JPH0397839A - Combined lightweight damping material and production thereof - Google Patents

Combined lightweight damping material and production thereof

Info

Publication number
JPH0397839A
JPH0397839A JP23301089A JP23301089A JPH0397839A JP H0397839 A JPH0397839 A JP H0397839A JP 23301089 A JP23301089 A JP 23301089A JP 23301089 A JP23301089 A JP 23301089A JP H0397839 A JPH0397839 A JP H0397839A
Authority
JP
Japan
Prior art keywords
alloy
base material
vibration
magnesium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23301089A
Other languages
Japanese (ja)
Inventor
Tsutomu Iikawa
勤 飯川
Eiji Horikoshi
堀越 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23301089A priority Critical patent/JPH0397839A/en
Publication of JPH0397839A publication Critical patent/JPH0397839A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lightweight damping material having satisfactory damping characteristics and not causing the deterioration of the characteristics during use by hot dip plating an Mg or Mg alloy base material with a Zn-Al alloy and rapidly cooling the plated base material. CONSTITUTION:An Mg or Mg alloy base material is hot dip plated with a Zn-Al alloy and the plated base material is rapidly cooled to refine the grains of the resulting plating layer. At the time of the hot dip plating, a Zn-Al alloy layer of <=5mum average grain size is preferably allowed to exist on the surface of the base material so that they are alloyed and adhered to each other at the interface. A lightweight combined damping material having satisfactory damping characteristics is obtd. without requiring complex heat treatment.

Description

【発明の詳細な説明】 ({既  要) 複合軽量防振材とその製法に関し、 簡単に軽量な防振材を提供することを目的とし、マグネ
シウム又はマグネシウム合金を母材とし、表面に亜鉛−
アルミニウム合金を溶融めっきし、急冷するように構戒
する。
[Detailed Description of the Invention] ({Already required) Regarding a composite lightweight vibration isolating material and its manufacturing method, the purpose is to provide a simple and lightweight vibration isolating material using magnesium or a magnesium alloy as a base material and a zinc-coated surface.
Aluminum alloy is hot-dipped and then rapidly cooled.

〔産業上の利用分野〕[Industrial application field]

本発明は複合軽量防振材及びその製造方法に係る。 The present invention relates to a composite lightweight vibration damping material and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来から、各種装置で行われている騒音対策は吸音材で
あるグラスウール、ウレタンフォームなどの大量使用で
あり、騒音の発生源に直接働き掛ける方法はとられてい
ない。
Traditionally, noise countermeasures for various types of equipment have involved the use of large quantities of sound-absorbing materials such as glass wool and urethane foam, and no methods have been taken to directly address the source of the noise.

近年、これらの騒音発生源に直接使用できる防振特性を
有する合金が種々開発されている。このような防振合金
にはFe −Cr−AJ系、Cu −Mn系、などがあ
る。また、防振合金には微細な結晶構造を利用したZn
−Aj!などの軽量材もある。
In recent years, various alloys have been developed that have anti-vibration properties that can be used directly for these noise sources. Such anti-vibration alloys include Fe-Cr-AJ-based, Cu-Mn-based, and the like. In addition, the anti-vibration alloy is made of Zn, which utilizes a fine crystal structure.
-Aj! There are also lightweight materials such as

[発明が解決しようとする課題] 上記のFe −Cr−Al系、Cu−Mn系等の如き防
振合金は例えば転位や磁歪、マルテンサイト変態を利用
したりするため、製品形状に加工後、複雑な熱処理が必
要となり、この時、加工歪みのための変形を生じたりす
るため、精度のよい部品への適用が難しい。また、Fe
系、Cu系合金であるため、重く、近年の各種装置の軽
薄・短小化の要求を満足できない。さらに、高価である
と言・)欠点もあり、実用に供されている例は少ない。
[Problems to be Solved by the Invention] Since vibration-proof alloys such as the Fe-Cr-Al system, Cu-Mn system, etc. mentioned above utilize dislocation, magnetostriction, martensitic transformation, etc., after processing into a product shape, It requires complicated heat treatment, which may cause deformation due to processing distortion, making it difficult to apply to high-precision parts. Also, Fe
Since it is a Cu-based alloy, it is heavy and cannot satisfy recent demands for lighter, thinner, shorter and smaller devices. Furthermore, it has the disadvantage of being expensive, and there are few examples of it being put into practical use.

