JPH0397831A - Fe-ni alloy excellent in etching workability and its production - Google Patents

Fe-ni alloy excellent in etching workability and its production

Info

Publication number
JPH0397831A
JPH0397831A JP23440289A JP23440289A JPH0397831A JP H0397831 A JPH0397831 A JP H0397831A JP 23440289 A JP23440289 A JP 23440289A JP 23440289 A JP23440289 A JP 23440289A JP H0397831 A JPH0397831 A JP H0397831A
Authority
JP
Japan
Prior art keywords
weight
alloy
less
content
etching processability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23440289A
Other languages
Japanese (ja)
Other versions
JP3022573B2 (en
Inventor
Hiroki Nakanishi
中西 寛紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16970443&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0397831(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1234402A priority Critical patent/JP3022573B2/en
Publication of JPH0397831A publication Critical patent/JPH0397831A/en
Application granted granted Critical
Publication of JP3022573B2 publication Critical patent/JP3022573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To easily reduce C content and to improve etching workability by repeatedly applying cold rolling and softening to a hot rolled stock of Fe-Ni alloy and applying high crystal anisotropy by means of finish rolling. CONSTITUTION:A hot rolled stock having a composition consisting of, by weight, 30-60% Ni (or 25-40% Ni and 5-20% Co), <=0.25% Si, <=0.50% Mn, and the balance Fe is subjected to a repetition of cold rolling and softening once or more. Subsequently, the resulting cold rolled stock is subjected to cold rolling at >=60% draft and to softening. Then, finish rolling is performed to a product sheet thickness at <=50% draft, by which high crystal anisotropy is provided. By this method, the Fe-Ni alloy having <=0.002wt.% C among impurities, having >=50% intensity in a (200) plane in the relative X-ray intensity of a crystal plane by means of X-ray diffraction, and excellent in etching workability can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、集積回路素子のリードフレームあるいはシャ
ドウマスク材等に用いられるエッチング加工性に優れた
Fe−Ni系合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an Fe--Ni alloy that has excellent etching processability and is used for lead frames or shadow mask materials of integrated circuit elements.

〔従来の技術〕[Conventional technology]

集積回路用素子のリードフレーム用材料としては、Fe
−42%Ni,  Fe−50%Niをはじめとして、
Fe−29N i−17Co合金(コバール)等のFe
−Ni系合金が使用されている。
Fe is a material for lead frames of integrated circuit elements.
-42%Ni, Fe-50%Ni, etc.
Fe-29N i-17Co alloy (Kovar) etc.
-Ni alloy is used.

近年、集積回路素子の高集積化に伴ってリードは非常に
多ビン(リード)となり、複雑化して来ており、従来6
4ビンクラスが主体であったエッチング加工も160〜
240ビン、さらには240ビン以上のクラスの超多ビ
ンのものまで手がけられるようになってきている。
In recent years, as integrated circuit devices have become highly integrated, leads have become extremely multi-bin (lead) and have become more complex.
Etching processing, which was mainly used for 4-bin class, is also available from 160~
It has become possible to manufacture products with 240 bins and even super large numbers of bins with more than 240 bins.

これに伴ってリードフレームの特にインナーリードの間
隔は非常に狭くならざるを得す、従来のリード間隔では
何ら問題にならなかったエッチング加工も、こうした多
ビンのリードフレームでは、エッチング加工性に問題を
生ずるようになってきている。
As a result, the spacing between the lead frames, especially the inner leads, has to become extremely narrow.Etching processing, which did not pose any problems with conventional lead spacing, has become a problem with these multi-bin lead frames. This is beginning to occur.

また,Fe−36%Ni系のいわゆるインパー合金を用
いるシャドウマスクにおいても高精細化により、より微
細なエッチング加工が要求されるに至っている。
Further, even in shadow masks using so-called impur alloys based on Fe-36%Ni, finer etching processing is required due to higher definition.

このため、従来に比べ数段エッチング加工性に優れたリ
ードフレーム材料、シャドウマスク材料が必要になって
いる。
For this reason, there is a need for lead frame materials and shadow mask materials that are superior in etching processability by several steps compared to conventional materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のF e− N i系合金では、前述の240ピン
クラスの多ビンリードフレームにおいて、エッチング加
工性が十分満足できるものではなく、インナーリード同
志のくっつき等を生じたり、リードフレームの寸法形状
規格を満足できない等の問題があった. エッチング加工性の改善に関しては、特開昭61−82
453号においてC含有量を0.01%以下に規制する
こと、また特開昭61−84356号にはさらに非金属
介在物を規制することによりエッチング加工性の向上が
可能である旨の報告が成されている。
With conventional Fe-Ni alloys, the etching processability of the aforementioned 240-pin class multi-bin lead frame is not fully satisfactory, and inner leads may stick together, and lead frame size and shape standards may not be met. There were problems such as not being able to satisfy the following. Regarding the improvement of etching processability, JP-A-61-82
No. 453 reports that it is possible to improve etching processability by regulating the C content to 0.01% or less, and in JP-A-61-84356, it is possible to improve etching processability by further regulating non-metallic inclusions. has been completed.

しかし、超多ビンリードフレーム、高精細シャドウマス
クのエッチング加工においてはより一層エッチング加工
性の良好な合金が要望されているのが現状である. この一方、C含有量を特開昭61−82453号または
特開昭61−8435.6号に開示されているレベル(
0.004%, 0 . 007%)より低減すること
は工業生産規模では容易ではない. 本発明は以上の点に鑑み、主にC含有量を通常の鋼の溶
解法では困難なレベルより容易に低減し、超多ビンリー
ドフレーム、高精細シャドウマスク等のエッチング加工
が十分対応可能な、エッチング加工性の優れたF e−
 N i系合金およびその製造方法を提供することを目
的とするものである.〔課題を解決するための手段〕 本発明者は、エッチング加工性を向上させる要因として
、炭素含有量、材料の結晶粒度、非金属介在物の量、お
よび圧延と焼鈍条件に着目して実験を行なった。その結
果について説明する。
However, the current situation is that there is a demand for alloys with even better etching processability in the etching process of ultra-high-bin lead frames and high-definition shadow masks. On the other hand, the C content is set to the level disclosed in JP-A-61-82453 or JP-A-61-8435.6 (
0.004%, 0. 007%) is not easy to reduce on an industrial production scale. In view of the above points, the present invention mainly reduces the C content to a level that is difficult to achieve with ordinary steel melting methods, and is fully compatible with etching processes such as ultra-bin lead frames and high-definition shadow masks. , F e- with excellent etching processability
The purpose is to provide a Ni-based alloy and a method for producing the same. [Means for Solving the Problem] The present inventor conducted experiments focusing on carbon content, crystal grain size of material, amount of nonmetallic inclusions, and rolling and annealing conditions as factors that improve etching processability. I did it. The results will be explained.

ここで前述の如く、通常の溶解、精錬方法においてはC
含有量を0.003%程度まで低減するのが限界であり
、それ以下のC含有量に精錬により低減するためには、
精錬時間の長時間化等の観点から非常にコストが高くな
る欠点がある。
As mentioned above, in normal melting and refining methods, C
The limit is to reduce the C content to about 0.003%, and in order to reduce the C content below that by refining,
There is a drawback that the cost is extremely high due to the long refining time.

そこで本発明では脱炭処理を施すことにより、従来にな
い低レベルのC含有量を達成することができることを見
出し、エッチング加工性の評価試験を実施した。
Therefore, in the present invention, it was discovered that by performing decarburization treatment, it was possible to achieve a C content at an unprecedentedly low level, and an etching processability evaluation test was conducted.

第1図に塩化第二鉄を用いたエッチング加工性での試験
でのFe−4.2%Ni合金、F e−36%Ni合金
におけるC含有量とエッチング速度との関係を示すが、
C含有量が0.002重量%以下であると、エッチング
速度は0.007重量一程度の場合の2倍以上となり極
めてエッチング加工性が向上することがわかった。なお
、Fe−Ni−C:o系合金のコバール合金についても
ほぼF e−42%Ni合金と同様の傾向を示した。
Figure 1 shows the relationship between C content and etching rate in Fe-4.2%Ni alloy and Fe-36%Ni alloy in an etching process test using ferric chloride.
It was found that when the C content is 0.002% by weight or less, the etching rate is more than twice that when the C content is about 0.007% by weight, and the etching processability is extremely improved. Note that the Kovar alloy, which is a Fe-Ni-C:o-based alloy, showed almost the same tendency as the Fe-42%Ni alloy.

また結晶粒度については、JISの結晶粒度番号がNo
.8.0以下においてはエッチング断面の表面粗さが大
となり、エッチング加工時の寸法精度が超多ビンリード
フレームにおいては十分満足できなくなる。また、No
.8.0を越える結晶粒度においてはエッチング速度が
増大し、エッチング加工性が向上する。以上の点より結
晶粒度をNo.8.0以上とすることが望まれる.結晶
粒度のより望ましい値はNo.9.0以上である。 次
に圧延と焼鈍条件についての実験より以下のことを知見
した。
Regarding the grain size, the JIS grain size number is No.
.. If it is less than 8.0, the surface roughness of the etched cross section becomes large, and the dimensional accuracy during etching becomes unsatisfactory for ultra-bin lead frames. Also, no
.. When the grain size exceeds 8.0, the etching rate increases and etching processability improves. From the above points, the grain size is determined to be No. It is recommended that the score be 8.0 or higher. A more desirable value of grain size is No. It is 9.0 or more. Next, we learned the following from experiments regarding rolling and annealing conditions.

F e−42%Ni合金、F e−36%Ni合金、お
よびFe−Ni−Co系合金(コパール合金)などの本
発明が対象とするF e− N i系合金は、XA線回
折により(311),(220) , (200)およ
び(111)面の回折が得られ、各々の相対X線強度に
より結晶方位の集合度がわかる.この結晶方位は加工条
件により変化するものである。
Fe-Ni alloys targeted by the present invention, such as Fe-42%Ni alloy, Fe-36%Ni alloy, and Fe-Ni-Co alloy (copal alloy), can be determined by XA ray diffraction ( Diffraction of the (311), (220), (200), and (111) planes is obtained, and the degree of aggregation of crystal orientations can be determined from the relative X-ray intensity of each. This crystal orientation changes depending on processing conditions.

第2図に圧延加工度を変化させた場合の圧延状態、およ
び、その後950℃にて5分間焼鈍を施した場合の各回
折面の相対X線強度を示すが、冷間圧延加工度の増大と
共に、圧延状態においては(220)面の強度が上昇し
、その後の焼鈍状態においては逆に(200)面の強度
が上昇する。また、焼鈍後の(200)面の強度は圧延
加工度が60%以上において急激に増大することがわか
る。
Figure 2 shows the relative X-ray intensity of each diffraction plane when the degree of rolling was changed and then annealed at 950°C for 5 minutes. At the same time, the strength of the (220) plane increases in the rolled state, and on the contrary, the strength of the (200) plane increases in the subsequent annealed state. Furthermore, it can be seen that the strength of the (200) plane after annealing increases rapidly when the degree of rolling is 60% or more.

焼鈍後の(200)面の回折強度は次におこなわれる仕
上げ圧延により、第2図の圧延状態の相対X線強度の変
化に見られるように、仕上げ圧延による(220)面の
上昇とともに低下し、最終状態において、ある( 20
0)面の回折強度を有するようになる。
The diffraction intensity of the (200) plane after annealing decreases as the (220) plane rises due to the finish rolling, as seen in the change in relative X-ray intensity in the rolled state in Figure 2, due to the subsequent finish rolling. , in the final state, there is (20
0) surface diffraction intensity.

そしてこの(200)面の強度が50%未満では(22
0)面の強度が高い状態であり、等方的な結晶方位とな
り、十分なエッチング性の向上が期待されず、逆に(2
00)面の強度が50%以上においては良好な結晶異方
性が付与され、エッチング性の向上が達成されることを
知見した。
If the strength of this (200) plane is less than 50%, (22
0) plane is in a state where the strength is high and the crystal orientation is isotropic, and a sufficient improvement in etching performance cannot be expected, and on the contrary, (2
It has been found that when the strength of the 00) plane is 50% or more, good crystal anisotropy is imparted and improvement in etching performance is achieved.

