いて、温度40℃で、湿度を1%〜
95%に変えた際の100時間駆動後の摩擦材5の摩耗
量を示している。摩耗量は、図1の段差5aの高さをハ
イトゲージにより測定し、あらかじめ駆動前の段差5a
の高さから駆動後の高さを引いた値である。
FIG. 2 shows a friction material made of a PTFE material containing each carbon fiber shown in Table 1 at a temperature of 40.degree.
The amount of wear of the friction material 5 after driving for 100 hours when it is changed to 95% is shown. The amount of abrasion is measured by measuring the height of the step 5a in FIG.
It is a value obtained by subtracting the height after driving from the height of.

【0043】図2からわかるように、No.1、2の摩
擦材は、他のNo.3〜5の摩擦材と比べ、低湿と高湿
においても湿度40〜70%と比べ摩耗の変化(増加)
は非常に少ないという結果が得られた。また、No.2
はNo.1と比べ全体に摩耗量が多い。No.2は黒鉛
質で比較的硬さも柔らかく摩耗は比較的多くなったと思
われる。
As can be seen from FIG. The friction materials of Nos. 1 and 2 are other Nos. Change (increase) in wear at low and high humidity compared to the friction material of 3 to 5 compared to the humidity of 40 to 70%
Was very low. In addition, No. 2
Is No. Compared with No. 1, the amount of wear is large as a whole. No. No. 2 is a graphite material, and it is considered that the hardness was relatively soft and the wear was relatively large.

【0044】実施例2 実施例1と同様に表1に示すNo.1〜No.5の炭素
繊維を用いて、樹脂材料をポリイミド樹脂とし、実施例
1と同様にポリイミド樹脂粉末88重量%と炭素材料1
2重量%を均一に分散混合し、ホットプレスにて、20
00kgf/cm2 の成形圧で直径8cm、内径1c
m、高さ10cmの円筒状に成形しつつ、温度350℃
で10分間加圧加熱して得られた円筒状の焼成体をカッ
トし、厚さ0.5mmのシートを作製した。そのシート
を打ち抜き加工し、図1のリング状の摩擦材5として振
動波モータに使用し、実施例1と同様の評価を行った。
その結果を図3に示す。図3中で、No.1、2は実施
例を示し、No.3、4、5は比較例を示す。
Example 2 In the same manner as Example 1, 1 to No. 5 and the resin material was a polyimide resin, and 88% by weight of the polyimide resin powder and carbon material 1 were used in the same manner as in Example 1.
2% by weight are uniformly dispersed and mixed,
8cm diameter at a molding pressure of 00kgf / cm 2, an inner diameter 1c
m, temperature of 350 ° C while forming into a cylindrical shape with a height of 10cm
For 10 minutes, and the cylindrical fired body obtained was cut to produce a sheet having a thickness of 0.5 mm. The sheet was punched and used as a ring-shaped friction material 5 in FIG. 1 for a vibration wave motor, and the same evaluation as in Example 1 was performed.
The result is shown in FIG. In FIG. Nos. 1 and 2 show the examples. 3, 4, and 5 show comparative examples.

【0045】図3に示す様に、摩擦材の摩耗量は前述の
実施例1より全体的に多くなり、ポリイミド樹脂が湿度
の影響を受けていることを示しているが、低湿と高湿で
湿度40%〜70%と比べ実施例1と同じように摩耗量
が多くなる傾向がみられる。このことは湿度の影響によ
る摩耗量の変化は基本的に炭素繊維の種類のちがいによ
ると思われる。しかし、摩擦摩耗の現象としては、実施
例1と2では樹脂材料の違いが表われており、例えばポ
リイミド樹脂の摩擦係数が約0.4で、フッ素樹脂の摩
擦係数の0.2よりも大きいので、それだけモータのト
ルクも大きく性能もよくなるが、ポリイミド樹脂の摩擦
係数の変動が±約0.1にもなり、フッ素樹脂の±約
0.03に比べそれだけモータのトルクや回転の変動が
増えている。
As shown in FIG. 3, the abrasion amount of the friction material is generally larger than that of the first embodiment, indicating that the polyimide resin is affected by humidity. As in the case of Example 1, the amount of wear tends to increase as compared with the case where the humidity is 40% to 70%. This suggests that the change in the amount of wear due to the influence of humidity is basically due to the difference in the type of carbon fiber. However, as for the phenomenon of friction and wear, the difference between the resin materials is shown in Examples 1 and 2. For example, the friction coefficient of the polyimide resin is about 0.4, which is larger than the friction coefficient of the fluorine resin of 0.2. Therefore, the torque of the motor is large and the performance is good, but the fluctuation of the friction coefficient of the polyimide resin is ± 0.1 and the fluctuation of the motor torque and rotation is increased compared to ± 0.03 of the fluororesin. ing.

【0046】また、実施例1、2の樹脂に少量の添加材
料として、二硫化モリブデン等の固体潤滑材やポリイミ
ド粉末等の高分子材料やアルミナ等の無機材料を添加
し、耐久性や摩擦摩耗の安定性、その他各種特性を与え
ることも可能である。とりわけ二硫化モリブデンまたは
ポリイミド粉を加えた材料は図1のNo.1、図2のN
o.1より低摩耗量を示した。
In addition, solid lubricants such as molybdenum disulfide, polymer materials such as polyimide powder, and inorganic materials such as alumina were added to the resins of Examples 1 and 2 as a small amount of additive materials to provide durability and friction and wear. And various other properties. In particular, the material to which molybdenum disulfide or polyimide powder is added is No. 1 in FIG. 1. N in FIG.
o. 1 showed a lower wear amount.

【0047】なお、実施例1、2とも樹脂材料の相手材
である摩擦材6aは硬質被膜であり摩耗はほとんど生せ
ず評価に影響は与えていないと判断される。他の硬質材
料例えばセラミックスを用いても同様の結果となった。
In each of the first and second embodiments, the friction material 6a, which is a mating material of the resin material, is a hard coating, hardly generates wear, and is judged to have no influence on the evaluation. Similar results were obtained when other hard materials such as ceramics were used.

【0048】なお、本発明の摩擦材は摩擦材5および摩
擦材6aのいずれか一方に用いることができ、実施例
1,2において、摩擦材5と摩擦材6aを各々交換し、
本発明の摩擦材を接触体6の摩擦材6aに使用し、金属
弾性体3の摩擦材5に硬質被膜等を用いても良い。ま
た、本発明の摩擦材を摩擦材5および摩擦材6aの両方
に用いてもよい。
The friction material of the present invention can be used for either one of the friction material 5 and the friction material 6a. In the first and second embodiments, the friction material 5 and the friction material 6a are replaced respectively.
The friction material of the present invention may be used for the friction material 6 a of the contact body 6, and a hard coating or the like may be used for the friction material 5 of the metal elastic body 3. Further, the friction material of the present invention may be used for both the friction material 5 and the friction material 6a.

【0049】上記実施例では、摩擦材を図1に示した円
盤状の振動波モータに適用した例を示したが、その他に
棒状の振動波モータに同様の方法で、上記の摩擦材を設
けた摩擦接触面を形成してもよい。
In the above embodiment, the friction material is applied to the disk-shaped vibration wave motor shown in FIG. 1. However, the friction material is provided to the rod-shaped vibration wave motor by the same method. May be formed.

【0050】また、図4は、図1に示した振動波モータ
を駆動源とする機器の概略図である。23は大歯車23
aと小歯車23bを有するギアで、大歯車23aが振動
波モータ側のギア20と噛合している。24は被駆動部
材、例えばレンズ鏡筒で、外周部に設けられたギア24
aにギア23の小歯車23bが噛合し、モータの駆動力
により回転する。一方、ギア23にはエンコーダスリッ
ト板25が取り付けられ、ギア23の回転をフォトカッ
プラー26により検出し、例えばオートフォーカスのた
めにモータの回転、停止を制御する。
FIG. 4 is a schematic diagram of a device using the vibration wave motor shown in FIG. 1 as a driving source. 23 is a large gear 23
a and a small gear 23b, and the large gear 23a meshes with the gear 20 on the vibration wave motor side. Reference numeral 24 denotes a driven member, for example, a lens barrel, and a gear 24 provided on an outer peripheral portion.
The small gear 23b of the gear 23 meshes with a and rotates by the driving force of the motor. On the other hand, an encoder slit plate 25 is attached to the gear 23, and the rotation of the gear 23 is detected by the photocoupler 26, and the rotation and stop of the motor are controlled, for example, for autofocus.

【0051】[0051]

【発明の効果】以上説明した様に、本発明によれば、摩
擦材である樹脂に含有する炭素繊維にメソフェーズピッ
チ系炭素繊維を用いることにより、低湿度や高湿度下の
環境下での振動波モータの長期使用が可能となる他、湿
度変化のある環境下での振動モータの寿命の安定化も可
能となり、振動波モータの信頼性が一段と高まる効果を
有する。また、本発明は上記の湿度変化に対する摩擦特
性に優れた振動波モータを用いた機器を提供できる。
As described above, according to the present invention, the use of the mesophase pitch-based carbon fiber as the carbon fiber contained in the resin as the friction material enables the vibration under the environment of low humidity or high humidity. In addition to being able to use the wave motor for a long period of time, the life of the vibration motor can be stabilized in an environment where there is a change in humidity, which has the effect of further increasing the reliability of the vibration wave motor. Further, the present invention can provide an apparatus using a vibration wave motor having excellent friction characteristics against the above-mentioned change in humidity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の振動波モータの一実施の形態を示す断
面図である。
FIG. 1 is a sectional view showing an embodiment of a vibration wave motor according to the present invention.

【図2】本発明の実施例1の炭素繊維を含有するフッ素
樹脂からなる摩擦材の摩耗量と湿度の関係を示す図であ
る。
FIG. 2 is a diagram showing the relationship between the amount of wear and humidity of a friction material made of a fluororesin containing carbon fibers of Example 1 of the present invention.

【図3】本発明の実施例2の炭素繊維を含有するポリイ
ミド樹脂からなる摩擦材の摩耗量と湿度の関係を示す図
である。
FIG. 3 is a graph showing a relationship between a wear amount and a humidity of a friction material made of a polyimide resin containing carbon fibers according to a second embodiment of the present invention.

【図4】図1に示した振動波モータを駆動源とする機器
の概略図である。
FIG. 4 is a schematic view of a device that uses the vibration wave motor shown in FIG. 1 as a driving source.

【符号の説明】[Explanation of symbols]

1 振動体 2 移動体 3 金属弾性体 4 圧電素子4 5 摩擦材 6 接触体 6a 摩擦材 8 支持体 9 ベアリング 11,11a ネジ 12 出力軸 13 カバー 14、15 与圧カラー 16 板バネ 17 カラー DESCRIPTION OF SYMBOLS 1 Vibration body 2 Moving body 3 Metal elastic body 4 Piezoelectric element 4 5 Friction material 6 Contact body 6a Friction material 8 Support body 9 Bearing 11, 11a Screw 12 Output shaft 13 Cover 14, 15 Pressurized collar 16 Leaf spring 17 Color

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // H02N 2/00 H02N 2/00 C (C08K 13/04 3:30 7:04) (C08L 27/12 79:08) ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification symbol FI // H02N 2/00 H02N 2/00 C (C08K 13/04 3:30 7:04) (C08L 27/12 79:08)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 振動波モータに振動波を形成する振動体
と、該振動体と摩擦接触し、振動によって前記振動体と
相対移動する接触体との摩擦接触部分に用いる摩擦材で
あり、耐熱性樹脂とメソフェーズピッチ系炭素繊維を含
有する樹脂組成物からなることを特徴とする振動波モー
タ用摩擦材。
1. A friction material used for a frictional contact portion between a vibrating body that forms a vibration wave in a vibration wave motor and a contact body that comes into frictional contact with the vibrating body and moves relatively to the vibrating body by vibration. A friction material for a vibration wave motor, comprising a resin composition containing a conductive resin and mesophase pitch-based carbon fibers.
【請求項2】 前記メソフェーズピッチ系炭素繊維は炭
素質である請求項1記載の振動波モータ用摩擦材。
2. The friction material for a vibration wave motor according to claim 1, wherein the mesophase pitch-based carbon fibers are carbonaceous.
【請求項3】 前記メソフェーズピッチ系炭素繊維は短
繊維からなる請求項1または2記載の振動波モータ用摩
擦材。
3. The friction material for a vibration wave motor according to claim 1, wherein the mesophase pitch-based carbon fibers are made of short fibers.
【請求項4】 前記樹脂組成物中のメソフェーズピッチ
系炭素繊維の含有量が10〜30重量%である請求項1
乃至3のずれかの項に記載の振動波モータ用摩擦材。
4. The content of mesophase pitch-based carbon fibers in the resin composition is 10 to 30% by weight.
4. The friction material for a vibration wave motor according to any one of items 1 to 3.
【請求項5】 前記耐熱性樹脂がフッ素樹脂またはポリ
イミド樹脂からなる請求項1記載の振動波モータ用摩擦
材。
5. The friction material for a vibration wave motor according to claim 1, wherein the heat-resistant resin is made of a fluorine resin or a polyimide resin.
【請求項6】 前記樹脂組成物中に二硫化モリブデンお
よびポリイミド粉の少なくとも一種を含有する請求項1
記載の振動波モータ用摩擦材。
6. The resin composition according to claim 1, wherein said resin composition contains at least one of molybdenum disulfide and polyimide powder.
A friction material for a vibration wave motor as described in the above.
【請求項7】 振動を形成する振動体と、該振動体と摩
擦接触し、振動によって前記振動体と相対移動する接触
体とを有する振動波モータに於いて、前記振動体又は接
触体の少なくとも一方の摩擦接触部分に請求項1乃至6
のいずれかの項に記載の摩擦材を設けたことを特徴とす
る振動波モータ。
7. A vibration wave motor having a vibrating body that forms vibration and a contact body that comes into frictional contact with the vibrating body and moves relative to the vibrating body by vibration, wherein at least one of the vibrating body and the contacting body is provided. 7. A method according to claim 1, wherein one of the friction contact portions is provided.
A vibration wave motor provided with the friction material according to any one of the above items.
【請求項8】 請求項7に記載の振動波モータを駆動源
として設けた機器。
8. An apparatus provided with the vibration wave motor according to claim 7 as a drive source.
JP9362371A 1997-09-30 1997-12-12 Friction material for oscillatory wave motor, oscillatory wave motor and equipment using the same Pending JPH11172123A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9362371A JPH11172123A (en) 1997-12-12 1997-12-12 Friction material for oscillatory wave motor, oscillatory wave motor and equipment using the same
US09/162,378 US6463642B1 (en) 1997-09-30 1998-09-28 Method of manufacturing a vibration type driving apparatus
US09/729,701 US20010000940A1 (en) 1997-09-30 2000-12-06 Vibration type driving aparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9362371A JPH11172123A (en) 1997-12-12 1997-12-12 Friction material for oscillatory wave motor, oscillatory wave motor and equipment using the same

Publications (1)

Publication Number Publication Date
JPH11172123A true JPH11172123A (en) 1999-06-29

Family

ID=18476681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9362371A Pending JPH11172123A (en) 1997-09-30 1997-12-12 Friction material for oscillatory wave motor, oscillatory wave motor and equipment using the same

Country Status (1)

Country Link
JP (1) JPH11172123A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297587A (en) * 2005-11-11 2007-11-15 Hitachi Chem Co Ltd Phenolic resin molding material
JP2007297588A (en) * 2005-11-11 2007-11-15 Hitachi Chem Co Ltd Phenolic resin molding material
WO2009072425A1 (en) * 2007-12-03 2009-06-11 Toyota Jidosha Kabushiki Kaisha Sliding material and belt for wet-type continuously variable transmission
JP2009249454A (en) * 2008-04-03 2009-10-29 Toyota Motor Corp Frictional material
WO2013146922A1 (en) * 2012-03-27 2013-10-03 株式会社ニコン Oscillation actuator, lens barrel, and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297587A (en) * 2005-11-11 2007-11-15 Hitachi Chem Co Ltd Phenolic resin molding material
JP2007297588A (en) * 2005-11-11 2007-11-15 Hitachi Chem Co Ltd Phenolic resin molding material
WO2009072425A1 (en) * 2007-12-03 2009-06-11 Toyota Jidosha Kabushiki Kaisha Sliding material and belt for wet-type continuously variable transmission
JP2009138013A (en) * 2007-12-03 2009-06-25 Toyota Central R&D Labs Inc Sliding material and belt for wet-type continuously variable transmission
JP4533424B2 (en) * 2007-12-03 2010-09-01 株式会社豊田中央研究所 Sliding material and belt for wet-type continuously variable transmission
JP2009249454A (en) * 2008-04-03 2009-10-29 Toyota Motor Corp Frictional material
WO2013146922A1 (en) * 2012-03-27 2013-10-03 株式会社ニコン Oscillation actuator, lens barrel, and electronic apparatus
JPWO2013146922A1 (en) * 2012-03-27 2015-12-14 株式会社ニコン Vibration actuator, lens barrel and electronic equipment

Similar Documents

Publication Publication Date Title
US5034646A (en) Vibration motor
US6463642B1 (en) Method of manufacturing a vibration type driving apparatus
JP2568564B2 (en) Lining material and ultrasonic drive motor using the lining material
US4739212A (en) Ultrasonic motor
KR101413838B1 (en) Motor, lens barrel, camera system and method for manufacturing motor
EP0917214B1 (en) Control method and apparatus for vibration wave motor
JP2898053B2 (en) Vibration wave device
JPH05161368A (en) Vibration wave motor
KR910003669B1 (en) Ultrasonic motor
US5352950A (en) Vibration wave driven motor
JPH1042579A (en) Oscillatory wave motor
JPH11172123A (en) Friction material for oscillatory wave motor, oscillatory wave motor and equipment using the same
JP3450733B2 (en) Sliding member, vibration wave driving device and device using the same
CN102754328A (en) Oscillation actuator, and lens-barrel and camera provided with same
JP2008092748A (en) Ultrasonic motor
US5338998A (en) Vibration driven actuator
US6643906B2 (en) Friction member, and vibration wave device and apparatus using friction member
JP2925192B2 (en) Vibration wave drive
JP2874773B2 (en) Vibration wave drive
JPH10191665A (en) Vibration motor
JPH01238473A (en) Lining material and ultrasonic drive motor using the same material
JPS63136986A (en) Ultrasonic motor
JPH05244784A (en) Vibration wave motor
JP3160139B2 (en) Vibration wave motor
JP2690101B2 (en) Lining material and ultrasonic drive motor using the lining material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612