一方、上記のZn−AI!合金は軽量ではあるが、重い
Znを多量に含んでいるため、まだ比較的重い欠点があ
る。
On the other hand, the above Zn-AI! Although the alloy is lightweight, it still has the disadvantage of being relatively heavy due to the high content of heavy Zn.

そこで、本発明は従来の防振材料の欠点である?I9#
な熱処理を必要とせず、安価であり、かつ使用中での特
性の劣化のない、さらに、近年の各種装置の軽薄・短小
化の要求を満足できる軽量で、かつ良好な防振特性を有
する各種の騒音を発生する装置の騒音発生源に直接使用
できる防振合金を提供することを目的とする。
Therefore, what does the present invention have to do with the drawbacks of conventional anti-vibration materials? I9#
Various types of products that do not require extensive heat treatment, are inexpensive, do not deteriorate in characteristics during use, are lightweight and have good anti-vibration characteristics that satisfy the recent demands for lighter, thinner, shorter and smaller devices. The purpose of the present invention is to provide a vibration-proof alloy that can be used directly at the noise source of equipment that generates noise.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達戒するために、マグネシウム又
はマグネシウム合金母材に亜鉛−アルミニウム合金溶融
めっきを施し、急冷することを特徴とする複合軽量防振
材の製造方法と、マグネシウム又はマグネシウム合金母
材表面に平均粒径5I!m以下の亜鉛−アルミニウム合
金層を有し、かつ亜鉛−アルミニウム合金層とマグネシ
ウム又はマグネシウム合金焼結体とは界面で相互に合金
化して密着していることを特徴とする複合軽量防振材と
を提供する。
In order to achieve the above-mentioned object, the present invention provides a method for manufacturing a composite lightweight vibration damping material, which comprises applying zinc-aluminum alloy hot-dip plating to a magnesium or magnesium alloy base material and rapidly cooling it, and a magnesium or magnesium alloy base material. Average grain size 5I on the base material surface! A composite lightweight vibration damping material having a zinc-aluminum alloy layer with a thickness of less than I will provide a.

マグネシウム又はマグネシウム合金母材は軽量であるゆ
えに用いるものであり、これ自体が防振特性を有する必
要はないが、Mg合金のうちでも防振特性に優れた合金
たとえばMg −0.5%Zr合金などを用いることが
好ましい。また、Mg合金は溶融戒形では巣の発生が起
き易いため均一な戒形品の製造が容易でない場合がある
が、粉末冶金法で焼結することによって均一な合金或形
体が得られる。(特開昭63−65048号公報等参照
)。
Magnesium or a magnesium alloy base material is used because it is lightweight, and does not need to have vibration-damping properties itself, but Mg alloys that have excellent vibration-damping properties, such as Mg-0.5%Zr alloys, are used. It is preferable to use the following. Further, when Mg alloy is melted into a molded form, cavities are likely to occur, so it may not be easy to manufacture a uniform molded product, but a uniform alloy or molded product can be obtained by sintering with a powder metallurgy method. (Refer to Japanese Patent Application Laid-Open No. 63-65048, etc.).

Zn−Alt系合金は、Znを母体としAl含分が18
〜26%、好ましくは22%の組成を有し、かつ結晶粒
径が微細化(一般的には平均粒径5祉以下、好ましくは
2一以下)されることによって防振特性を発揮する。こ
の微細化は溶融めっき後の急冷によって得られる。また
、Zn −AN系合金層の厚みはその厚みに応じて本発
明の防振材に防振特性を付与するが、−C的には50J
M程度以上あればFe系防振合金と同等の防振特性が得
られる。
Zn-Alt alloy has Zn as a matrix and Al content is 18
It has a composition of ~26%, preferably 22%, and exhibits anti-vibration properties by having a fine crystal grain size (generally an average grain size of 50% or less, preferably 21% or less). This refinement is obtained by rapid cooling after hot-dip plating. In addition, the thickness of the Zn-AN alloy layer imparts vibration-proofing properties to the vibration-proofing material of the present invention depending on the thickness, but in terms of -C, it is 50J.
If it is about M or more, vibration damping properties equivalent to those of Fe-based vibration damping alloys can be obtained.

本発明では、Zn −AN合金層を溶融めっきで形或す
ることによって、Zn −/M!合金層とMg合金母材
の界面にこれらの間の合金層を形或して、Zn−Aj!
合金層とMg合金母材との間の密着を高めることができ
る。
In the present invention, by forming the Zn-AN alloy layer by hot-dip plating, Zn-/M! By forming an alloy layer between the alloy layer and the Mg alloy base material at the interface, Zn-Aj!
Adhesion between the alloy layer and the Mg alloy base material can be improved.

溶融めっきは浴温550゜C±10゜Cとすると、Mg
,Mg合金の一部が固液混合層を形成し、この液相の助
けによって上記界面の合金層が強固に形戒される。
For hot-dip plating, if the bath temperature is 550°C ± 10°C, Mg
, a part of the Mg alloy forms a solid-liquid mixed layer, and the alloy layer at the interface is firmly formed with the help of this liquid phase.

急冷は水中焼入れ程度、すなわち、500’C/sec
程度以上の速度で行う。これは、結晶粒を微細化するた
めであり、これ以上遅い冷却では、十分な防振性を示さ
ない。
Rapid cooling is equivalent to underwater quenching, that is, 500'C/sec.
Do it at a speed that is faster than normal. This is to make the crystal grains finer, and if the cooling is made slower than this, sufficient vibration damping properties will not be exhibited.

〔作 用〕[For production]

本発明の防振材は母材のMg合金により軽量化を図り、
表面のZn −Aji系合金層により防振特性を得る。
The vibration isolating material of the present invention aims to reduce weight by using Mg alloy as a base material,
The Zn-Aji alloy layer on the surface provides anti-vibration properties.

製法としては溶融めっきと急冷だけであり、複雑な熱処
理を必要としない。
The manufacturing method is just hot-dip plating and rapid cooling, and no complicated heat treatment is required.

(実施例〕 −200メッシュのMg粉末とAl粉末をMg −9%
Afとなるように秤量・混合した後、4トン/ c+j
の圧力で5 X10X50nmの板状にブレス或形した
。成形品をアルゴン気流中に保持して、550’Cでl
h焼結した。この時、Arガスの流量は10リットル/
分とした。得られた焼結体は密度が約94%と実用上問
題ない程度に緻密化していた。
(Example) -200 mesh Mg powder and Al powder were mixed with Mg -9%
After weighing and mixing to give Af, 4 tons/c+j
The sample was pressed into a plate shape of 5 x 10 x 50 nm at a pressure of . The molded parts were kept in a stream of argon and heated at 550'C.
h Sintered. At this time, the flow rate of Ar gas is 10 liters/
It was a minute. The obtained sintered body had a density of about 94%, which was dense enough to cause no practical problems.

この焼結体をZn−22%A1からなる浴温550゜C
の′r?j融めっき浴に5分間浸漬した。550″Cで
はMg−9%Al焼結体の一部は固液混合層を形成する
ため、焼結体とめっき層の界面では液相の助けにより、
合金層が形戒される。つぎに、めっき浴からとりだし、
水中に焼入れすることによって急冷した。
This sintered body was heated to a bath temperature of 550°C consisting of Zn-22%A1.
'r? j Immersed in a dip-plating bath for 5 minutes. At 550"C, part of the Mg-9%Al sintered body forms a solid-liquid mixed layer, so at the interface between the sintered body and the plating layer, with the help of the liquid phase,
The alloy layer is shaped. Next, remove it from the plating bath,
It was quenched by quenching in water.

試料の断面を観察した結果、第1図に示す如く、合金層
2の厚さは約120n, Zn−22%,1MめっきN
3の厚さは約50戸であった。IがMg合金母材である
。また、めっき層の結晶粒径は平均約2戸程度と微細化
されていた。
As a result of observing the cross section of the sample, as shown in Fig. 1, the thickness of the alloy layer 2 was approximately 120n, Zn-22%, 1M plating N.
The thickness of 3 was approximately 50 houses. I is the Mg alloy base material. In addition, the crystal grain size of the plating layer was reduced to about 2 doors on average.

得られた試料ではめっき層と母材が反応合金層で強固に
密着しており、使用中でのZn −22%Alめっき層
の剥離などの経Ilf変化はまったく認められなかった
In the obtained sample, the plating layer and the base material were firmly adhered to each other by the reactive alloy layer, and no changes over time such as peeling of the Zn-22%Al plating layer during use were observed.

得られた防振材の減衰率を第2図に示す方法で測定した
。ウレタン発泡体11に取付けた試料12に加速度ビッ
クアップ素子13を装着し、3X10−’kg・mの衝
撃エネルギーを与えて、試料12の振動の減衰をアンブ
l4、デジタルスペクトル分析器15で調べた。試料と
して上記実施例で得たMg合金/Zn−AI!系合金防
振材と市販のFe −15%Cr3%Al合金防振材を
用いて比較した。結果を第3図に示す。本発明品(振動
減衰率tanδ一0.11)(第3図(A))はFe系
防振材(第3図(B))と同等以上であることが認めら
れる。
The damping factor of the obtained vibration damping material was measured by the method shown in FIG. An acceleration kick-up element 13 was attached to the sample 12 attached to the urethane foam 11, and an impact energy of 3×10-'kg·m was applied to the sample 12, and the attenuation of the vibration of the sample 12 was examined using an ambule 14 and a digital spectrum analyzer 15. . The Mg alloy/Zn-AI obtained in the above example was used as a sample. A comparison was made using a commercially available Fe-15%Cr3%Al alloy vibration damping material. The results are shown in Figure 3. It is recognized that the product of the present invention (vibration damping rate tan δ - 0.11) (Fig. 3 (A)) is equivalent to or higher than the Fe-based vibration damping material (Fig. 3 (B)).

また、Mg系焼結合金の耐食性を−45〜+80’Cの
MIL規格に準じた温度サイクル試験で調べた。
In addition, the corrosion resistance of the Mg-based sintered alloy was investigated by a temperature cycle test in accordance with the MIL standard from -45 to +80'C.

上記実施例で得られたものとMg −9%AI!焼結品
についての腐食減量の結果を第4図に示す。腐食減量は
「(元の重さ)と(n回後のサビ(腐食生威物)を除去
した重さ)との差」として求めた。
What was obtained in the above example and Mg -9%AI! Figure 4 shows the results of corrosion weight loss for sintered products. The corrosion weight loss was determined as "the difference between (original weight) and (weight after removing rust (corrosion products) after n times)".

第4図より、本発明品は耐食性が約2倍向上しているこ
とが見られる。
From FIG. 4, it can be seen that the corrosion resistance of the product of the present invention is approximately doubled.

上記Mg−Al系合金のほか、Mg−Zn系などでも同
様の効果が得られる。
In addition to the above-mentioned Mg-Al alloy, similar effects can be obtained with Mg-Zn alloys and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、Mg又はMg合
金にZn−Al系合金を溶融めっきし、その後急冷処理
を施すだけで、複雑な熱処理の必要がなく、安価に経時
変化のない、近年の各種装置の軽薄・短小化の要求を満
足できる軽量で、かつ良好な防振特性を有する新しい防
振材料が提供でき、騒音対策が必要な各種装置に応用が
可能である。
As explained above, according to the present invention, by simply hot-dipping Mg or Mg alloy with Zn-Al alloy and then performing rapid cooling treatment, there is no need for complicated heat treatment, and it is inexpensive and does not change over time. A new anti-vibration material that is lightweight and has good anti-vibration properties that satisfies the recent demands for lighter, thinner, shorter and smaller devices can be provided, and can be applied to a variety of devices that require noise countermeasures.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明の複合軽量防振材の断面図、第2図は振
動減衰率測定概念図、第3図は振動減衰率測定結果のグ
ラフ、第4図はMg系合金の腐食Mffiを示すグラフ
図である。 1・・・Mg合金母材、    2・・・合金層、3・
・・Zn −Al系防振層、 1l・・・ウレタン発泡体、   12・・・音叉、1
3・・・試料、         14・・・アンプ、
l5・・・デジタルスペクトル分析器。 複合軽量防振材
Figure 1 is a cross-sectional view of the composite lightweight vibration isolating material of the present invention, Figure 2 is a conceptual diagram of vibration damping rate measurement, Figure 3 is a graph of vibration damping rate measurement results, and Figure 4 is a graph showing the corrosion Mffi of Mg-based alloys. FIG. DESCRIPTION OF SYMBOLS 1... Mg alloy base material, 2... Alloy layer, 3...
...Zn-Al-based vibration isolation layer, 1l...urethane foam, 12...tuning fork, 1
3...Sample, 14...Amplifier,
l5...Digital spectrum analyzer. Composite lightweight vibration isolation material

Claims (2)

【特許請求の範囲】[Claims] 1. マグネシウム又はマグネシウム合金母材に亜鉛−
アルミニウム合金溶融めっきを施し、急冷することを特
徴とする複合軽量防振材の製造方法。
1. Zinc in magnesium or magnesium alloy base material
A method for manufacturing a composite lightweight vibration-proofing material characterized by applying aluminum alloy hot-dip plating and rapidly cooling it.
2. マグネシウム又はマグネシウム合金母材表面に平
均粒径5μm以下の亜鉛−アルミニウム合金層を有し、
かつ亜鉛−アルミニウム合金層とマグネシウム又はマグ
ネシウム合金母材とは界面で相互に合金化して密着して
いることを特徴とする複合軽量防振材。
2. Having a zinc-aluminum alloy layer with an average grain size of 5 μm or less on the surface of the magnesium or magnesium alloy base material,
A composite lightweight vibration-damping material characterized in that the zinc-aluminum alloy layer and the magnesium or magnesium alloy base material are alloyed and adhered to each other at the interface.
JP23301089A 1989-09-11 1989-09-11 Combined lightweight damping material and production thereof Pending JPH0397839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23301089A JPH0397839A (en) 1989-09-11 1989-09-11 Combined lightweight damping material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23301089A JPH0397839A (en) 1989-09-11 1989-09-11 Combined lightweight damping material and production thereof

Publications (1)

Publication Number Publication Date
JPH0397839A true JPH0397839A (en) 1991-04-23

Family

ID=16948403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23301089A Pending JPH0397839A (en) 1989-09-11 1989-09-11 Combined lightweight damping material and production thereof

Country Status (1)

Country Link
JP (1) JPH0397839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905706A (en) * 1995-02-24 1999-05-18 Sony Corporation Electronic equipment such as recording and/or reproducing for recording medium
JP2001527157A (en) * 1997-12-19 2001-12-25 エスエムエス・デマーク・アクチエンゲゼルシャフト Method for producing strip metal composites by high temperature dip coating
JP2013007071A (en) * 2011-06-22 2013-01-10 Yodogawa Steel Works Ltd Al-Zn ALLOY-PLATED STEEL PLATE, AND METHOD AND DEVICE FOR MANUFACTURING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905706A (en) * 1995-02-24 1999-05-18 Sony Corporation Electronic equipment such as recording and/or reproducing for recording medium
JP2001527157A (en) * 1997-12-19 2001-12-25 エスエムエス・デマーク・アクチエンゲゼルシャフト Method for producing strip metal composites by high temperature dip coating
JP2013007071A (en) * 2011-06-22 2013-01-10 Yodogawa Steel Works Ltd Al-Zn ALLOY-PLATED STEEL PLATE, AND METHOD AND DEVICE FOR MANUFACTURING THE SAME

Similar Documents

Publication Publication Date Title
JP4841838B2 (en) Hard metal material, hard metal coating, method for processing metal material, and method for forming metal coating
CA2358442C (en) Plated steel wire with high corrosion resistance and excellent workability, and process for its manufacture
EP3026135B1 (en) Alloy casting material and method for manufacturing alloy object
EP0511318A1 (en) Plasma spraying of rapidly solidified aluminum base alloys.
JPH03257133A (en) High strength heat resistant aluminum-based alloy
KR100446789B1 (en) Plated steel product having high corrosion resistance and excellent formability and method for production thereof
CN106893888A (en) Composite zinc-aluminum alloy layer material and hot dip coating method
JP2000328216A (en) High corrosion resistance plated steel sheet
JP2004339530A (en) Mg-CONTAINING METAL COATED STEEL MATERIAL WITH EXCELLENT WORKABILITY, AND ITS MANUFACTURING METHOD
JPH0397839A (en) Combined lightweight damping material and production thereof
US20030217791A1 (en) Method for producing a component and/or a coating comprised of a vibration-damping alloy or intermetallic compound, and component produced using this method
US5352537A (en) Plasma sprayed continuously reinforced aluminum base composites
JP3685901B2 (en) Method for producing Al-based composite
JPWO2020213680A1 (en) Plated steel
JPH04120237A (en) Aluminum base high damping material and its manufacture
Fukumoto et al. Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium
JPS63447A (en) Hot-dipped steel material with high damping capacity and its manufacture
JP3009262B2 (en) Hot-dip zinc aluminum alloy plating coating with excellent fatigue properties
JPH03264637A (en) Aluminum alloy high damping material and its production
JP3358796B2 (en) Method for modifying surface of Ti-Al alloy and Ti-Al alloy having modified layer on surface
JP2003328101A (en) Hot dip coated steel wire and production method thereof
JPS61204361A (en) Vibration-damping material having excellent press formability
JP2003193187A (en) High strength aluminum based plated steel sheet having excellent workability and corrosion resistance in worked part and high strength automotive parts
JP3024967B1 (en) Hot-dip galvanizing method and galvanized material
JPH0711461A (en) Alloy laminated type plated high damping steel plate excellent in workability and corrosion resistance