本発明は以上のような知見に基づき、C含有量を従来に
ない低レベルに規制すること、さらには結晶粒度、結晶
方位を特定することにより、従来のFe−Ni系合金を
越えるエッチング加工性を得ようとするものである。
Based on the above knowledge, the present invention has been developed to improve etching workability that exceeds that of conventional Fe-Ni alloys by regulating the C content to an unprecedentedly low level and by specifying the crystal grain size and crystal orientation. It is an attempt to obtain.

具体的には、 Ni30〜60重量%、Si0.25重
量%以下、Mn0.50重量%以下、残部Feおよび不
純物からなり、不純物のうちC含有量が0.002重量
%以下あることを特徴とするエッチング加工性に優れた
Fe−Ni系合金、Ni 25−40重量%、Co 5
−20重量%、Si0.25重量%以下、Mn 0.5
0重量%以下、残部Feおよび不純物からなり、不純物
のうちC含有量が0.002重量%以下であることを特
徴とするエッチング加工性に優れたFe−Ni系合金を
基本とし、さらにxNA回折による結晶面の相対X線強
度において(200)面の強度が50%以上、結晶粒度
がNo.8.0以上としたエッチング加工性に優れたF
e−Ni系合金である。
Specifically, it consists of 30 to 60% by weight of Ni, 0.25% by weight or less of Si, 0.50% by weight or less of Mn, and the balance is Fe and impurities, and the C content of the impurities is 0.002% by weight or less. Fe-Ni alloy with excellent etching processability, Ni 25-40% by weight, Co 5
-20% by weight, Si 0.25% by weight or less, Mn 0.5
Based on a Fe-Ni alloy with excellent etching processability, which is characterized by having a C content of 0.002% by weight or less, with the remainder being Fe and impurities, and xNA diffraction. According to the relative X-ray intensity of crystal planes, the intensity of the (200) plane is 50% or more, and the crystal grain size is No. F with excellent etching processability of 8.0 or higher
It is an e-Ni alloy.

本発明ではC含有量を0.002%以下という従来容易
に得ることができなかったレベルを達成した点に最も大
きな特徴がある。
The most significant feature of the present invention is that it has achieved a C content of 0.002% or less, a level that could not be easily obtained in the past.

すなわち、通常の溶解、精錬方法においてはC含有量を
0.003%程度まで低減するのが限界であり、それ以
下のC含有量に精錬により低減するためには、精錬時間
の長時間化等の観点から非常にコストが高くなる欠点が
ある. 本発明においては0.002%以下のきわめて低いC含
有量を達成するために、溶解、精錬によりC含有量をあ
る程度のレベルまで、具体的には0.005%以下まで
低減し、熱間圧延状態あるいは熱間圧延素材に冷間圧延
を施した状態において露点が一10℃から40℃の範囲
の雰囲気において加熱し脱炭することにより、通常に比
べ著しくC含有量を低減するのである。
In other words, in normal melting and refining methods, the limit is to reduce the C content to about 0.003%, and in order to reduce the C content to a lower level by refining, it is necessary to increase the refining time, etc. The disadvantage is that the cost is extremely high. In the present invention, in order to achieve an extremely low C content of 0.002% or less, the C content is reduced to a certain level by melting and refining, specifically to 0.005% or less, and then hot-rolled. By heating and decarburizing a hot rolled material in an atmosphere with a dew point in the range of 110°C to 40°C, the C content can be significantly reduced compared to normal conditions.

ここで、溶解、精錬によりC含有量を0.005%以下
とするのは、これを越える場合その後露点が−10℃か
ら40℃の範囲の雰囲気において加熱し脱炭処理を行な
っても、0.002%以下のきわめて低いC含有量を達
成することが困難だからである。
Here, the reason why the C content is reduced to 0.005% or less by melting and refining is that if it exceeds this, even if decarburization treatment is performed by heating in an atmosphere with a dew point in the range of -10℃ to 40℃, This is because it is difficult to achieve an extremely low C content of .002% or less.

また、脱炭処理の加熱雰囲気については、露点が−10
℃未満においては脱炭が十分でなく、40℃を越えると
脱炭は十分に生ずるものの材料表面の酸化が顕著となり
、めっき性ならびにハンダ付け性を劣化させることから
−10℃から40℃の範囲とする必要がある.また、加
熱温度については700℃未満においては脱炭が不十分
であることから700℃以上とするのが望ましい。より
望ましくは900℃以上である。
In addition, the heating atmosphere for decarburization treatment has a dew point of -10
If the temperature is below ℃, decarburization will not be sufficient, and if the temperature exceeds 40℃, sufficient decarburization will occur, but oxidation of the material surface will become noticeable, deteriorating plating and soldering properties. It is necessary to Furthermore, the heating temperature is desirably 700°C or higher since decarburization is insufficient at temperatures below 700°C. More preferably, the temperature is 900°C or higher.

上記本発明において、X線回折による結晶面の相対X線
強度において(200)面の強度が50%以上の合金は
、熱間圧延素材に冷間圧延と軟化焼鈍を、それぞれ少な
くとも1回以上繰り返した後、60%以上の加工度の冷
間圧延を施し、次に軟化焼鈍を行ない、その後製品板厚
に50%以下の加工度で仕上圧延を行ない、材料に強い
結晶異方性を付与することにより製造することができる
. 当該製造方法において,製品板厚に仕上げる前の冷間圧
延加工度が60%未満では、次の焼鈍時に十分な結晶異
方性を付与することができず、エッチング性の改善が期
待されない.このため、仕上げ前の冷間圧延加工度を6
0%以上にする必要がある。より望ましくは、70%以
上の加工度とするとよい, 焼鈍条件については、再結晶温度以上であれば、結晶異
方性が得られるが、均一な結晶異方性を得る点から70
0℃以上が望ましい。
In the present invention, an alloy in which the strength of the (200) plane is 50% or more in the relative X-ray intensity of the crystal planes determined by X-ray diffraction is obtained by repeating cold rolling and softening annealing at least once each on a hot-rolled material. After that, cold rolling is performed with a working degree of 60% or more, followed by softening annealing, and then finish rolling is performed with a working degree of 50% or less to give the material strong crystal anisotropy. It can be manufactured by In this manufacturing method, if the degree of cold rolling before finishing to the product plate thickness is less than 60%, sufficient crystal anisotropy cannot be imparted during the subsequent annealing, and no improvement in etching properties can be expected. For this reason, the degree of cold rolling before finishing was increased to 6.
It needs to be 0% or more. More desirably, the working ratio should be 70% or more. Regarding the annealing conditions, crystal anisotropy can be obtained if the annealing temperature is higher than the recrystallization temperature, but from the point of view of obtaining uniform crystal anisotropy, 70% or more is preferable.
A temperature of 0°C or higher is desirable.

また、仕上げ圧延加工度については50%を越える加工
度では、(220)面の強度が上昇し、(200)面の
強度が高い結晶異方性が付与されないことから50χ以
下にする必要がある。
In addition, the finish rolling degree needs to be 50χ or less because the strength of the (220) plane will increase if the degree of finishing exceeds 50%, and the crystal anisotropy with high strength of the (200) plane will not be imparted. .

本発明合金においては不純物元素を次のように制御する
ことにより、さらにエッチング性が改善される。
In the alloy of the present invention, the etching properties can be further improved by controlling the impurity elements as follows.

Si:0.25重量%以下 Mn : 0.50重量%以下 P : 0.005重量%以下 S : 0.005重量%以下 その他の不純物元素: 0.10重量%以下不純物元素
については、Si%Mn,P% Sおよびその他の不純
物元素の全含有量が前記の値を越えると、特にエッチン
グ速度の均一な進行の妨げとなる. なお、より望ましい不純物の範囲は次の通りである。
Si: 0.25% by weight or less Mn: 0.50% by weight or less P: 0.005% by weight or less S: 0.005% by weight or less Other impurity elements: 0.10% by weight or less Regarding impurity elements, Si% If the total content of Mn, P% S and other impurity elements exceeds the above-mentioned value, it will particularly hinder the uniform etching rate. Note that the more desirable range of impurities is as follows.

S i : 0.15重量%以下 Mn:0.30重量%以下 P : 0.003重量%以下 S : 0.003重量%以下 その他の不純物元素:0。08重量%以下〔実施例〕 以下、本発明を実施例に基づき説明する。Si: 0.15% by weight or less Mn: 0.30% by weight or less P: 0.003% by weight or less S: 0.003% by weight or less Other impurity elements: 0.08% by weight or less [Example] Hereinafter, the present invention will be explained based on examples.

Fe−Ni系合金としてF e−36%Ni合金、F 
e−42%Ni合金、F e−50% N i合金およ
びF e−29 N i−17 C o合金を選び、第
l表に示すような化学成分、(200)面の相対X線強
度および結晶粒度を有する材料を作製した。相対xII
強度については、前記のように仕上げ圧延ならびに仕上
げ圧延時の冷間圧延加工度を変化させることにより、各
々のX線強度を得た.また、0.002%以下のC含有
量は真空誘導溶解にて0.005%とした後、冷間圧延
後に露点20℃の雰囲気で950℃で加熱、脱炭処理す
ることにより得た. 次にエッチング加工性を評価するために第3図に示すよ
うに試験片にφ0.8閣の円を塩化第二鉄溶液(FeC
1, : 30%、H,O:残)を用いて片面より10
分間エッチング加工し、第3図に示す基準によりエッチ
ング深さ(h)を光学顕微鏡の焦点の移動距離により測
定し,エッチング速度を求めた.この結果を第l表にま
とめて示した。
Fe-36%Ni alloy, F
An e-42% Ni alloy, an Fe-50% Ni alloy, and an Fe-29 Ni-17 Co alloy were selected, and the chemical composition, relative X-ray intensity of the (200) plane, and A material with a grain size was prepared. Relative xII
Regarding the strength, each X-ray strength was obtained by varying the finish rolling and the degree of cold rolling during finish rolling as described above. Further, the C content of 0.002% or less was obtained by reducing the carbon content to 0.005% by vacuum induction melting, and then heating and decarburizing the steel at 950°C in an atmosphere with a dew point of 20°C after cold rolling. Next, in order to evaluate the etching processability, a circle with a diameter of 0.8 mm was placed on the test piece in a ferric chloride solution (FeC) as shown in Figure 3.
1.: 30%, H, O: remainder) from one side to 10%
Etching was performed for a minute, and the etching depth (h) was measured by the distance traveled by the focal point of an optical microscope using the criteria shown in Figure 3 to determine the etching rate. The results are summarized in Table 1.

エッチング加工性は、エッチング速度で評価し、良いも
のをO印、やや不十分なものをΔ印,不十分なものを×
印で第1表に表わした。
Etching processability is evaluated by etching speed: good is marked O, slightly unsatisfactory is marked Δ, and unsatisfactory is marked ×
It is shown in Table 1 with a mark.

第1表に示すように、本発明合金、すなわちC含有量が
0.002%以下、さらには(200)面の相対X線強
度が50%以上、および結晶粒度がNo.8.0以上の
場合に、優れたエッチング加工性が得られている。
As shown in Table 1, the alloy of the present invention, that is, the C content is 0.002% or less, the relative X-ray intensity of the (200) plane is 50% or more, and the grain size is No. When it is 8.0 or more, excellent etching processability is obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、エッチング加工性に優れたF e− 
N i系合金が得られ、集積回路素子の多ビンあるいは
超多ビンリードフレーム高精細シャドウマスクの高精度
エッチング加工が可能となり、品質の向上、歩留り向上
および加工効率の向上等が達成できる.
According to the present invention, Fe-
Ni-based alloys can be obtained, making it possible to perform high-precision etching processing of high-definition shadow masks for multi-bin or ultra-multi-bin lead frames of integrated circuit devices, thereby achieving improvements in quality, yield, and processing efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は、F e−42 N i合金におけるエッチン
グ速度とC含有量との関係を示した図、第2図および第
3図は本実施例で採用したエッチング加工性の試験の説
明図である。 C信1号C’/.) 第 3
Figure 1 is a diagram showing the relationship between etching rate and C content in Fe-42Ni alloy, and Figures 2 and 3 are explanatory diagrams of the etching workability test adopted in this example. be. C signal No. 1 C'/. ) 3rd

Claims (1)

【特許請求の範囲】 1 Ni30〜60重量%、Si0.25重量%以下、
Mn0.50重量%以下、残部Feおよび不純物からな
り、不純物のうちC含有量が0.002重量%以下であ
ることを特徴とするエッチング加工性に優れたFe−N
i系合金。 2 Ni25〜40重量%、Co5〜20重量%、Si
0.25重量%以下、Mn0.50重量%以下、残部F
eおよび不純物からなり、不純物のうちC含有量が0.
002重量%以下であることを特徴とするエッチング加
工性に優れたFe−Ni系合金。 3 X線回折による結晶面の相対X線強度において(2
00)面の強度が50%以上である請求項1または請求
項2記載のエッチング加工性に優れたFe−Ni系合金
。 4 結晶粒度がNo.8.0以上である請求項1または
請求項2記載のエッチング加工性に優れたFe−Ni系
合金。 5 結晶粒度がNo.8.0以上、X線回折による結晶
面の相対X線強度において(200)面の強度が50%
以上である請求項1または請求項2記載のエッチング加
工性に優れたFe−Ni系合金。 6 P0.005重量%以下、S0.005重量%以下
、その他の不純物元素の全含有量が0.10重量%以下
である請求項1ないし請求項5のいずれかに記載のエッ
チング加工性に優れたFe−Ni系合金。 7 請求項3または請求項5記載の合金の製造方法であ
って、熱間圧延素材に冷間圧延と軟化焼鈍をそれぞれ少
なくとも1回以上繰り返した後、60%以上の加工度の
冷間圧延を施し、次に軟化焼鈍を行ない、その後製品板
厚に50%以下の加工度で仕上圧延を行なうことにより
、材料に強い結晶異方性を付与することを特徴とするエ
ッチング加工性に優れたFe−Ni系合金の製造方法。 8 請求項1ないし請求項6のいずれかに記載の合金の
製造方法であって、C含有量が0.005%以下の素材
を、露点が−10℃から40℃の範囲の雰囲気下におい
て脱炭処理することを特徴とするエッチング加工性に優
れたFe−Ni系合金の製造方法。
[Claims] 1 30 to 60% by weight of Ni, 0.25% by weight or less of Si,
Fe-N with excellent etching processability, consisting of 0.50% by weight or less of Mn, the remainder Fe and impurities, and the C content of the impurities being 0.002% by weight or less
i-based alloy. 2 Ni25-40% by weight, Co5-20% by weight, Si
0.25% by weight or less, Mn 0.50% by weight or less, balance F
e and impurities, and the C content of the impurities is 0.
An Fe-Ni alloy with excellent etching processability characterized by a content of 0.002% by weight or less. 3 In the relative X-ray intensity of the crystal plane by X-ray diffraction (2
3. The Fe-Ni alloy having excellent etching processability according to claim 1 or 2, wherein the strength of the 00) plane is 50% or more. 4 Grain size is No. 3. The Fe-Ni alloy having excellent etching processability according to claim 1 or 2, wherein the Fe--Ni alloy has a molecular weight of 8.0 or more. 5 Grain size is No. 8.0 or higher, the intensity of the (200) plane is 50% in the relative X-ray intensity of crystal planes determined by X-ray diffraction
The Fe-Ni alloy having excellent etching processability according to claim 1 or 2, which is as described above. 6. Excellent etching processability according to any one of claims 1 to 5, wherein the total content of P is 0.005% by weight or less, S is 0.005% by weight or less, and the total content of other impurity elements is 0.10% by weight or less. Fe-Ni alloy. 7. The method for producing an alloy according to claim 3 or claim 5, which comprises repeating cold rolling and softening annealing at least once each on the hot rolled material, and then cold rolling with a workability of 60% or more. Fe with excellent etching processability, which is characterized by imparting strong crystal anisotropy to the material by performing a softening annealing process, followed by a finish rolling process with a workability of 50% or less to the product plate thickness. - A method for producing a Ni-based alloy. 8. A method for producing an alloy according to any one of claims 1 to 6, wherein a material having a C content of 0.005% or less is desorbed in an atmosphere with a dew point in the range of -10°C to 40°C. A method for producing a Fe-Ni alloy with excellent etching processability, which comprises carbon treatment.
JP1234402A 1989-09-08 1989-09-08 Fe-Ni alloy excellent in etching processability and method for producing the same Expired - Fee Related JP3022573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1234402A JP3022573B2 (en) 1989-09-08 1989-09-08 Fe-Ni alloy excellent in etching processability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1234402A JP3022573B2 (en) 1989-09-08 1989-09-08 Fe-Ni alloy excellent in etching processability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0397831A true JPH0397831A (en) 1991-04-23
JP3022573B2 JP3022573B2 (en) 2000-03-21

Family

ID=16970443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234402A Expired - Fee Related JP3022573B2 (en) 1989-09-08 1989-09-08 Fe-Ni alloy excellent in etching processability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3022573B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354854A (en) * 1991-05-31 1992-12-09 Sumitomo Special Metals Co Ltd Alloy wire for glass sealing
JPH0586441A (en) * 1991-09-27 1993-04-06 Yamaha Corp Fi-ni-co alloy for shadow mask

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354854A (en) * 1991-05-31 1992-12-09 Sumitomo Special Metals Co Ltd Alloy wire for glass sealing
JPH0586441A (en) * 1991-09-27 1993-04-06 Yamaha Corp Fi-ni-co alloy for shadow mask

Also Published As

Publication number Publication date
JP3022573B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
CN110541119B (en) Low-expansion iron-nickel alloy and manufacturing method thereof
JPS6314841A (en) Shadow mask material and shadow mask
JPH08209306A (en) Iron-nickel alloy with low coefficient of thermal expansion
JPH06264190A (en) Stock for shadow mask
JPS63259054A (en) Shadow mask
JPH0397831A (en) Fe-ni alloy excellent in etching workability and its production
JPH03267320A (en) Production of shadow mask material
JP2909088B2 (en) Fe-Ni alloy with excellent etching processability
KR20040111602A (en) Low-thermal expansion alloy thin sheet and its manufacturing method
KR100479778B1 (en) MANUFACTURING METHOD FOR PREVENTING Fe-Ni-BASED ALLOY MATERIAL HAVING DROPPING IMPACT DEFORMATION RESISTANCE AND LOW THERMAL EXPANSIBILITY FROM HOT ROLLING CRACK
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JPS6335754A (en) Shadow mask material and shadow mask
JP2003247048A (en) Low thermal expansion alloy thin sheet having excellent etch rate and etch precision and production method thereof
JPH0456107B2 (en)
JPS61166947A (en) Shadow mask
JPH02285054A (en) Fe-ni alloy for lead frame excellent in etching workability
JPS62120432A (en) Production of shadow mask
JPH0995740A (en) Production of low thermal expansion alloy thin sheet excellent in sheet shape and thermal shrinkage resistance
JPS58164754A (en) Cold rolled thin steel strip for shadow mask and its manufacture
JPH02104624A (en) Manufacture of lead frame material
JPS5933857A (en) Ic lead frame material and manufacture thereof
JP2003183788A (en) Non-oriented magnetic steel sheet having low core loss and superior calking property
JPH01264143A (en) Shadow mask and manufacture thereof
JPS61207509A (en) Production of alloy for sealing soft glass
WO2003069007A1 (en) Low thermal expansion alloy thin sheet and its production method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees