JPH0397845A - Borided sliding member and production thereof - Google Patents

Borided sliding member and production thereof

Info

Publication number
JPH0397845A
JPH0397845A JP23377089A JP23377089A JPH0397845A JP H0397845 A JPH0397845 A JP H0397845A JP 23377089 A JP23377089 A JP 23377089A JP 23377089 A JP23377089 A JP 23377089A JP H0397845 A JPH0397845 A JP H0397845A
Authority
JP
Japan
Prior art keywords
porosity
region
boride
sintered
outermost surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23377089A
Other languages
Japanese (ja)
Other versions
JP2757340B2 (en
Inventor
Eiji Sugiyama
英二 杉山
Motoji Hayashi
元司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP1233770A priority Critical patent/JP2757340B2/en
Priority to DE1990610805 priority patent/DE69010805T2/en
Priority to EP19900309842 priority patent/EP0416947B1/en
Publication of JPH0397845A publication Critical patent/JPH0397845A/en
Priority to US07/964,467 priority patent/US5242741A/en
Application granted granted Critical
Publication of JP2757340B2 publication Critical patent/JP2757340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/04Treatment of selected surface areas, e.g. using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1109Inhomogenous pore distribution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/68Boronising
    • C23C8/70Boronising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To produce the borided sliding member having excellent surface characteristics, strength and load resistance by pressurizing the surface of a sintered material internally having holes to decrease the porosity on the surface side and forming a boride on the extreme surface thereof. CONSTITUTION:The sintered material internally having the holes is prepd. by using a material, such as steel, The porosity thereof is preferably about 6 to 30%. The surface to be treated of the sintered member is subjected to a pressurization treatment to decrease the porosity on the surface side and to constitute the extreme surface region where the porosity is smaller than the inside and is <=5% and the porous inner region which maintains the as- sintered porosity on the inner side thereof. At least the extreme surface region is then brought into contact with a boriding agent to form the boride layer only on this surface. The extreme surface region is preferably formed to about 0.05 to 2mm thickness and the boride layer to about 10 to 150mum thickness. The borided sliding member which is excellent in the surface characteristics, such as wear resistance, oxidation resistance and corrosion resistance, as well as in the strength, load resistance and fatigue resistance is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、浸ほう素処理摺動部材およびその製造方法に
関するものであり、さらに詳しく述べるならば、一部の
面が浸ほう素処理された焼結摺動部材およびその製法に
関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a boron-treated sliding member and a method for manufacturing the same. This invention relates to a sintered sliding member and its manufacturing method.

(従来の技術) 鉄鋼材料の浸ほう素処理は従来圧延、鍛造、押出し、鋳
造などの溶解工程を経た材料を対象として、耐摩耗性、
耐酸化性、耐食性などを改善する表面処理として、広く
行われてきた.浸ほう素処理はこれらの優れた特性を発
揮する反面、ほう化物が硬くて脆いことによる脆化が起
こすことが弱点である。特に、処理層の表面には、Fe
Bの非常に脆い層ができやすい。このFeBはクラック
をすぐ発生してしまったり脆化を起こしたりするもので
あるので、FeBが発生してしまうと摺動材として使用
するには問題がある. 焼結材は一般にそのまま使用されるが、焼結材の付帯処
理として、圧延、伸線、スエージング、鍛圧、サイジン
グあるいはコイニング(型の中で焼結材を再圧延する方
法)後処理が行われることがあるが(改訂増補粉末冶金
学、標準金属講座、コロナ社、昭和55年発行12版、
第105〜106頁)、焼結材の表面処理は一般的では
ない。
(Conventional technology) Boring treatment of steel materials targets materials that have undergone conventional melting processes such as rolling, forging, extrusion, and casting, and improves wear resistance,
It has been widely used as a surface treatment to improve oxidation resistance, corrosion resistance, etc. Although boron immersion treatment exhibits these excellent properties, its weakness is that it causes embrittlement due to the hardness and brittleness of the boride. In particular, the surface of the treated layer contains Fe.
A very brittle layer of B is likely to form. This FeB easily cracks or becomes brittle, so if FeB occurs, it is problematic to use it as a sliding material. Sintered materials are generally used as they are, but post-treatments such as rolling, wire drawing, swaging, forging, sizing, or coining (a method of rerolling the sintered material in a mold) are performed as additional treatments for the sintered materials. (Revised and expanded Powder Metallurgy, Standard Metals Course, Corona Publishing, 1980, 12th edition,
(pages 105-106), surface treatment of sintered materials is not common.

焼結材料の表面処理の従来技術を概観すると、MPIP
(Metal Powder Institute F
ederation)材料規格FN−0200−Tなど
のように肌焼可能な材料もある(改訂2版、金属データ
ブック、丸善株式会社昭和59年I月30日発行、第2
32〜233頁).この材料はNiを添加しまた密度が
7.2〜7,6と比較的高いことに特徴がある。さらに
,日本粉末冶金工業会規格JPMA 1のSMF 2種
は浸炭処理可能な材料である(前掲、金属データブック
、第236頁)。この材料は3%以下添加されるCuが
気孔を消失させることが浸炭性を付与している。
An overview of the conventional technology for surface treatment of sintered materials is MPIP.
(Metal Powder Institute F
There are materials that can be case hardened, such as material standard FN-0200-T (2nd revised edition, Metal Data Book, published by Maruzen Co., Ltd., January 30, 1980, 2nd edition).
32-233). This material is characterized by the addition of Ni and a relatively high density of 7.2 to 7.6. Furthermore, SMF type 2 of the Japanese Powder Metallurgy Association standard JPMA 1 is a material that can be carburized (cited above, Metal Data Book, p. 236). This material has carburizability because the Cu added in an amount of 3% or less eliminates pores.

一方、浸ほう素処理に関する特許文献としては、特開昭
60−21371号があるが、この技術はCr粉末を入
れた金属容器を加圧し、Cr粉末を焼結する際に製造条
件を制御して、ビンホールのない真密度の焼結体を形成
し、その後、機械加工で焼結体の容器等を面削した素材
、すなわち、空孔のない素材に浸ほう素処理するもので
あって、空孔をもつCr焼結材料に直接浸ほう素処理す
る方法ではない。
On the other hand, as a patent document related to boron treatment, there is Japanese Patent Application Laid-Open No. 60-21371, but this technology pressurizes a metal container containing Cr powder and controls the manufacturing conditions when sintering the Cr powder. A sintered body with true density without bottle holes is formed, and then a material obtained by machining the container of the sintered body and the like, that is, a material without pores, is subjected to boron immersion treatment, This is not a method in which a Cr sintered material with holes is directly subjected to boron treatment.

(発明が解決しようとする課題) 従来、肌焼や浸炭などが可能な焼結材は公知であるが、
かかる材料に肌焼などをすると全面が硬化されることに
なり,筒状部品の内面など、部の面に処理を行うことは
出来ない。また、浸ほう素処理については、鉄系の焼結
材や空孔をもっ焼結材を対象として行うことは知られて
なく、当然、焼結材の一部の表面についてのみを対象と
する浸ほう素処理法は知られていない. 本発明者らは管状焼結材料の内面に直接浸ほう素処理し
たところ、一般的なガス量を発生させる処理条件ではほ
う素ガスが空孔を通して外面に向かって流れ洩れてしま
うために、ほう素化自体ができず、当然所望の内面には
処理層ができなかった。また、多量のガスを発生させて
処理したり焼結体全体に浸ほう素処理をしたところ、表
面のみならず、焼結体の内部にもほう素化がなされ、し
かも焼結材の内部における空孔表面に非常に脆いFeB
が相当量発生するなど、焼結材全体のほう素化による脆
化が起こることが分かった。
(Problem to be solved by the invention) Conventionally, sintered materials capable of case hardening, carburizing, etc. have been known.
If such a material is subjected to case hardening, the entire surface will be hardened, and the treatment cannot be applied to partial surfaces such as the inner surface of a cylindrical part. Furthermore, it is not known that boron immersion treatment is applied to iron-based sintered materials or sintered materials with pores, and of course it is only applied to a part of the surface of the sintered material. There is no known boron treatment method. The present inventors performed direct immersion boron treatment on the inner surface of a tubular sintered material. Naturally, the desired treatment layer could not be formed on the inner surface because the plating itself could not be carried out. In addition, when a large amount of gas is generated or the entire sintered body is treated with boron, boronization occurs not only on the surface but also inside the sintered body. Very brittle FeB on the surface of the pores
It was found that the entire sintered material was embrittled due to boronization, as a considerable amount of was generated.

したがって、本発明は、所望の面のみにのみほう化物層
が形成され、また表面特性とともに強度や耐荷重性が優
れた浸ほう素処理焼結摺動部材を提供することを目的と
する。また、本発明はかかる摺動部材を製造する方法を
提供することも目的とする。
Therefore, an object of the present invention is to provide a boron-treated sintered sliding member in which a boride layer is formed only on desired surfaces, and which has excellent strength and load resistance as well as surface characteristics. Another object of the present invention is to provide a method for manufacturing such a sliding member.

(課題を解決するための手段) 本発明にかかる浸ほう素処理焼結摺動部材は、内部に空
孔をもつ焼結材料の一部の面のみが浸ほう素処理されて
いる摺動部材であって、該浸ほう素処理がなされる面の
内部に設けた多孔質の内部領域と、その表面側に設けら
れ多孔率が内部領域より小さくかつ5%以下である最表
面領域とを備え,該最表面領域の少なくとも表面側にほ
う化物が形成され、前記内部領域は実質的にほう化物が
形成されておらず最表面領域より高い多孔率に構成され
ていることを特徴とする。
(Means for Solving the Problems) A boron-treated sintered sliding member according to the present invention is a sliding member in which only a part of a surface of a sintered material having holes inside is boron-treated. comprising a porous inner region provided inside the surface to be subjected to the boron immersion treatment, and an outermost surface region provided on the surface side and having a porosity smaller than that of the inner region and 5% or less. , a boride is formed at least on the surface side of the outermost surface region, and the inner region is substantially free of boride and has a higher porosity than the outermost surface region.

本発明に係る方法は、内部に空孔をもつ焼結材料を調製
する工程、該焼結材料の浸ほう素処理すべき面に対し加
圧して、その表面側のに多孔率を減少させて多孔率が内
部より小さくかつ5%以下となる最表面領域と領域と、
その内部側に焼結された時の多孔率を実質的に保った多
孔質の内部領域とを構成させる領域形成工程、次いで、
少なくとも前記最表面領域を浸ほう素処理剤と接触させ
て最表面領域の少なくとも表面にほう化物を形成し、か
つ最表面領域より高い多孔率に構成された内部領域には
実質的にほう化物を形成しない浸ほう素処理層形成工程
、の各工程から構成されていることを特徴とする。
The method according to the present invention includes a step of preparing a sintered material having pores inside, and applying pressure to the surface of the sintered material to be treated with boron to reduce the porosity on the surface side. an outermost surface region and a region where the porosity is smaller than the interior and 5% or less;
A region forming step of forming a porous inner region that substantially maintains the porosity when sintered on the inner side;
At least the outermost surface region is brought into contact with a boron treatment agent to form a boride on at least the surface of the outermost surface region, and the inner region having a higher porosity than the outermost surface region is substantially free of boride. It is characterized by comprising each step of forming a boron-treated layer without forming it.

以下、本発明の構成を詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.

本発明の浸ほう素処理される母材は、焼結鉄、あるいは
、鉄一炭素系・鉄一炭素一銅系・鉄ニッケル系・鉄−ニ
ッケルー銅系・鉄−マンガン系・鉄一炭素一マンガン系
の焼結材やこれらに硫黄を添加した焼結材などの各種材
料であってよい。浸ほう素処理法は、固体法、液体法、
ガス法などの公知の方法はいずれも採用可能であるが、
固体法が特に好ましい.浸ほう素処理により形成される
ほう化物相は、管状部材の内面または外面、板の一面な
どの耐摩耗性を付与する必要がある面に薄く形成される
。相手材と摺動せず、摺動特性が要求されない焼結材料
の面にはほう化物層を形成せず、脆いほう化物層が存在
することによる疲労強度の低下などをできるだけ少なく
するとよい. 本発明の最表面領域は、内部領域より多孔率が小さくか
つ5%以下としてある.これは、最表面領域の多孔率が
5%を超えると処理ガスが内部領域に洩れてしまい、所
望の面にほう素化ができないか、ほう素化が内部領域の
深部まであるいは全体にまで及び内部に脆いFeBが広
い範囲で形成されることとなり摺動部材の脆化が起こる
ことを避けるためである.また、最表面領域の多孔率と
内部領域の多孔率が同じ場合には、摺動材として使用さ
れると、浸ほう素処理された部分に応力が集中しやすく
なり耐荷重能が不充分となったり、多孔率によっては内
部領域の脆化が発生しやすくなる。すなわち、最表面領
域の多孔率は、内部領域より多孔率が小さいことと5%
以下の両方を満足する必要がある。
The base material to be subjected to the boron treatment of the present invention is sintered iron, iron-carbon system, iron-carbon-copper system, iron-nickel system, iron-nickel-copper system, iron-manganese system, iron-carbon-system. Various materials may be used, such as manganese-based sintered materials and sintered materials with sulfur added thereto. Boron treatment methods include solid method, liquid method,
Any known method such as the gas method can be adopted, but
Solid state methods are particularly preferred. The boride phase formed by the boron treatment is formed in a thin layer on surfaces where it is necessary to impart wear resistance, such as the inner or outer surface of a tubular member or one surface of a plate. It is best not to form a boride layer on the surface of a sintered material that does not slide with the mating material and where sliding properties are not required, to minimize the reduction in fatigue strength caused by the presence of a brittle boride layer. The outermost surface region of the present invention has a smaller porosity than the inner region and is set to 5% or less. This is because if the porosity of the outermost surface area exceeds 5%, the processing gas will leak into the internal area, and the desired surface may not be boronized, or the boronization may extend deep into the internal area or extend to the entire internal area. This is to avoid embrittlement of the sliding member due to the formation of brittle FeB over a wide area inside. In addition, if the porosity of the outermost surface area and the porosity of the internal area are the same, when used as a sliding material, stress tends to concentrate on the boron-treated area, resulting in insufficient load-bearing capacity. Depending on the porosity, embrittlement may occur in the internal region. In other words, the porosity of the outermost surface region is smaller than that of the inner region and is 5%.
Both of the following must be satisfied.

