JPH0398393A - Degaussing circuit - Google Patents
Degaussing circuitInfo
- Publication number
- JPH0398393A JPH0398393A JP23595689A JP23595689A JPH0398393A JP H0398393 A JPH0398393 A JP H0398393A JP 23595689 A JP23595689 A JP 23595689A JP 23595689 A JP23595689 A JP 23595689A JP H0398393 A JPH0398393 A JP H0398393A
- Authority
- JP
- Japan
- Prior art keywords
- degaussing
- current
- temperature
- circuit
- degaussing coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract description 12
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Landscapes
- Thermally Actuated Switches (AREA)
- Video Image Reproduction Devices For Color Tv Systems (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、消磁対象物として例えばカラーテレビジ曹ン
受像機の受像管の近傍に取付けられる消磁コイルと、時
間の経過とともに減衰する電流を前記消磁コイルに流す
ことが可能な機能を有する正特性サーミスタとを設置し
た消磁回路に関する。Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a degaussing coil installed near the picture tube of a color television receiver as an object to be demagnetized, and The present invention relates to a degaussing circuit including a positive temperature coefficient thermistor having a function of allowing a current that attenuates to flow through the degaussing coil.
(従来の技術)
従来の消磁回路の一つに実開昭52−28113号公報
に示されたものがあり、その構或回路を第4図に示す。(Prior Art) One of the conventional degaussing circuits is disclosed in Japanese Utility Model Application Laid-Open No. 52-28113, and its circuit structure is shown in FIG.
この消磁回路は、スイッチ12を介して電源13に接続
される正特性サーミスタ11、この正特性サーミスタ1
1と直列に接続されている消磁コイル14及びこの消磁
コイル14と並列に接続されているバイメタル15とに
よって構威されている。また、上記サーミスタ11とバ
イメタル15とは互いに熱的に接続されて、前記バイメ
タル15が正特性サーミスタ11の自己加熱温度によっ
て動作し、このバイメタル15のスイッチング箇所がオ
ンする機構になっており、更に消磁コイル14と前記バ
イメタル15の抵抗値は、前者が後者よりも高くなるよ
うに設定されている。This degaussing circuit includes a positive temperature coefficient thermistor 11 connected to a power supply 13 via a switch 12;
1 and a bimetal 15 connected in parallel with the degaussing coil 14. Further, the thermistor 11 and the bimetal 15 are thermally connected to each other, and the bimetal 15 is operated by the self-heating temperature of the positive temperature coefficient thermistor 11, and the switching part of the bimetal 15 is turned on. The resistance values of the degaussing coil 14 and the bimetal 15 are set so that the former is higher than the latter.
このような構成から成り立っている消磁回路においては
、まず最初スイッチ12がオンされると、電流は正特性
サーミスタl1から消磁コイル14に流れるが、通電時
間の経過とともに、前記正特性サーミスタ11と熱的に
接続されているバイメタル15が、この正特性サーミス
タl1の自己加熱温度により動作して通電(オン)状態
となり、バイメタル15より抵抗値の高い消磁コイル1
4に流れる電流を制限できるようになっている。In the degaussing circuit configured as described above, when the switch 12 is first turned on, current flows from the positive temperature coefficient thermistor l1 to the degaussing coil 14, but as the energization time elapses, the temperature increases between the positive temperature coefficient thermistor 11 and the degaussing coil 14. The bimetal 15, which is connected to
It is possible to limit the current flowing to 4.
すなわち、バイメタルを正特性サーミスタの自己加熱温
度によって動作させ、消磁回路の電流を制限する方式に
なっている。That is, the bimetal is operated by the self-heating temperature of the positive temperature coefficient thermistor, and the current of the degaussing circuit is limited.
(発明が解決しようとする課題)
しかし、上述の消磁回路においては、正特性サーミスタ
11の自己加熱温度によりバイメタル15が動作して、
電源13,スイッチ12,前記正特性サーミスタ11及
び前記バイメタル15とで構成される短絡回路が形成さ
れても、この短絡回路のインピーダンスZsが実際には
零とはならず、前記短絡回路のバイメタル15が消磁コ
イル14に入れ代った消磁回路のインピーダンスZcと
この短絡回路のインピーダンスZsとの関係より、消磁
コイルにはZs/(Zc+Zs)の残留電流が発生する
。(Problem to be Solved by the Invention) However, in the above degaussing circuit, the bimetal 15 operates due to the self-heating temperature of the positive temperature coefficient thermistor 11.
Even if a short circuit composed of the power supply 13, the switch 12, the positive temperature coefficient thermistor 11, and the bimetal 15 is formed, the impedance Zs of this short circuit does not actually become zero, and the bimetal 15 of the short circuit Due to the relationship between the impedance Zc of the degaussing circuit replaced by the degaussing coil 14 and the impedance Zs of this short circuit, a residual current of Zs/(Zc+Zs) is generated in the degaussing coil.
この結果、第4図に示す消磁コイル14に流れる電流は
零とならないため、十分な消磁効果が得られないという
問題がある。As a result, the current flowing through the demagnetizing coil 14 shown in FIG. 4 does not become zero, so there is a problem that a sufficient demagnetizing effect cannot be obtained.
そこで本発明は、消磁コイルに残留電流が発生せず、消
磁後の回路の電流が完全に零となる消磁回路の提供を目
的とするものである。Therefore, an object of the present invention is to provide a degaussing circuit in which no residual current is generated in the degaussing coil and the current in the circuit after degaussing becomes completely zero.
[発明の構成]
(課題を解決するための手段)
本発明は上記目的を達威するために、消磁回路において
正特性サーミスタの温度が所定の温度3
値に達した際に、消磁コイルに流れる電流を遮断するこ
とができる電流制御手段を設けたものとしている。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention has a degaussing circuit in which when the temperature of a positive temperature coefficient thermistor reaches a predetermined temperature value 3, a current flows through the degaussing coil. A current control means capable of interrupting the current is provided.
(作 用)
本発明の作用は、前記正特性サーミスタの温度が所定の
温度値に達した際に、電流制御手段により消磁コイルに
流れる電流を遮断することにより、消磁コイル自体に残
留電流を発生させず、もって消磁後の回路の電流が完全
に零となるようにしている。(Function) The function of the present invention is that when the temperature of the positive temperature coefficient thermistor reaches a predetermined temperature value, a residual current is generated in the degaussing coil itself by cutting off the current flowing through the degaussing coil by the current control means. This is done so that the current in the circuit after demagnetization becomes completely zero.
(実施例)
以下、本発明の消磁回路の一実施例を、第l図から第3
図までを参照して詳細に説明する。(Embodiment) An embodiment of the degaussing circuit of the present invention will be described below from Figs. 1 to 3.
This will be explained in detail with reference to the figures.
第1図は、本発明の一実施例を示す消磁回路の構或回路
図である。FIG. 1 is a circuit diagram of a degaussing circuit showing an embodiment of the present invention.
第1図に示す消磁回路1と前述した第4図に示す消磁回
路10との相違点は、正特性サーミスタ11と消磁コイ
ル14との間に配置され、前記正特性サーミスタ11の
温度が所定の温度値に達した際に、前記消磁コイルl4
に流れる電流を遮断4
することができる電流制御手段3と、この消磁コイル1
4に流れ込む電流を迂回して流すためのバイパス配線2
とを設けたことである。ここで上記の所定の温度値とは
、所定の通電時間が経過した時点での最大の消磁効果が
得られる温度値のことである。前記電流制御手段3は、
バイメタル4で構威されており、消磁コイル14とバイ
パス配線2とを切換制御できる機構になっている。The difference between the degaussing circuit 1 shown in FIG. 1 and the degaussing circuit 10 shown in FIG. 4 described above is that the degaussing circuit 10 shown in FIG. When the temperature value is reached, the degaussing coil l4
current control means 3 capable of interrupting the current flowing through the degaussing coil 1;
Bypass wiring 2 to bypass the current flowing into 4
This is because we have established the following. Here, the above-mentioned predetermined temperature value is a temperature value at which the maximum demagnetizing effect is obtained after a predetermined energization time has elapsed. The current control means 3 includes:
It is composed of a bimetal 4, and has a mechanism that can switch and control the degaussing coil 14 and the bypass wiring 2.
上記のバイメタル4は、第2図に示すように正特性サー
ミスタ11と共に合成樹脂製のケース12内に封入され
ており、このバイメタル4の一端は素体7の一端面に導
通が可能なように接続して固定され、一方の開放端は、
リード線5,6間で、正特性サーミスタ11の温度によ
り、前記リード線5.6のいずれか一方の接点に接触す
る可動片4aから成り立っている。As shown in FIG. 2, the bimetal 4 is enclosed in a synthetic resin case 12 together with a positive temperature coefficient thermistor 11, and one end of the bimetal 4 is connected to one end surface of the element body 7 so as to be electrically conductive. Connected and fixed, one open end is
It consists of a movable piece 4a that comes into contact with the contact point of either one of the lead wires 5, 6 depending on the temperature of the positive temperature coefficient thermistor 11 between the lead wires 5 and 6.
本実施例では正特性サーミスタ11が所定の温度に達し
ない際には、リード線5の接点に上記可動片4aが接触
する機構になっている。また、リード線6はバイパス配
線2と接続されているので、5
6
消磁コイル14に電流を流さない際には、該電流はバイ
パス配線21に流されることになる。In this embodiment, when the positive temperature coefficient thermistor 11 does not reach a predetermined temperature, the movable piece 4a contacts the contact point of the lead wire 5. Furthermore, since the lead wire 6 is connected to the bypass wiring 2, when no current is passed through the 5 6 degaussing coil 14, the current is passed through the bypass wiring 21.
尚、第2図中の8は素体7の他端面に接続されたリード
線である。Note that 8 in FIG. 2 is a lead wire connected to the other end surface of the element body 7.
以上のように構威された消磁回路1において、電源スイ
ッチ12を導通(オン)状態にすると、正特性サーミス
タ11の作用により、温度に対応する電流が消磁コイル
14に流れる。次に、この通電状態により、上記正特性
サーミスタ11自体の温度は上昇し、これにつれて該抵
抗値も上昇し、流れる電流値は第3図に示すように減少
する。In the degaussing circuit 1 configured as described above, when the power switch 12 is turned on (on), a current corresponding to the temperature flows through the degaussing coil 14 due to the action of the positive temperature coefficient thermistor 11. Next, due to this energized state, the temperature of the positive temperature coefficient thermistor 11 itself rises, and the resistance value also rises accordingly, and the flowing current value decreases as shown in FIG. 3.
尚、第3図において横軸は時間t1縦軸は電流値iを示
す。In FIG. 3, the horizontal axis indicates time t1, and the vertical axis indicates current value i.
ここで、正特性サーミスタ11自体の温度が、所定時間
t1経過後に所定の温度値になって、残留電流が流れる
ものとした場合、可動片4aがリード線6に接触する際
の温度を該所定の温度値とし、この値を設定する。この
設定した温度に正特性サーミスタ11の温度が達すると
、可動片4aはリード線5の接点から離れ、バイパス配
線2に接続されているリード線6の接点に接触するので
、消磁コイル14に流れていた電流は遮断され、該電流
はリード線6を経由してバイパス配線2に流れるように
なる。このことから、電流制御手段3には常時電流が流
れ、バイパス配線2に電流が流れた後は上記正特性サー
ミスタ11自体の温度は、一定の温度安定点で安定する
ので、可動片4aが再びリード線5の接点に接触するこ
とはない。Here, if the temperature of the PTC thermistor 11 itself reaches a predetermined temperature value after a predetermined time t1 has elapsed, and a residual current flows, the temperature when the movable piece 4a contacts the lead wire 6 is set to the predetermined temperature value. Set this value as the temperature value. When the temperature of the positive temperature coefficient thermistor 11 reaches the set temperature, the movable piece 4a separates from the contact point of the lead wire 5 and comes into contact with the contact point of the lead wire 6 connected to the bypass wiring 2, so that the current flows to the degaussing coil 14. The current that was flowing is cut off, and the current starts to flow to the bypass wiring 2 via the lead wire 6. From this, a current always flows through the current control means 3, and after the current flows through the bypass wiring 2, the temperature of the positive temperature coefficient thermistor 11 itself becomes stable at a certain stable temperature point, so that the movable piece 4a is turned off again. It does not come into contact with the contacts of the lead wire 5.
尚、第1図ではバイメタル4の変位後の状態を点線で示
している。In FIG. 1, the state of the bimetal 4 after displacement is shown by dotted lines.
以上のように本実施例では、正特性サーミスタが所定の
温度に達した時点で、消磁コイルに流れる残留電流を完
全に遮断して、消磁コイルに電流を流さない機構にして
いる。As described above, in this embodiment, when the positive temperature coefficient thermistor reaches a predetermined temperature, the residual current flowing through the degaussing coil is completely cut off, so that no current flows through the degaussing coil.
従って、消磁対象物としてカラーテレビジョン受像機の
受像管の近傍に、消磁コイルを取付けた場合には、初期
電流の減衰特性は緩慢でありながら、残留電流が消磁コ
イルに発生しないので、該残留電流による振動磁界が受
像管内の電子ビームに「ゆらぎ」を与えることにより発
生する受像管の画面がちらつくという問題を解決するこ
とができる。ここで、上記の電子ビームに作用する振動
磁界とは、消磁コイル14に流れる残留電流値をAとし
、前記の消磁コイル14の巻線数をTとすると、AxT
で表わされる。さらに、消磁コイルに残留電流が発生し
ないため、残留電流を考慮する必要がないので、消磁対
象物に応じた任意の初期電流の減衰特性を設定すること
が可能となり、それぞれの消磁対象物に見合った、且つ
最適な消磁効果を得ることができる、
尚、本実施例では、電流制御手段としてバイメタルを用
いているが、前記バイメタルに限定されることはなく、
例えば感温リードスイッチ及び所定の温度値において電
流を遮断できるものであれば、適用することが可能であ
る。Therefore, when a degaussing coil is installed near the picture tube of a color television receiver as the object to be degaussed, although the decay characteristic of the initial current is slow, no residual current is generated in the degaussing coil. It is possible to solve the problem that the picture tube screen flickers, which is caused by the oscillating magnetic field caused by the current giving "fluctuations" to the electron beam in the picture tube. Here, the oscillating magnetic field acting on the electron beam is defined as AxT, where A is the residual current flowing through the degaussing coil 14, and T is the number of turns of the degaussing coil 14.
It is expressed as Furthermore, since no residual current is generated in the degaussing coil, there is no need to consider residual current, so it is possible to set an arbitrary initial current attenuation characteristic depending on the object to be demagnetized. In addition, in this embodiment, a bimetal is used as the current control means, but it is not limited to the above-mentioned bimetal.
For example, a temperature-sensitive reed switch or any device that can cut off current at a predetermined temperature value can be applied.
[発明の効果コ
以上詳述したように本発明によれば、消磁コイルに残留
電流が全く発生せず、更に消磁後の回路の平衡点での電
流が完全に零となる消磁回路を提供することができる。[Effects of the Invention] As detailed above, the present invention provides a degaussing circuit in which no residual current is generated in the degaussing coil and the current at the equilibrium point of the circuit after demagnetization is completely zero. be able to.
第1図は本発明の一実施例としての消磁回路の構成回路
図、第2図は第1図に示す正特性サーミスタの概略構威
図、第3図は第1図に示す消磁回路の電流減衰の特性図
、第4図は従来の技術での消磁回路の構成回路図である
。
3・・・電流制御手段、11・・・正特性サーミスタ、
14・・・消磁コイル。
9
10
特開平3
98393 (4)
第
3
図Fig. 1 is a configuration circuit diagram of a degaussing circuit as an embodiment of the present invention, Fig. 2 is a schematic configuration diagram of the positive temperature coefficient thermistor shown in Fig. 1, and Fig. 3 is a current diagram of the degaussing circuit shown in Fig. 1. The attenuation characteristic diagram, FIG. 4, is a configuration circuit diagram of a conventional degaussing circuit. 3... Current control means, 11... Positive characteristic thermistor,
14... Demagnetizing coil. 9 10 JP-A-3 98393 (4) Figure 3
Claims (3)
時間の経過とともに減衰する電流を該消磁コイルに流す
ことが可能な機能を有する正特性サーミスタとを有する
消磁回路において、前記正特性サーミスタの温度が所定
の温度値に達した際に該消磁コイルに流れる前記電流を
遮断することができる電流制御手段を設けたことを特徴
とする消磁回路。(1) A demagnetizing coil installed near the object to be demagnetized,
In a degaussing circuit having a positive temperature coefficient thermistor having a function of allowing a current that decays over time to flow through the degaussing coil, when the temperature of the positive temperature coefficient thermistor reaches a predetermined temperature value, the degaussing coil is activated. A degaussing circuit comprising current control means capable of interrupting the flowing current.
て流すためのバイパス配線が施されており、上記電流制
御手段は消磁コイルとバイパス配線とを切換制御するも
のである請求項1記載の消磁回路。(2) The degaussing circuit is provided with bypass wiring for bypassing the current flowing through the degaussing coil, and the current control means switches and controls the degaussing coil and the bypass wiring. degaussing circuit.
換制御する箇所にバイメタルが設置されており、前記切
換制御はこのバイメタルを用いて行う請求項1記載の消
磁回路。(3) The degaussing circuit according to claim 1, wherein a bimetal is installed in the degaussing circuit at a location where switching control is performed between the degaussing coil and the bypass wiring, and the switching control is performed using the bimetal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23595689A JPH0398393A (en) | 1989-09-12 | 1989-09-12 | Degaussing circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23595689A JPH0398393A (en) | 1989-09-12 | 1989-09-12 | Degaussing circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0398393A true JPH0398393A (en) | 1991-04-23 |
Family
ID=16993705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23595689A Pending JPH0398393A (en) | 1989-09-12 | 1989-09-12 | Degaussing circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0398393A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006254699A (en) * | 2006-05-24 | 2006-09-21 | Mitsubishi Electric Corp | Demagnetization device and method, disassembling apparatus for product having permanent magnet, and disassembling method of product having permanent magnet and permanent magnet |
JP2009291070A (en) * | 2009-09-08 | 2009-12-10 | Mitsubishi Electric Corp | Demagnetization device, device for decomposing product having permanent magnet, demagnetization method, and method of decomposing product having permanent magnet |
-
1989
- 1989-09-12 JP JP23595689A patent/JPH0398393A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006254699A (en) * | 2006-05-24 | 2006-09-21 | Mitsubishi Electric Corp | Demagnetization device and method, disassembling apparatus for product having permanent magnet, and disassembling method of product having permanent magnet and permanent magnet |
JP4496413B2 (en) * | 2006-05-24 | 2010-07-07 | 三菱電機株式会社 | Demagnetization device and method for permanent magnet motor |
JP2009291070A (en) * | 2009-09-08 | 2009-12-10 | Mitsubishi Electric Corp | Demagnetization device, device for decomposing product having permanent magnet, demagnetization method, and method of decomposing product having permanent magnet |
JP4666097B2 (en) * | 2009-09-08 | 2011-04-06 | 三菱電機株式会社 | Dismantling apparatus and disassembling method for products having permanent magnets |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5923520A (en) | Demagnetizing circuit and current limiting device | |
CA2312486A1 (en) | Electromagnetic relay | |
US2842642A (en) | Time delay devices | |
JPH0398393A (en) | Degaussing circuit | |
JPH03205730A (en) | Reed switch built-in type actuator | |
US3495136A (en) | Degaussing circuits | |
US3161806A (en) | Control device and circuits for electric bedcovers | |
US3512643A (en) | Control device for water treatment apparatus | |
US3316374A (en) | Thermostat with an improved heat anticipation means | |
US3593248A (en) | Thermal control means | |
US3114820A (en) | Heat responsive control circuit | |
US1992765A (en) | Thermostatic switch | |
JPS60233989A (en) | Degausser | |
US5870269A (en) | Demagnetizing circuit | |
US3798416A (en) | Temperature control systems | |
US4788516A (en) | Enclosed electromagnetic relay | |
US3805060A (en) | Photoelectric control unit for snap action switch | |
US2935659A (en) | Priming device for fluorescent tubes | |
JPH10210490A (en) | Current control circuit for degaussing | |
JPH0338925Y2 (en) | ||
US3593230A (en) | Load independent thermo-magnetic flasher | |
JPH0537589Y2 (en) | ||
JPS6138673B2 (en) | ||
JP2535613B2 (en) | Degaussing circuit of television receiver | |
US3231881A (en) | Emergency alarm receiver |