ここで、最表面領域の多孔率を2%以上とすると別の観
点で好ましい。これは、多孔率が2〜5%の範囲ではガ
スの洩れは微量となり上述のようにほう素化できると同
時に、この洩れたガスが最表面の近傍の空孔に充満し、
浸ほう素処理速度を初期段階で早めることができるから
である.しかも、浸ほう素処理はほう化物の形成による
若干の焼結材料の膨張を伴うので、浸ほう素処理の後期
には空孔が次第に狭くなる傾向にあり洩れはさらに少な
くなり内部領域でのほう素化を抑制するようになる。も
ちろん、本発明では内部領域の多孔率が最表面領域より
も高く構成してあるために、最表面領域から内部領域へ
洩れたガスは内部領域から焼結体の外部へ排出でき、一
層内部領域でのほう素化を抑制できることとなる。この
時、最表面領域の厚さを0.05〜2}、好ましくは0
.1〜1mo+、より好ましくは0.2〜0.6mmの
厚さにするとよい.特に0.5mm前後とするとよい。
Here, it is preferable from another point of view that the porosity of the outermost surface region is 2% or more. This is because when the porosity is in the range of 2 to 5%, the amount of gas leaking is small and boronization is possible as described above, and at the same time, this leaked gas fills the pores near the outermost surface.
This is because the boron treatment speed can be sped up at the initial stage. Moreover, since the boronization process involves some expansion of the sintered material due to the formation of borides, the pores tend to gradually become narrower in the later stages of the boronation process, resulting in even less leakage and more leakage in the internal region. It starts to suppress elementalization. Of course, in the present invention, since the porosity of the inner region is higher than that of the outermost surface region, gas leaking from the outermost surface region to the inner region can be discharged from the inner region to the outside of the sintered body. This means that boronization can be suppressed. At this time, the thickness of the outermost surface area is set to 0.05 to 2}, preferably 0.
.. The thickness is preferably 1 to 1 mo+, more preferably 0.2 to 0.6 mm. In particular, it is preferable to set it to around 0.5 mm.

また、多孔率を2%以上とすると、最表面領域の製造上
の利点として、領域形成工程で少ない加圧ですむことが
あり、複雑で高価な設備を必要とせずに多孔率を減少さ
せることが容易にできる. 本発明において、この最表面層と内部領域との間に、多
孔率を最表面層と内部領域の中間に設定した内側領域を
形成するとよい.また、内側領域は、その最表面側を最
表面領域の多孔率近く、その内部領域側を内部領域の多
孔率に近くし、これらの中間は最表面領域に向かって連
続的に多孔率が減少するように構成すると、接合性や荷
重吸収能あるいはガス排出性等の点で好ましく、摺動特
性の向上に寄与するとともに、製造上も好ましくなる。
In addition, when the porosity is set to 2% or more, an advantage in manufacturing the outermost surface region is that less pressure is required in the region forming process, and the porosity can be reduced without the need for complicated and expensive equipment. can be easily done. In the present invention, it is preferable to form an inner region having a porosity set to be between the outermost layer and the inner region between the outermost surface layer and the inner region. In addition, the inner region has a porosity close to that of the outermost surface region on the outermost surface side, a porosity of the inner region on the inner region side, and a porosity that continuously decreases in the middle toward the outermost surface region. Such a structure is preferable in terms of bondability, load absorption capacity, gas discharge properties, etc., contributes to improvement in sliding characteristics, and is also preferable in terms of manufacturing.

そして、内側領域は内部領域と協同して耐荷重能の向上
を一層図ることができる。この内側領域の厚さは0.5
〜1.5mmとするとよい。
Further, the inner region can cooperate with the inner region to further improve the load-bearing capacity. The thickness of this inner region is 0.5
It is preferable to set it to 1.5 mm.

また、最表面領域と内側領域の合計の厚さは2lII1
以下とするとよい.浸ほう素処理によるほう化物はなる
べく最表面領域の中に形成するとよいが、最表面領域の
厚さが薄い等の場合には、この内部領域の表面側の一部
に達するまでほう化物を形成してもよい。
Also, the total thickness of the outermost surface area and the inner area is 2lII1
It is recommended to do the following. It is best to form the boride in the outermost surface area as much as possible by dipping the boron treatment, but if the outermost surface area is thin, the boride should be formed until it reaches a part of the surface side of this internal area. You may.

内部領域の多孔率は最表面領域より高く、空孔な多くし
てほう化を避けるとともに、空孔が荷重を吸収するクッ
ションとして作用することを利用して、表面の浸ほう素
処理層に応力集中が発生するのを避け、摺動部材全体と
しての耐荷重能を向上させ、優れた摺動特性を発揮する
ことができるように設定される。一方、内部領域でほう
化が起こると、表面処理本来の目的でない、不所望の部
分でほう化物が形成されるのみならず、内部領域で空孔
の表面に形成される脆いFeBは研磨により除去できな
いので、脆化が進行する。このように空孔表面がFeB
化されている摺動部材が荷重を受けると、空孔の表面が
欠けることになり、耐荷重性が低下する.したがって最
表面領域の多孔率を高く構成するとよい。
The porosity of the inner region is higher than that of the outermost surface region, which prevents boronization by increasing the number of pores.The porosity of the pores acts as a load-absorbing cushion, which reduces stress on the surface boron-treated layer. It is set to avoid concentration, improve the load bearing capacity of the sliding member as a whole, and exhibit excellent sliding characteristics. On the other hand, if boride occurs in the internal region, not only will boride be formed in undesired areas that are not the original purpose of surface treatment, but also the brittle FeB formed on the surface of the pores in the internal region will be removed by polishing. Since this is not possible, embrittlement progresses. In this way, the pore surface is FeB
When a sliding member that is made of aluminum is subjected to a load, the surface of the pores will be chipped and the load bearing capacity will decrease. Therefore, it is preferable to configure the outermost surface region to have a high porosity.

内部領域の多孔率は6%以上であることが好ましい。多
孔率が6%未満ではクッション作用が不十分であり、ま
た高密度焼結材を得るための粉末冶金的条件が厳しくな
る。一方多孔率が通常の焼結材工業製品の最低密度に相
当する30%以上では強度が低下して、摺動部材として
不適になる.なお、上記した内部領域の多孔率は最表面
領域と接する境界から浸ほう素処理反対面までの平均多
孔率を指す. 内部領域の多孔率は最表面領域と接する内側領域では小
さく、より内部では大きい分布をもっていることが好ま
しい。特に、内部領域の多孔率が大きい場合は、応力を
内側領域に平均化させるために、多孔率が前記した平均
値と最表面領域の中間の内側領域を積極的に利用する。
The porosity of the inner region is preferably 6% or more. If the porosity is less than 6%, the cushioning effect will be insufficient and the powder metallurgical conditions for obtaining a high-density sintered material will become severe. On the other hand, if the porosity exceeds 30%, which corresponds to the lowest density of ordinary sintered industrial products, the strength decreases and the material becomes unsuitable for use as a sliding member. The porosity of the internal region mentioned above refers to the average porosity from the boundary in contact with the outermost surface region to the opposite surface to the boron treatment. It is preferable that the porosity of the inner region is small in the inner region in contact with the outermost surface region and larger in the inner region. In particular, when the porosity of the inner region is large, the inner region where the porosity is between the above average value and the outermost surface region is actively used in order to average stress in the inner region.

内側領域は例えば厚みが0.5〜1.5mmの広がりを
持ち、その多孔率は例えば6〜15%であることが好ま
しい。
The inner region preferably has a thickness of, for example, 0.5 to 1.5 mm, and a porosity of, for example, 6 to 15%.

摺動部材が受ける荷重が低い時は、ほう化物は若干、数
十μm、内部領域に入り込むように形成されても良いが
、好ましくは、ほう化物は最表面領域より薄く、ほう化
物が形成されない最表面領域が残るようにほう化物の形
成深さをコントロールする.このように、表面から順に
ほう化物相、ほう化物が形成されない最表面領域(以下
、中間層という)、内部領域が配列されるように層構造
をコントロールした摺動部材が加重を受けると、中間層
が全体として荷重を内部領域に一様に伝達し、耐荷重性
や強度が高められる。すなわち、中間層は高密度である
ので、応力集中を招く低強度部分をもたず、全体が荷重
を受け、これを内部領域に伝達する。一方、最表面領域
と内部領域の界面は、脆い層である前者と低強度層であ
る後者が接している場所であるから荷重にさらされた時
に応力集中が起こりやすく、後者に局部的に荷重が伝達
され,容易にその破壊を起こすことがある。
When the load applied to the sliding member is low, the boride may be formed to penetrate into the inner region by a few tens of micrometers, but preferably the boride is thinner than the outermost surface region so that no boride is formed. Control the depth of boride formation so that the outermost surface area remains. In this way, when a sliding member whose layer structure is controlled so that the boride phase, the outermost surface area where no boride is formed (hereinafter referred to as the intermediate layer), and the internal area are arranged in order from the surface is subjected to load, the intermediate layer The layers as a whole evenly transfer loads to the interior areas, increasing load carrying capacity and strength. That is, since the intermediate layer is dense, it does not have low-strength areas that would cause stress concentration, and the entire body takes the load and transmits it to the internal region. On the other hand, since the interface between the outermost surface region and the inner region is a place where the former, which is a brittle layer, and the latter, which is a low-strength layer, are in contact, stress concentration tends to occur when exposed to a load, and the latter is locally loaded. is transmitted and can easily cause its destruction.

ほう化物層は、通常、最表面に形成される脆いFeBの
一部を研磨などにより数μm除去した後、浸ほう素処理
焼結材を摺動部材として使用する。また、本出願人が特
願昭63−181671号で提案したように、FeBを
研磨等で除去し、FetBとFesBの2相混合組織が
表れるようにしても良い.ほう化物層の厚みは、10〜
150LLmであることが好ましい.この厚みが10μ
m未満では摺動部材の耐摩耗性が十分ではなく、一方1
50ILmを超えると脆いFeBが多量に生成したり、
処理による摺動部材の形状変形が発生したりすることも
あり、ほう化物層の内部での強度劣化が起こりやすくな
る.特に好ましいほう化物層の厚みは30〜100ミク
ロンである。
In the boride layer, a portion of the brittle FeB formed on the outermost surface is usually removed by several micrometers by polishing or the like, and then the boron-treated sintered material is used as a sliding member. Furthermore, as proposed by the present applicant in Japanese Patent Application No. 181671/1983, FeB may be removed by polishing or the like to reveal a two-phase mixed structure of FetB and FesB. The thickness of the boride layer is 10~
Preferably it is 150LLm. This thickness is 10μ
If it is less than 1 m, the wear resistance of the sliding member will not be sufficient;
If it exceeds 50 ILm, a large amount of brittle FeB will be generated,
The treatment may cause deformation of the shape of the sliding member, making it easier for strength to deteriorate inside the boride layer. Particularly preferred boride layer thicknesses are between 30 and 100 microns.

そして、ほう化物層の厚さに対し、最表面領域の厚さを
大きくすると、最表面領域にほう化物のない残余部分が
できることとなり、ほう化物を含んだ最表面領域が実質
的に一体となって応力集中を回避し、応力を多孔率の高
い内部領域に分散させることとなる。
If the thickness of the outermost surface region is increased relative to the thickness of the boride layer, a residual portion free of boride will be formed in the outermost surface region, and the outermost surface region containing boride will become substantially integrated. This avoids stress concentration and distributes the stress to the internal region with high porosity.

上記のように最表面領域と内部領域で多孔率が異なる焼
結材を作るには、通常の方法で焼結を行い、多孔率が全
体としてほぼ均一な焼結体を一旦作った後、本請求項2
記載の方法を行う。具体的な空孔縮小手段としてはロー
ル、型、回転円盤ダイス等任意の方法であってよいが、
治具の寿命などからサイジングが最も一般的である。サ
イジングは被加工物の寸法を3〜10%程度減少させる
ように行うことが好ましい。サイジングによる寸法減少
量が3%以下では空孔減少の効果が少なく、一方10%
を超えると加工が困難となる。サイジングのための加工
法は被加工物の形状によって異なり、例えば筒状のもの
の内面を空孔縮小処理する時は、先端にテーバがついた
マンドレル状の型で被加工物の内面をしごき、逆に外面
を処理する時は筒状のダイスで外面をしごくようにする
In order to create a sintered material with different porosity in the outermost region and the inner region as described above, sintering is performed using the usual method to create a sintered material with approximately uniform porosity as a whole. Claim 2
Perform the method described. Specific pore reduction means may be any method such as rolls, molds, rotating disk dies, etc.
Sizing is the most common method based on the life of the jig. Sizing is preferably performed to reduce the dimensions of the workpiece by about 3 to 10%. When the size reduction due to sizing is less than 3%, the effect of reducing pores is small;
If it exceeds 100%, processing becomes difficult. The processing method for sizing differs depending on the shape of the workpiece. For example, when reducing the pores on the inner surface of a cylindrical object, the inner surface of the workpiece is pressed with a mandrel-like mold with a tapered tip, and then When processing the outside surface, use a cylindrical die to squeeze the outside surface.

(作用) 最表面領域と内部領域の多孔率を上記のように設定する
ことにより、焼結材料の浸ほう素処理が可能になり、ま
た浸ほう素処理の一般的欠点でありまた焼結材において
特に有害になる脆化を避けることができる。
(Function) By setting the porosity of the outermost surface region and the inner region as described above, it becomes possible to perform boron treatment on the sintered material, and it also avoids the general drawbacks of boron treatment and the porosity of the sintered material. embrittlement, which can be particularly harmful in

以下、実施例によりさらに本発明を詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例) JPMA機械構造部品焼結材料規格、鉄一炭素系3種、
SMF3030を通常の方法で焼結し、多孔率が異なる
焼結材を調製した。焼結材の密度は7. 0g/cm”
  (多孔率16%に相当)、内径が20mm,外径が
40mmの筒状焼結体を製造した。この焼結体の内面を
サイジングして、内径を19.2mmにした.すなわち
、サイジング代は0.8+++m、サイジング率は4%
であった。その後、焼結材を900℃で1時間浸ほう素
処理した.浸ほう素処理剤は、84C:3〜20部,S
iC:50〜80部、C: to〜30部、ほうふつ化
カリウム二〇5〜7部からなる混合粉末を使用した。こ
の混合粉末を、被処理面にのみ接触させ、浸ほう素処理
を行った.この処理後最表面のFeBの一部を研磨した
状態での空孔およびほう化物層の状態を第1図に模式的
に示す。図中、1は最表面領域(厚みが0.5mm),
2は内部領域、3は空孔、ハッチング部分はほう化物層
1aである。ほう化物層1aは母材との界面がギザギザ
した状態であり、その凹凸の平均位置で厚みを測定した
(Example) JPMA machine structural parts sintered material standards, 3 types of iron-carbon type,
SMF3030 was sintered in a conventional manner to prepare sintered materials with different porosities. The density of the sintered material is 7. 0g/cm”
(corresponding to a porosity of 16%), a cylindrical sintered body having an inner diameter of 20 mm and an outer diameter of 40 mm was produced. The inner surface of this sintered body was sized to have an inner diameter of 19.2 mm. In other words, the sizing fee is 0.8+++m, and the sizing rate is 4%.
Met. Thereafter, the sintered material was subjected to boron treatment at 900°C for 1 hour. The boron treatment agent is 84C: 3 to 20 parts, S
A mixed powder consisting of 50 to 80 parts of iC, 30 to 30 parts of C, and 205 to 7 parts of potassium fluoride was used. This mixed powder was brought into contact only with the surface to be treated, and boron treatment was performed. After this treatment, the state of the pores and the boride layer after polishing a portion of the outermost surface of FeB is schematically shown in FIG. In the figure, 1 is the outermost surface area (thickness is 0.5 mm),
2 is an internal region, 3 is a hole, and the hatched portion is a boride layer 1a. The boride layer 1a had a jagged interface with the base material, and the thickness was measured at the average position of the unevenness.

実施例1 最表面領域1 (0. 5mm)の多孔率は4%、内部
領域2bの多孔率は16%、内部領域2a(厚み1.0
mm)の中央における多孔率は7%とした。サイジング
の影響を受けた部分では空孔は圧着されるかあるいは長
細い形状に変形縮小されていた.この結果、最表面領域
lと内部領域2aでは多孔率が減少した.ほう化物層の
平均厚みは50ミクロンであった。
Example 1 The porosity of the outermost surface region 1 (0.5 mm) was 4%, the porosity of the inner region 2b was 16%, and the inner region 2a (thickness 1.0
The porosity at the center of mm) was 7%. In areas affected by sizing, the pores were either compressed or deformed into elongated shapes. As a result, the porosity decreased in the outermost region 1 and the inner region 2a. The average thickness of the boride layer was 50 microns.

第1図に相当する金属顕微鏡組織写真を第2図(100
倍)および第3図(400倍)に示す。焼結材の表面に
ほう化物層が形成されていることが明らかである。
Figure 2 (100
(magnification) and Figure 3 (magnification 400x). It is clear that a boride layer is formed on the surface of the sintered material.

実施例2 最表面領域1 (0. 5mm)の多孔率は2%、内部
領域2b多孔率は16%、内側領域2a(厚み1mlI
1)の多孔率は6〜15%とし、厚みが80μmのほう
化物層1aを形成した。
Example 2 The porosity of the outermost surface region 1 (0.5 mm) was 2%, the porosity of the inner region 2b was 16%, and the inner region 2a (thickness 1 ml)
The porosity of 1) was set to 6 to 15%, and a boride layer 1a having a thickness of 80 μm was formed.

また、上述の好ましい条件で浸ほう素処理を行い所期の
結果を得ることができた。
Moreover, the boron immersion treatment was carried out under the above-mentioned preferable conditions, and the desired results could be obtained.

(発明の効果) 本発明によれば、焼結材の一部の面に浸ほう素処理をす
ることができ、耐摩耗性、耐酸化性、耐荷重性、耐疲労
性に優れた焼結摺動部材を提供することができる。
(Effects of the Invention) According to the present invention, a part of the surface of the sintered material can be subjected to boron treatment, and the sintered material has excellent wear resistance, oxidation resistance, load resistance, and fatigue resistance. A sliding member can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例1の焼結摺動部材の浸ほう素処理
された表面の模式図、 第2図および第3図は実施例の浸ほう素処理表面の金属
顕微鏡組織写真である。
FIG. 1 is a schematic diagram of the boron-treated surface of the sintered sliding member of Example 1 of the present invention, and FIGS. 2 and 3 are photographs of the metallurgical microstructure of the boron-treated surface of Example 1. .

Claims (2)

【特許請求の範囲】[Claims] 1. 内部に空孔をもつ焼結材料の一部の面のみが浸ほ
う素処理されている摺動部材であって、該浸ほう素処理
がなされる面の内部に設けた多孔質の内部領域と、その
表面側に設けられ多孔率が前記内部領域より小さくかつ
5%以下である最表面領域とを備え、該最表面領域の少
なくとも表面側にほう化物が形成され、前記内部領域は
実質的にほう化物が形成されておらず最表面領域より高
い多孔率に構成されていることを特徴とする浸ほう素処
理摺動部材。
1. A sliding member in which only a part of the surface of a sintered material having holes inside is subjected to boron treatment, and a porous internal region provided inside the surface to be subjected to the boron treatment. , an outermost surface region provided on the surface side and having a porosity smaller than the inner region and 5% or less, a boride is formed at least on the surface side of the outermost surface region, and the inner region is substantially A boron-treated sliding member characterized in that no boride is formed and the porosity is higher than that of the outermost surface region.
2. 内部に空孔をもつ焼結材料を調製する工程、該焼
結材料の浸ほう素処理すべき面に対し加圧して、その表
面側の多孔率を減少させて多孔率が内部より小さくかつ
5%以下となる最表面領域と、その内部側に焼結された
時の多孔率を実質的に保つた多孔質の内部領域とを構成
させる領域形成工程、次いで、少なくとも前記最表面領
域を浸ほう素処理剤と接触させて最表面領域の少なくと
も表面にほう化物を形成し、かつ最表面領域より高い多
孔率に構成された内部領域には実質的にほう化物を形成
しない浸ほう素処理層形成工程、の各工程から構成され
ていることを特徴とする浸ほう素処理摺動部材の製造方
法。
2. A step of preparing a sintered material having pores inside, pressurizing the surface of the sintered material to be boronized to reduce the porosity on the surface side so that the porosity is smaller than the inside and 5 % or less, and a porous inner region that substantially maintains the porosity when sintered, followed by soaking at least the outermost surface region. Formation of a boron treatment layer in which boride is formed on at least the surface of the outermost surface region by contact with a raw treatment agent, and substantially no boride is formed in the inner region having a higher porosity than the outermost surface region. 1. A method for manufacturing a boron-treated sliding member, comprising the following steps.
JP1233770A 1989-09-08 1989-09-08 Boron-treated sliding member and method of manufacturing the same Expired - Fee Related JP2757340B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1233770A JP2757340B2 (en) 1989-09-08 1989-09-08 Boron-treated sliding member and method of manufacturing the same
DE1990610805 DE69010805T2 (en) 1989-09-08 1990-09-07 Borated sliding material and process for its manufacture.
EP19900309842 EP0416947B1 (en) 1989-09-08 1990-09-07 Boronized sliding material and method for producing the same
US07/964,467 US5242741A (en) 1989-09-08 1992-10-21 Boronized sliding material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233770A JP2757340B2 (en) 1989-09-08 1989-09-08 Boron-treated sliding member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0397845A true JPH0397845A (en) 1991-04-23
JP2757340B2 JP2757340B2 (en) 1998-05-25

Family

ID=16960303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233770A Expired - Fee Related JP2757340B2 (en) 1989-09-08 1989-09-08 Boron-treated sliding member and method of manufacturing the same

Country Status (3)

Country Link
EP (1) EP0416947B1 (en)
JP (1) JP2757340B2 (en)
DE (1) DE69010805T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267568A (en) * 2006-03-30 2007-10-11 Mitsubishi Electric Corp Mold motor and air harmonic unit
JP2011068991A (en) * 2009-09-25 2011-04-07 Hamilton Sundstrand Corp Wear-resistant device and method for treating the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180033187A (en) 2015-07-23 2018-04-02 섀플러 테크놀로지스 아게 운트 코. 카게 Chain member and manufacturing method thereof
CN112921266B (en) * 2021-01-22 2022-11-15 西北工业大学 Method for enhancing wear resistance and water lubricating property of medium-entropy alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929241A (en) * 1972-07-18 1974-03-15
JPS561390A (en) * 1979-06-20 1981-01-09 Hitachi Ltd Exchanging device for control rod drive mechanism

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782794A (en) * 1972-12-08 1974-01-01 Textron Inc Antifriction bearing
CH554559A (en) * 1973-01-05 1974-09-30
NL7314938A (en) * 1973-10-31 1975-05-02 Skf Ind Trading & Dev Metal machine components with improved stress characteristics - using mechanical stressing techniques
JPS5855502A (en) * 1981-09-28 1983-04-01 Toyo Soda Mfg Co Ltd Preparation of metal chromium plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929241A (en) * 1972-07-18 1974-03-15
JPS561390A (en) * 1979-06-20 1981-01-09 Hitachi Ltd Exchanging device for control rod drive mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267568A (en) * 2006-03-30 2007-10-11 Mitsubishi Electric Corp Mold motor and air harmonic unit
JP2011068991A (en) * 2009-09-25 2011-04-07 Hamilton Sundstrand Corp Wear-resistant device and method for treating the same

Also Published As

Publication number Publication date
EP0416947A1 (en) 1991-03-13
DE69010805D1 (en) 1994-08-25
EP0416947B1 (en) 1994-07-20
DE69010805T2 (en) 1995-02-16
JP2757340B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
KR100405910B1 (en) Process for the preparation of a powder metallurgical component and compacted component of metal powder
EP1755810B1 (en) Iron-based gear wheels produced by a process comprising uniaxially compacting, sintering and surface densifying
US7905018B2 (en) Production method for sintered gear
JP2007262536A (en) Sintered gear and its production method
US4251273A (en) Method of forming valve lifters
JP2008231538A (en) Ferrous sintered compact and its manufacturing method
KR20010052876A (en) Metallic powder molding material and its re-compression molded body and sintered body obtained from the re-compression molded body and production methods thereof
JP2007532320A (en) Powdered metal multilobe tool and method of making
KR20030071540A (en) Production method of high density iron based forged part
US20090129964A1 (en) Method of forming powder metal components having surface densification
JP3774625B2 (en) Method for forging sintered parts
JPH0397845A (en) Borided sliding member and production thereof
JP3861055B2 (en) Method for manufacturing mold made of inclined composite material
US5242741A (en) Boronized sliding material and method for producing the same
US8444781B1 (en) Method of strengthening metal parts through ausizing
Ankudimov et al. The effect of vibro-finishing treatment on the porosity of the surface layer of powder metallurgy products
JPS613809A (en) Manufacture of composite member
Bengtsson et al. High performance gears
JP2002275572A (en) Metal powder compacting stock, recompression compact body thereof, sintered compact obtained from compression compact body and production method therefor
JPH11107711A (en) Hollow integrated type cam shaft and manufacture thereof
JP2020139193A (en) Machine component, and method for producing the same
CA2258161C (en) Powder metallurgical body with compacted surface
JPS6148565B2 (en)
Fordén et al. PM Applications: High Performance Gears
JP2019019383A (en) Sintered component and method for manufacturing sintered component

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees