JPH0397725A - Production of polyester - Google Patents

Production of polyester

Info

Publication number
JPH0397725A
JPH0397725A JP23537489A JP23537489A JPH0397725A JP H0397725 A JPH0397725 A JP H0397725A JP 23537489 A JP23537489 A JP 23537489A JP 23537489 A JP23537489 A JP 23537489A JP H0397725 A JPH0397725 A JP H0397725A
Authority
JP
Japan
Prior art keywords
temperature
reaction
dihydroxy compound
polyester
aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23537489A
Other languages
Japanese (ja)
Other versions
JP2551664B2 (en
Inventor
Makoto Osuga
信 大須賀
Kazuo Tsuchiyama
和夫 土山
Makoto Yamaguchi
真 山口
Kazuo Yamagata
一雄 山形
Akihiro Niki
章博 仁木
Toranosuke Saito
斉藤 寅之助
Hironori Kadomachi
角町 博記
Daishirou Kishimoto
大志郎 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Sanko Co Ltd
Original Assignee
Sanko Chemical Co Ltd
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Chemical Co Ltd, Sekisui Chemical Co Ltd filed Critical Sanko Chemical Co Ltd
Priority to JP1235374A priority Critical patent/JP2551664B2/en
Publication of JPH0397725A publication Critical patent/JPH0397725A/en
Application granted granted Critical
Publication of JP2551664B2 publication Critical patent/JP2551664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain a polymer having excellent heat-resistance, etc., by mixing an aliphatic dicarboxylic acid, a diol and a liquid crystal dihydroxy compound. melting exclusively the aliphatic components to effect the reaction and finally melting the whole components to complete the reaction. CONSTITUTION:The objective polymer can be produced by compounding (A) an aliphatic dicarboxylic acid lower ester of formula I (n is 0-10), (B) an aliphatic diol (e.g. ethylene glycol) and (C) preferably 0.1-30mol% of a dihydroxy compound exhibiting liquid crystal nature and expressed by formula II (R<1> and R<2> are alkylene; p is 3 or 4; q and r are 0 or integer of >=1) such as 4,4''- dihydroxy-p-terphenyl, subjecting the system to ester-interchange reaction at a temperature to keep the component C from melting, raising the temperature to melt the component C, lowering the temperature to a level not to cause the precipitation of the component C and reacting the components.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリエステルの製造方法に関し,特に熱可塑性
エラストマーとしての性質を有し,耐熱性.a械的強度
および或形加工性に優れているポリエステルを短時間で
安定して製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing polyester, which has properties as a thermoplastic elastomer and is heat resistant. This invention relates to a method for stably producing polyester having excellent mechanical strength and formability in a short period of time.

(従来の技術) 一般に,材料がゴム弾性を示すためには,分子鎖回転の
容易な無定形高分子が部分的に架橋されていることが必
要である。例えば,弾性を有するゴムでは硫黄分子が分
子鎖間を化学結合により橋架けして網目構造を形威して
いる。また,ゴム以外にも,種々の高分子化合物と架橋
剤とを組み合わせた材料が提案されている。これらの材
料を或形するためには架橋工程を必要とし,また化学的
に架橋された後では,熱可塑性を示さないので.架橋さ
れた材料を射出成形や押し出し戒形によって戒形するこ
とはできない。
(Prior Art) Generally, in order for a material to exhibit rubber elasticity, it is necessary that an amorphous polymer with easy molecular chain rotation be partially crosslinked. For example, in elastic rubber, sulfur molecules bridge molecular chains through chemical bonds, creating a network structure. In addition to rubber, materials that combine various polymer compounds and crosslinking agents have been proposed. These materials require a crosslinking process to be shaped into a certain shape, and after being chemically crosslinked, they do not exhibit thermoplastic properties. Crosslinked materials cannot be shaped by injection molding or extrusion.

近年,常温でゴム弾性を示し,かつ高温では可塑化され
る熱可塑性エラストマーが開発され.種々のタイプの熱
可塑性エラストマーが製造,市販されている。この熱可
塑性エラストマーは従来のゴムのような長時間の架橋工
程が不要であり,射出成形や押し出し戒形によって威形
することができる。熱可塑性エラストマ一の分子構造の
特徴は,強固な化学的結合によらない架橋,すなわち,
常温付近でのみ有効な何らかの高分子間拘束を施すシス
テムにあり,ソフトセグメントとハードセグメントとか
らなる高分子集合体というのが熱可塑性エラストマーの
典型的な構造である。ソフトセグメントとハードセグメ
ントは互いに化学構造が異なり,両者の混成組或におい
ては,・同質部分がそれぞれ凝集し,異質部分が互いに
相分離したミクロ的不均衡構造を形成することになり,
その際ハードセグメントの凝集部分が上記分子間の拘束
作用を示すのである。
In recent years, thermoplastic elastomers have been developed that exhibit rubber elasticity at room temperature and become plasticized at high temperatures. Various types of thermoplastic elastomers are manufactured and commercially available. This thermoplastic elastomer does not require the lengthy crosslinking process required for conventional rubber, and can be shaped by injection molding or extrusion. The molecular structure of thermoplastic elastomers is characterized by crosslinking that does not rely on strong chemical bonds, that is,
The typical structure of thermoplastic elastomers is a system that applies some kind of inter-polymer restraint that is effective only at room temperature, and is a polymer aggregate consisting of soft segments and hard segments. The chemical structures of soft segments and hard segments are different from each other, and in a hybrid composition of the two, homogeneous parts aggregate, and heterogeneous parts form a micro-disequilibrium structure that is phase-separated from each other.
At this time, the agglomerated portions of the hard segments exhibit a restraining effect between the molecules.

熱可塑性エラストマーとしては,例えば,スチレン系.
オレフィン系,ウレタン系,エステル系,アミド系など
がある。スチレン系ではハードセグメントとしてポリス
チレンが凍結相を形威して分子鎖間を拘束し,その結果
ゴム弾性を発揮する。
Examples of thermoplastic elastomers include styrene.
There are olefin-based, urethane-based, ester-based, amide-based, etc. In styrene-based materials, polystyrene forms a frozen phase as a hard segment, restraining molecular chains, and as a result exhibits rubber elasticity.

オレフィン系ではハードセグメントとしてボリブロビレ
ンの結晶相が作用する。また2 ウレタン系ではポリウ
レタンセグメントが水素結合によって分子鎖間の物理的
な架橋をもたらす。また,エステル系ではポリブチレン
テレフタレート鎖が,アミド系では6−ナイロン,6.
6−ナイロン等のナイロン鎖がハードセグメントとして
働く。
In olefin systems, the crystalline phase of polypropylene acts as a hard segment. In addition, in the 2-urethane system, polyurethane segments create physical crosslinks between molecular chains through hydrogen bonding. In addition, the ester type has polybutylene terephthalate chains, and the amide type has 6-nylon, 6.
Nylon chains such as 6-nylon act as hard segments.

(発明が解決しようとする課題) このように,熱可塑性エラストマーは常温でゴム弾性を
示し,しかも戒形可能なため1 自動車部品や各種工業
用品に広く用いられている。しかし,これまでの熱可塑
性エラストマーは,架橋タイプのゴムに比べて架橋を物
理的拘束によって行うためにその部分の軟化熔融点に制
約を受けて耐熱性が低く.またクリープ特性も劣ったも
のとなっていた。例えば,熱可塑性エラストマーの中で
も最も耐熱性の高いエステル系タイプとして知られてい
る東洋紡■製ペルブレンS−9001においても,融点
223゜C,熱変形温度(低荷重)146゜Cであり,
ウレタン系においても,その軟化点はせいぜい140゜
Cである。
(Problems to be Solved by the Invention) As described above, thermoplastic elastomers exhibit rubber elasticity at room temperature and are also malleable, so they are widely used in automobile parts and various industrial products. However, conventional thermoplastic elastomers have lower heat resistance than cross-linked rubbers because cross-linking is performed through physical restraint, which limits the softening and melting point of that part. In addition, the creep properties were also poor. For example, Toyobo's Perbrene S-9001, which is known as the ester type with the highest heat resistance among thermoplastic elastomers, has a melting point of 223°C and a heat distortion temperature (low load) of 146°C.
Even in the case of urethane-based materials, the softening point is at most 140°C.

p一ターフェニルもしくはp−クオーターフェニル骨格
を有するジヒドロキシもしくはモノヒドロキシ化合物を
構e.威分とするポリエステルは,このヒドロキシル化
合物の結晶状態から液晶状態への転移点(融点)が,そ
の特徴ある分子構造を反映して極めて高いため,非常に
強固で耐熱性の高い物理的架橋を有し,耐熱性および機
械的物性に優れた熱可塑性エラストマーである。しかし
ながら.これらのヒドロキシ化合物は,各種溶媒や他の
共重合モノマーに極めて溶けにくいので,このヒドロキ
シ化合物を用いてポリエステルを合戒する際には,高温
状態としてヒドロキシ化合物を溶融させ,そしてこの化
合物と他の共重合モノマーとをエステル反応させる必要
がある。ところが,ヒドロキシ化合物が溶融する程度の
高温状態で長時間反応させると,生成物が着色し,及び
生戒物の物性が低下する原因となっていた。これは.生
成物に含まれる脂肪族或分が反応時の熱で分解するため
と思われる。生威物の熱分解を防ぐために,ヒドロキシ
化合物と共重合モノマーとを低温で重合させた場合には
ジヒドロキシ化合物の反応が不十分であるため,このヒ
ドロキシ化合物が生或物中に残存することになり得られ
たポリエステルの分子量は低く,物性の劣ったものとな
っていた。
A dihydroxy or monohydroxy compound having p-terphenyl or p-quarterphenyl skeleton e. Polyester, which is the key ingredient, has an extremely high transition point (melting point) from the crystalline state to the liquid crystalline state of this hydroxyl compound, which reflects its unique molecular structure, so it has the ability to form extremely strong and heat-resistant physical crosslinks. It is a thermoplastic elastomer with excellent heat resistance and mechanical properties. however. These hydroxy compounds are extremely difficult to dissolve in various solvents and other comonomers, so when using these hydroxy compounds to prepare polyester, the hydroxy compounds are melted at high temperatures, and then this compound and other comonomers are combined. It is necessary to carry out an ester reaction with the copolymerizable monomer. However, if the reaction is carried out for a long time at a temperature high enough to melt the hydroxyl compound, the product becomes colored and the physical properties of the raw material deteriorate. this is. This is thought to be due to the aliphatic fraction contained in the product being decomposed by the heat during the reaction. When a hydroxy compound and a copolymer monomer are polymerized at a low temperature to prevent thermal decomposition of biomaterials, the reaction of the dihydroxy compound is insufficient, so this hydroxyl compound may remain in the biomass. The resulting polyester had a low molecular weight and poor physical properties.

本発明はかかる状況に鑑みてなされたものであり,本発
明の目的は,分子量が高く,耐熱性及び機械的物性に優
れており,かつ着色の少ないポリエステルが短時間で得
られる方法を提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for obtaining polyester having a high molecular weight, excellent heat resistance and mechanical properties, and little coloring in a short time. There is a particular thing.

(課題を解決するための手段) 本発明のポリエステルの製造方法は,一般式が下式(1
)で表わされる脂肪族ジカルボン酸と,一般式が下式(
II)で表わされるジヒドロキシ化合物と,脂肪族ジオ
ールとを主たる構威或分とするポリエステルを製造する
にあたり3ジカルポン酸の低級エステルと,脂肪族ジオ
ールとをジヒドロキシ化合物が溶融しない温度でエステ
ル交換反応を行い.そのエステル交換反応が終了した後
,反応温度を昇温してジヒドロキシ化合物を溶解させ,
次にジヒドロキシ化合物が析出しない範囲の温度まで降
温して,この温度でさらにエステル交換反応を行なうこ
とを特徴し,そのことにより上記目的が達威される。
(Means for Solving the Problems) In the method for producing polyester of the present invention, the general formula is the following formula (1
) and an aliphatic dicarboxylic acid whose general formula is represented by the following formula (
In order to produce a polyester mainly composed of the dihydroxy compound represented by II) and an aliphatic diol, a lower ester of 3 dicarboxylic acid and an aliphatic diol are transesterified at a temperature at which the dihydroxy compound does not melt. Do. After the transesterification reaction is completed, the reaction temperature is raised to dissolve the dihydroxy compound,
Next, the temperature is lowered to a temperature within a range where the dihydroxy compound does not precipitate, and the transesterification reaction is further carried out at this temperature, thereby achieving the above object.

HOOC−(CH2)n−C,OOH    ( I 
)(式中,nは0〜10の整数を示す。)(式中 Hl
, R2は独立的にアルキレン基を示し,pは3または
4であり, q, rは独立的にOまたは1以上の整数
を示す。) 上記脂肪族ジカルボン酸において.炭素数が10を超え
るジカルボン酸を用いると,脂肪族ポリエステルから得
られる成形体の物性が低下する。上記ジカルボン酸とし
ては,たとえばシュウ酸,マロン酸,コハク酸,グルタ
ル酸,アジビン酸,スベリン酸,セバチン酸が好適に用
いられる。
HOOC-(CH2)n-C,OOH (I
) (In the formula, n represents an integer from 0 to 10.) (In the formula, Hl
, R2 independently represents an alkylene group, p is 3 or 4, and q and r independently represent O or an integer of 1 or more. ) In the above aliphatic dicarboxylic acid. If a dicarboxylic acid having more than 10 carbon atoms is used, the physical properties of the molded article obtained from the aliphatic polyester will deteriorate. As the dicarboxylic acid, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adibic acid, suberic acid, and sebacic acid are preferably used.

上記脂肪族ジオールとしては,グリコール及びポリアル
キレンオキシドがあげられる。上記グリコールとしては
,例えば,エチレングリコール,プロピレングリコール
,トリメチレングリコール.1.4−ブタンジオール,
1.3−ブタンジオール.1.5ペンタンジオール,1
,6−ヘキサンジオール, 1.7−ヘプタンジオール
,l,8−オクタンジオール, 1.9−ノナンジオー
ル, 1.10−デカンジオール.シクロペンクン−1
.2−ジオール,シクロヘキサン−1,2ジオール,シ
クロヘキサン−1,3−ジオール,シクロヘキサン−1
,4−ジオール,シクロヘキサン−1,4ジメタノール
等があげられ,これらは単独で使用されてもよく,二種
以上が併用されてもよい。
Examples of the aliphatic diols include glycols and polyalkylene oxides. Examples of the above glycol include ethylene glycol, propylene glycol, and trimethylene glycol. 1.4-butanediol,
1.3-Butanediol. 1.5 pentanediol, 1
, 6-hexanediol, 1.7-heptanediol, 1,8-octanediol, 1.9-nonanediol, 1.10-decanediol. Cyclopenkun-1
.. 2-diol, cyclohexane-1,2 diol, cyclohexane-1,3-diol, cyclohexane-1
, 4-diol, cyclohexane-1,4 dimethanol, etc., and these may be used alone or in combination of two or more.

上記ポリアルキレンオキシドとしては,例えば,ポリエ
チレンオキシド,ボリブロピレンオキシド,ポリテトラ
メチレンオキシド,ポリへキサメチレンオキシド等があ
げられ.これらは単独で使用されてもよく,二種以上が
併用されてもよい。ポリアルキレンオキシドの数平均分
子量は,小さくなると生或する脂肪族ポリエステルに柔
軟性を付与する能力が低下し,大きくなりすぎると得ら
れた脂肪族ポリエステルの熱安定性等の物性が低下する
ので, 100〜20,000が好ましく.より好まし
くは500〜5000である。
Examples of the polyalkylene oxide include polyethylene oxide, polybropylene oxide, polytetramethylene oxide, polyhexamethylene oxide, and the like. These may be used alone or in combination of two or more. When the number average molecular weight of the polyalkylene oxide becomes small, the ability to impart flexibility to the raw aliphatic polyester decreases, and when it becomes too large, the physical properties such as thermal stability of the obtained aliphatic polyester decrease. 100 to 20,000 is preferable. More preferably it is 500-5000.

上式[■]で表されるジヒドロキシ化合物は液晶性を示
す低分子化合物であって,アルキレン基Rl, R2は
エチレン基又はプロピレン基が好ましく,q及びrは0
又はlが好ましく,次式(A)で表される4.4”−ジ
ヒドロキシーp一ターフエニル.次式CB)で表される
4.4111−ジヒドロキシーp−クオーターフェニル
及び次式〔C〕で表される4.4′″゛−ジ(2−ヒド
ロキシエトキシ)一ρ−クオーターフェニル等が好適に
使用される。
The dihydroxy compound represented by the above formula [■] is a low molecular compound that exhibits liquid crystallinity, and the alkylene groups Rl and R2 are preferably ethylene or propylene groups, and q and r are 0.
or l is preferred, and 4.4"-dihydroxy-p-terphenyl represented by the following formula (A). 4.4111-dihydroxy-p-quarterphenyl represented by the following formula CB) and the following formula [C] 4.4'''di(2-hydroxyethoxy)-1ρ-quarterphenyl and the like are preferably used.

4,4′″−ジヒドロキシーp一ターフェニル(A)の
結晶状態から液晶状態への転移温度は260℃で,4.
4+++−ジヒドロキシーp−クオーターフェニル〔B
]のそれは336゜C, 4.4”’−ジ(2−ヒドロ
キシエトキシLp−クオーターフェニル〔C〕のそれは
403゜Cである。尚,液晶状態とは,化合物が溶融状
態であって.分子が配向状態を保持している状態をいう
。上記各ジヒドロキシ化合物(II)はそれぞれ単独で
使用しても良く,あるいは併用しても良い。
The transition temperature of 4,4'''-dihydroxy-p-terphenyl (A) from the crystalline state to the liquid crystalline state is 260°C; 4.
4+++-dihydroxy-p-quarterphenyl [B
] is 336°C, and that of 4.4'''-di(2-hydroxyethoxyLp-quarterphenyl [C] is 403°C.The liquid crystal state means that the compound is in a molten state, and the molecules refers to a state in which the dihydroxy compounds (II) maintain an oriented state.The above dihydroxy compounds (II) may be used alone or in combination.

液晶性の分子は一般に結晶性が高く,上記したように4
,41−ジヒドロキシーp一ターフェニル〔A〕,47
+++−ジヒドロキシーp−クオーターフェニル〔B〕
及び4,4゛”−ジ(2−ヒドロキシエトキシLp−ク
オーターフェニル〔C〕はその結晶から液晶状態ヘの転
移点が高いために,これらのジヒドロキシ化合物〔■〕
がポリマー鎖中に組み込まれた場合,そのポリマーは特
異な性質を示す。
Liquid crystal molecules generally have high crystallinity, and as mentioned above, 4
,41-dihydroxy-p-terphenyl [A], 47
+++-dihydroxy-p-quarterphenyl [B]
and 4,4゛"-di(2-hydroxyethoxyLp-quarterphenyl [C] have a high transition point from crystal to liquid crystal state, so these dihydroxy compounds [■]
When incorporated into a polymer chain, the polymer exhibits unique properties.

すなわちジヒドロキシ化合物(II)が結晶性を示し,
しかもその転移点が高いので,ジヒドロキシ化合物〔■
〕の配合量が少量の場合でも強固で耐熱性の高い物理的
架橋を形成する。その結果.ソフトセグメントに由来す
る柔軟性を損なうことなく耐熱性の高い熱可塑性エラス
トマーが得られるものと推察される。
That is, dihydroxy compound (II) exhibits crystallinity,
Moreover, since its transition point is high, dihydroxy compounds [■
) Forms strong and highly heat-resistant physical crosslinks even when the amount is small. the result. It is presumed that a thermoplastic elastomer with high heat resistance can be obtained without impairing the flexibility derived from the soft segment.

上記脂肪族ジカルボン酸〔I〕,脂肪族ジオールおよび
ジヒドロキシ化合物(II)を構成成分とする脂肪族ポ
リエステルに,2個の水酸基を有するポリシリコーンや
,ラクトンや,芳香族ヒドロキシカルポン酸を構戒成分
として含有させてもよい。
Avoid adding polysilicone having two hydroxyl groups, lactone, or aromatic hydroxycarboxylic acid to the aliphatic polyester containing the above aliphatic dicarboxylic acid [I], aliphatic diol, and dihydroxy compound (II). It may be included as a component.

上記ポリシリコーンは,2個の水酸基を有するものであ
り,2個の水酸基が分子末端にあるポリシリコーンが好
ましく,たとえば.分子の両末端に2個の水酸基を有す
るジメチルボリシロキサン.ジエチルボリシロキサン,
ジフェニルポリシロキサン等があげられる。ポリシリコ
ーンの数平均分子量は.小さくなると,生成するポリエ
ステルに柔軟性を付与する能力が低下し,大きくなると
,ポリエステルの生威が困難になるので,100〜20
, 000が好ましく.より好ましくは500〜5,0
00である。
The above-mentioned polysilicone has two hydroxyl groups, and polysilicone with two hydroxyl groups at the molecular ends is preferable, for example. Dimethylborisiloxane has two hydroxyl groups at both ends of the molecule. diethylborisiloxane,
Examples include diphenylpolysiloxane. The number average molecular weight of polysilicone is. If it becomes small, the ability to impart flexibility to the polyester produced will decrease, and if it becomes large, it will be difficult to grow the polyester, so the ratio of 100 to 20
, 000 is preferred. More preferably 500 to 5,0
It is 00.

上記ラクトンは,開環して酸及び水酸基と反応し,脂肪
族鎖を付加するものであって,ポリエステルに柔軟性を
付与するものであり,環の中に4以上の炭素原子を有す
るものが好ましく,より好ましくは5員環〜8員環であ
り,例えばε一カブロラクトン,δ−バレロラクトン,
T−プチロラクトン等があげられる。
The lactones ring-open and react with acids and hydroxyl groups to add aliphatic chains, giving flexibility to polyesters, and those having 4 or more carbon atoms in the ring. Preferably, 5- to 8-membered rings are preferred, such as ε-cabrolactone, δ-valerolactone,
Examples include T-butyrolactone.

上記芳香族ヒドロキシカルボン酸は,ポリエステルに剛
性や液晶性を付与するものであり,サリチル酸,メタヒ
ドロキシ安息香酸.パラヒドロキシ安息香酸,3−クロ
ロ−4−ヒドロキシ安息香酸,3−ブロモー4−ヒドロ
キシ安息香酸,3−メトキシ−4−ヒドロキシ安息香酸
,3−メチル−4−ヒドロキシ安息香酸,3−フェニル
ー4−ヒドロキシ安息香酸.2−ヒドロキシ−6−ナフ
トエ酸.4−ヒドロキシ−4゛ーカルボキシビフェニル
などがあげられ,好ましくは.バラヒドロキシ安息香酸
,2−ヒドロキシ−6ナフトエ酸,4−ヒドロキシ−4
゛一カルボキシビフエニルである。
The above-mentioned aromatic hydroxycarboxylic acids impart rigidity and liquid crystallinity to polyester, and include salicylic acid and metahydroxybenzoic acid. Para-hydroxybenzoic acid, 3-chloro-4-hydroxybenzoic acid, 3-bromo-4-hydroxybenzoic acid, 3-methoxy-4-hydroxybenzoic acid, 3-methyl-4-hydroxybenzoic acid, 3-phenyl-4-hydroxy benzoic acid. 2-Hydroxy-6-naphthoic acid. Examples include 4-hydroxy-4-carboxybiphenyl, preferably. Rose hydroxybenzoic acid, 2-hydroxy-6 naphthoic acid, 4-hydroxy-4
It is monocarboxybiphenyl.

さらに,上記脂肪族ポリエステルに.ポリエステルの機
械的物性等を向上させるために,ジヒドロキシ化合物(
II)以外の芳香族ジオールや芳香族ジカルボン酸を構
成成分として含有させてもよい。
Furthermore, the above aliphatic polyester. In order to improve the mechanical properties of polyester, dihydroxy compounds (
Aromatic diols and aromatic dicarboxylic acids other than II) may be contained as constituent components.

芳香族ジオールとしては,ヒドロキノン,レゾルシン,
クロロヒドロキノン,プロモヒドロキノン.メチルヒド
ロキノン,フェニルヒドロキノン,メトキシヒドロキノ
ン,フェノキシヒドロキノン,4.4゛−ジヒドロキシ
ビフェニル,4.4”−ジヒドロキシジフェニルエーテ
ル, 4.4’−ジヒドロキシジフェニルサルファイド
, 4.4’−ジヒドロキシジフェニルスルホン, 4
.4’−ジヒドロキシベンゾフェノン, 4.4’−ジ
ヒドロキシジフェニルメタン,ビスフェノールA,1.
1−ジ(4−ヒドロキシフェニル)シクロヘキサン,1
,2−ビス (4− ヒドロキシフェノキシ)エタン.
■,4−ジヒドロキシナフタリン,2,6−ジヒドロキ
シナフタリンなどがあげられる。
Aromatic diols include hydroquinone, resorcinol,
Chlorohydroquinone, bromohydroquinone. Methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4.4''-dihydroxybiphenyl, 4.4''-dihydroxydiphenyl ether, 4.4'-dihydroxydiphenyl sulfide, 4.4'-dihydroxydiphenyl sulfone, 4
.. 4'-dihydroxybenzophenone, 4.4'-dihydroxydiphenylmethane, bisphenol A, 1.
1-di(4-hydroxyphenyl)cyclohexane, 1
, 2-bis(4-hydroxyphenoxy)ethane.
(2), 4-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, etc.

芳香族ジカルボン酸としては,テレフタル酸,イソフタ
ル酸,5−スルホイソフタル酸の金属塩,4,4゛−ジ
カルボキシビフェニル,4,4“−ジカルボキシジフェ
ニルエーテル, 4.4’−ジカルボキシジフエニルサ
ルファイド,4,4“−ジカルボキシジフェニルスルホ
ン, 3.3”−ジカルボキシヘンゾフェノン, 4.
4’−ジカルボキシベンゾフェノン,1,2ビス (4
−カルボキシフェノキシ)エタン,1.4ジカルボキシ
ナフタリン.または2,6−ジカルボキシナフタリンな
どがあげられる。
Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, metal salts of 5-sulfoisophthalic acid, 4,4'-dicarboxybiphenyl, 4,4'-dicarboxydiphenyl ether, and 4,4'-dicarboxydiphenyl sulfide. , 4,4"-dicarboxydiphenylsulfone, 3.3"-dicarboxyhenzophenone, 4.
4'-dicarboxybenzophenone, 1,2bis (4
-carboxyphenoxy)ethane, 1.4 dicarboxynaphthalene. Or 2,6-dicarboxynaphthalene and the like.

ジヒドロキシ化合物CI1)と脂肪族ジオールと脂肪族
ジカルポン酸よりなる脂肪族ポリエステルは,ジヒドロ
キシ化合゛物(II)の含有量が,少なくなると耐熱性
が低下し,多くなると弾性率が高くなり柔軟性が低下し
,熱可塑性エラストマーとしては不適当になるので,ジ
ヒドロキジ化合物〔■〕の含有量は,ポリエステルを構
成する全モノマー中の0.1〜30モル%が好ましく,
より好ましくは0.5〜20モル%であり,さらに好ま
しくは1.0〜10モル%である。尚,芳香族以外のジ
オールとしてポリアルキレンオキシドやポリシリコーン
を使用する場合,その構或単位を1モノマーとして数え
る。即ち,重合度10のポリエチレンオキシドは10モ
ノマーとして数える。
In an aliphatic polyester consisting of a dihydroxy compound CI1), an aliphatic diol, and an aliphatic dicarboxylic acid, when the content of the dihydroxy compound (II) decreases, the heat resistance decreases, and when the content increases, the elastic modulus increases and the flexibility decreases. The content of the dihydroxy compound [■] is preferably 0.1 to 30 mol% of the total monomers constituting the polyester.
More preferably, it is 0.5 to 20 mol%, and still more preferably 1.0 to 10 mol%. In addition, when polyalkylene oxide or polysilicone is used as a non-aromatic diol, its structural unit is counted as one monomer. That is, polyethylene oxide with a degree of polymerization of 10 is counted as 10 monomers.

本発明においては,まず上記ジカルボン酸の低級エステ
ルとジオール成分とをジヒドロキシ化合物CI!)が溶
融しない温度でエステル交換反応させる。低級エステル
としては,通常低級アルキルエステルであり,例えばメ
チルエステル,エチルエステル プロピルエステル等が
ある。ここでの反応温度は,ジヒドロキシ化合物〔■〕
が溶融しない温度であれば変動してもよい。次に,上記
エステル交換反応が完了した後.反応温度を昇温してジ
ヒドロキシ化合物〔■〕が熔解する温度とする。ここで
の温度は,ジヒドロキシ化合物CINが溶解する温度で
あれば,可能な限り低い方が好ましい。ジヒドロキシ化
合物〔■]が溶解した後,反応温度を降下して,ジヒド
ロキシ化合物CII)が析出しない温度とする。ここで
の温度は,ジヒドロキシ化合物(II)が析出しない温
度であれば,特に低い温度が好ましい。ジヒドロキシ化
合物〔■)が析出し始める温度は,用いるジヒドロキシ
化合物(n)及び組威濃度等に異なるが実測することに
よって求めることができる。この範囲内の温度でジヒド
ロキシ化合物と他の共重合モノマーとのエステル交換反
応を所定時間行い,次いで放冷してポリエステルが得ら
れる。
In the present invention, first, the lower ester of the dicarboxylic acid and the diol component are combined into a dihydroxy compound CI! ) is carried out at a temperature that does not melt the transesterification reaction. The lower ester is usually a lower alkyl ester, such as methyl ester, ethyl ester, propyl ester, etc. The reaction temperature here is dihydroxy compound [■]
may be varied as long as the temperature does not melt. Next, after the above transesterification reaction is completed. The reaction temperature is raised to a temperature at which the dihydroxy compound [■] melts. The temperature here is preferably as low as possible, as long as the dihydroxy compound CIN is dissolved. After the dihydroxy compound [■] is dissolved, the reaction temperature is lowered to a temperature at which the dihydroxy compound CII) does not precipitate. The temperature here is preferably particularly low as long as the dihydroxy compound (II) does not precipitate. The temperature at which the dihydroxy compound [■] begins to precipitate varies depending on the dihydroxy compound (n) used, the composition concentration, etc., but can be determined by actual measurement. A transesterification reaction between the dihydroxy compound and other copolymerizable monomers is carried out at a temperature within this range for a predetermined period of time, and then allowed to cool to obtain a polyester.

ジヒドロキシ化合物と他の共重合モノマーとを重縮合す
る際には,一般にポリエステルを製造する際に使用され
ている触媒が使用されてよい。この触媒としては,リチ
ウム,ナトリウム,カリウム,セシウム,マグネシウム
,カルシウム,バリウム,ストロンチウム,亜鉛,アル
ミニウム,チタン.コバルト.ゲルマニウム,錫,鉛,
アンチモン.ヒ素.セリウム,ホウ素,カドミウム.マ
ソガンなどの金属.その有機金属化合物,有機酸塩7金
属アルコキシド.金属酸化物等があげられる。
When polycondensing the dihydroxy compound and other copolymerizable monomers, catalysts generally used in producing polyesters may be used. These catalysts include lithium, sodium, potassium, cesium, magnesium, calcium, barium, strontium, zinc, aluminum, and titanium. cobalt. germanium, tin, lead,
Antimony. Arsenic. Cerium, boron, cadmium. Metals such as Masogan. Its organometallic compound, organic acid salt 7 metal alkoxide. Examples include metal oxides.

特に好ましい触媒は,酢酸カルシウム,ジアシル第一錫
.テトラアシル第二錫.ジブチル錫オキサイド ジブチ
ル錫ジラウレート,ジメチル錫マレート.錫ジオクタノ
エート,錫テトラアセテート トリイソブチルアルミニ
ウム,テトラブチルチタネート,二酸化ゲルマニウム,
及び三酸化アンチモンである。これらの触媒は二種以上
併用してもよい。また,重合とともに副生ずる水や.ア
ルコール,グリコールなどを効率よく留出させ.高分子
量ポリマーを得るためには.反応系を重合後期に1ml
1g以下に減圧することが好ましい。反応温度は一般に
150〜350゜Cである。
Particularly preferred catalysts are calcium acetate and stannous diacyl. Tetraacyl stannous. Dibutyltin oxide, dibutyltin dilaurate, dimethyltin malate. Tin dioctanoate, tin tetraacetate triisobutylaluminum, tetrabutyl titanate, germanium dioxide,
and antimony trioxide. Two or more of these catalysts may be used in combination. In addition, water is produced as a by-product during polymerization. Efficiently distills alcohol, glycol, etc. To obtain high molecular weight polymers. Add 1ml of the reaction system to the late stage of polymerization.
It is preferable to reduce the pressure to 1 g or less. The reaction temperature is generally 150-350°C.

本発明のポリエステルの製造時又は製造後に実用性を損
なわない範囲で以下の添加剤が添加されてもよい。すな
わち,ガラス繊維,炭素繊維,ボロン繊維.炭化けい素
繊維,アルミナ繊維.アモルファス繊維,シリコン・チ
タン・炭素系繊維等の無機繊維,アラ旦ド繊維等の有機
繊維,炭酸カルシウム,酸化チタン,マイカ,タルク等
の無機充填剤,トリファニルホスファイト,トリラウリ
ルホスファイト,トリスノニルフエニルホスファイト,
 2−tert−ブチルーα−(3− ter t−ブ
チルー4ヒドロキシフェニルLp−クメニルビス(p−
ノニルフェニル)ホスファイト等の熱安定剤,ヘキサプ
口モシクロドデカン,トリスー (2.3−ジクロロブ
口ピル)ホスフェートペンタプロモフエニルアリルエー
テル等の難燃剤, p−terL−プチルフエニルサリ
シレート,2−ヒドロキシ−4−メトキシベンゾフェノ
ン72−ヒドロキシ−4−メトキシ−2゛一カルボキシ
ベンゾフェノン, 2,4.5− 1−リヒドロキシシ
ブチロフェノン等の紫外線吸収剤,プチルヒドロキシア
ニソール,ヘチルヒドロキシトルエン,ジステアリルオ
ジプ口ピオネート,ジラウリルチオジプロピオネート等
,ヒンダードフェノール系酸化防止剤等の酸化防止剤,
 N,N−ビス(ヒドロキシエチル)アルキルアミン,
アルキルアリルスルホネート アルキルスルファネート
等の帯電防止剤,硫酸バリウム.アルミナ,酸化珪素な
どの無機物;ステアリン酸ナトリウム,ステアリン酸バ
リウム,パルミチン酸ナトリウムなどの高級脂肪酸塩;
ベンジルアルコール.ベンゾフェノンなどの有機化合物
;高結晶化したポリエチレンテレフタレート,ポリトラ
ンスーシク口ヘキサンジメタノールテレフタレート等の
結晶化促進剤等があげられる。
The following additives may be added during or after the production of the polyester of the present invention within a range that does not impair practicality. Namely, glass fiber, carbon fiber, boron fiber. Silicon carbide fiber, alumina fiber. Amorphous fibers, inorganic fibers such as silicone, titanium, and carbon fibers, organic fibers such as aramid fibers, inorganic fillers such as calcium carbonate, titanium oxide, mica, and talc, triphanyl phosphite, trilauryl phosphite, and tris. nonylphenyl phosphite,
2-tert-butyl-α-(3-tert-butyl-4hydroxyphenyl Lp-cumenylbis(p-
heat stabilizers such as nonylphenyl) phosphite, flame retardants such as hexacyclododecane, tris(2,3-dichlorobutyr)phosphate pentapromophenyl allyl ether, p-terL-butylphenyl salicylate, 2- Hydroxy-4-methoxybenzophenone 72-Hydroxy-4-methoxy-2'-carboxybenzophenone, UV absorbers such as 2,4.5-1-lihydroxysibutyrophenone, butylhydroxyanisole, hetylhydroxytoluene, distearyl oxide Antioxidants such as dipropionate, dilauryl thiodipropionate, hindered phenolic antioxidants,
N,N-bis(hydroxyethyl)alkylamine,
Alkylaryl sulfonate Antistatic agents such as alkyl sulfanate, barium sulfate. Inorganic substances such as alumina and silicon oxide; higher fatty acid salts such as sodium stearate, barium stearate, and sodium palmitate;
benzyl alcohol. Examples include organic compounds such as benzophenone; crystallization accelerators such as highly crystallized polyethylene terephthalate and polytrans-cyclohexanedimethanol terephthalate.

さらに,本発明の製造方法で得られた脂肪族ポリエステ
ルは,他の熱可塑性樹脂,例えばポリオレフィン,変威
ボリオレフィン,ボリスチレン,ポリアミド,ポリカー
ボネート,ポリスルフォン,ポリエステル等と混合し,
あるいはゴム成分と混合してそ性質を改質して使用して
もよい。
Furthermore, the aliphatic polyester obtained by the production method of the present invention can be mixed with other thermoplastic resins such as polyolefin, modified polyolefin, polystyrene, polyamide, polycarbonate, polysulfone, polyester, etc.
Alternatively, it may be used by mixing it with a rubber component to modify its properties.

本発明の製造方法で得られた脂肪族ポリエステルは,ブ
レス或形,押出成形,射出戒形,ブロー戒形等により戒
形体とされる。戒形体の物性は.その構威成分及びその
配合割合等によって任意に変化し得る。ポリエステルを
熱可塑性エラストマーとして調製した場合には.戒形体
は自動車部品,ホース,ベルト,パッキンなどの柔軟性
を有する戒形体や,塗料1接着剤等に好適に用いられる
The aliphatic polyester obtained by the production method of the present invention is made into a shaped body by press molding, extrusion molding, injection molding, blow molding, or the like. What are the physical properties of the precept form? It can be arbitrarily changed depending on its constituent components and their blending ratio. When polyester is prepared as a thermoplastic elastomer. The cylindrical body is suitably used for flexible cylindrical bodies such as automobile parts, hoses, belts, and packing, as well as paints, adhesives, and the like.

(実施例) 以下に.本発明を実施例に基づいて説明する。(Example) less than. The present invention will be explained based on examples.

実嵐開土 撹拌機,温度計,ガス吹き込み口及び蒸留口を備えた内
容積100 1dのガラス製フラスコに.アジビン酸ジ
メチル(以下DMAとする) 34.84g (200
mmol) ,エチレングリコール(以下EGとする)
29.79 g (480mmol ) , 4.4”
’−ジヒドロキシーp−クオーターファニル(以下DI
llll とする) 6.7682 g(20mmol
) ,および触媒として二酸化ゲルマニウムO.’00
72gと酢酸カルシウム0.044 gとを加え,フラ
スコ内を窒素で置換した後,フラスコをオイルバスに浸
し,バス温をすみやかに190゜Cまで昇温し約2時間
反応させた。反応とともにフラスコからメタノールが留
出しはじめ,ビス(2−ヒドロキシエチル)アジペート
(以下BHEAとする)が生或した。この反応の間, 
DIIQはほとんど溶解していなかった。次いで,バス
温を320゜Cまで昇温して攪拌を続けた。この間゛に
DHQは液体状態のBHEAに溶解した.DHロの溶解
を確認してからすみやかにバス温を300 ’Cまで降
温した。DHQが溶解して降温するまでの間は30分で
あった。バス温300″Cの状態で1時間反応を続けた
後,蒸留口を真空器につなぎ,フラスコ内を1mmHg
以下に減圧した状態で約2時間重縮合反応を行なった。
In a glass flask with an internal volume of 100 1 d, equipped with a Mitsuarashi Kaido stirrer, a thermometer, a gas inlet, and a distillation port. Dimethyl adibate (hereinafter referred to as DMA) 34.84g (200
mmol), ethylene glycol (hereinafter referred to as EG)
29.79 g (480 mmol), 4.4”
'-dihydroxy-p-quarterphanyl (DI
) 6.7682 g (20 mmol
), and germanium dioxide O. as a catalyst. '00
After adding 72 g and 0.044 g of calcium acetate and purging the inside of the flask with nitrogen, the flask was immersed in an oil bath, the bath temperature was immediately raised to 190°C, and the reaction was carried out for about 2 hours. As the reaction progressed, methanol began to distill out from the flask, and bis(2-hydroxyethyl) adipate (hereinafter referred to as BHEA) was produced. During this reaction,
DIIQ was hardly dissolved. Next, the bath temperature was raised to 320°C and stirring was continued. During this time, DHQ was dissolved in liquid BHEA. After confirming that the DHro had dissolved, the bath temperature was immediately lowered to 300'C. It took 30 minutes until DHQ was dissolved and the temperature was lowered. After continuing the reaction for 1 hour at a bath temperature of 300"C, the distillation port was connected to a vacuum vessel and the inside of the flask was adjusted to 1mmHg.
The polycondensation reaction was carried out for about 2 hours under reduced pressure as shown below.

反応とともにエチレングリコールが留出し,フラスコ内
には極めて粘稠な液体が生成した。フラスコを放冷した
後,フラスコを割って生成物をとり出した。得られた脂
肪族ポリエステルの色を目視で観察し,極限粘度を測定
した.極限粘度〔η]は,オルトク口ルフェノール中,
30゜Cで測定した。生底物は極めて淡い黄色半透明の
固体であり,極限粘度は1.45であった。
During the reaction, ethylene glycol was distilled out, and an extremely viscous liquid was formed in the flask. After the flask was allowed to cool, the flask was broken and the product was taken out. The color of the obtained aliphatic polyester was visually observed and the intrinsic viscosity was measured. Intrinsic viscosity [η] in orthochlorphenol,
Measurements were taken at 30°C. The raw bottom material was a very pale yellow translucent solid with an intrinsic viscosity of 1.45.

比較拠上 実施例1と同様のフラスコに,実施例1と同様の七ノマ
ー及び触媒を仕込み,190゜Cのオイルバス中で約2
時間反応を行い.実施例1と同様にBHEAを生威させ
た。次いで,バス温を320 ’Cまで昇温して攪拌し
, D}!Qを液体状態のBHEAに溶解させた。DH
Qの溶解を確認してから320゜Cに保った状態で更に
約1時間反応を続けた後,フラスコ内を・lmmHg以
下に減圧した状態で約2時間重縮を反応を行なった。反
応とともにエチレングリコールが留出し,フラスコ内に
は極めて粘稠な液体が生成した。フラスコを放冷した後
,ガラスを割って生或物をとり出した。生威物は褐色に
着色した半透明の固体であり,その極限粘度は1.30
であった。
For comparison, the same heptanomer and catalyst as in Example 1 were placed in a flask similar to that in Example 1, and the mixture was heated in an oil bath at 190°C for about 2 hours.
Perform a time reaction. BHEA was grown in the same manner as in Example 1. Next, the bath temperature was raised to 320'C, stirred, and D}! Q was dissolved in BHEA in liquid state. D.H.
After confirming the dissolution of Q, the reaction was continued for about 1 hour while maintaining the temperature at 320°C, and then the polycondensation reaction was carried out for about 2 hours while the pressure inside the flask was reduced to .lmmHg or less. During the reaction, ethylene glycol was distilled out, and an extremely viscous liquid was formed in the flask. After the flask was left to cool, the glass was broken and the raw material was taken out. The bioactive substance is a translucent solid colored brown, and its intrinsic viscosity is 1.30.
Met.

止較明童 実施例lと同様のフラスコに,実施例lと同様のモノマ
ー.触媒を仕込み,190゜Cのオイルバス中で約2時
間反応を行い,次いで,このバス温を300″Cまで昇
渇して攪拌し, DHQを液体状態のBllEAに溶解
させた。DHQが完全に溶解するまで約1時間かかった
。バス温300゜Cで約1時間反応を続けた後,フラス
コ内を1ma+Hg以下に減圧した状態で2時間重縮合
反応を行なった。反応とともにエチレングリコールが留
出し,フラスコ内には極めて粘稠な液体が生成した。フ
ラスコを放冷した後,ガラスを割って生戒物をとり出し
た。生威物は極めて淡い黄色,半透明の固体であり,そ
の極限粘度は1.40であった。
In a flask similar to Example 1, add the same monomer as Example 1. A catalyst was charged and the reaction was carried out in an oil bath at 190°C for about 2 hours, and then the bath temperature was raised to 300°C and stirred to dissolve DHQ in liquid BllEA.DHQ was completely dissolved. It took about 1 hour to dissolve. After continuing the reaction for about 1 hour at a bath temperature of 300°C, the polycondensation reaction was carried out for 2 hours while the pressure inside the flask was reduced to 1 ma + Hg or less. Along with the reaction, ethylene glycol was distilled out. , an extremely viscous liquid was formed in the flask. After the flask was left to cool, the glass was broken and the raw material was taken out. The raw material was an extremely pale yellow, translucent solid; The viscosity was 1.40.

以上の結果から,下記のようなことがわかった。From the above results, we found the following.

DHQを溶解させた後降温してさらにエステル交換反応
を行なった場合(実施例1)はDIIQを溶解させた温
度(320’C)を保ってエステル交換反応を続けた場
合(比較例1)に比べて,着色が少なく,極限粘度の値
も高い。また溶解温度が低い場合(比較例2)は, D
HQが完全に溶解するまで時間がかかり,その極限粘度
の値が低い。
When the temperature was lowered after dissolving DHQ and the transesterification reaction was further performed (Example 1), when the temperature at which DIIQ was dissolved (320'C) was maintained and the transesterification reaction was continued (Comparative Example 1) In comparison, it has less coloring and higher intrinsic viscosity. In addition, when the melting temperature is low (Comparative Example 2), D
It takes time for HQ to completely dissolve, and its intrinsic viscosity is low.

(発明の効果) 本発明によれば結晶性が高く,融点の高いジヒドロキシ
化合物を,反応系を長時間高温に保持することなく分子
鎖中に導入することができ,十分高分子量であって機械
的物性に優れ,しかも着色の極めて少ないポリエステル
を短時間で得ることができる。
(Effects of the Invention) According to the present invention, a dihydroxy compound with high crystallinity and a high melting point can be introduced into the molecular chain without keeping the reaction system at high temperature for a long time. Polyester with excellent physical properties and extremely little coloring can be obtained in a short time.

このようにして得られたポリエステルは.熱可塑性エラ
ストマーとしての性能を有すると共に,耐熱性. 力学特性,
The polyester obtained in this way. It has the performance as a thermoplastic elastomer and is also heat resistant. Mechanical properties,

Claims (1)

【特許請求の範囲】 1、一般式が下式〔 I 〕で表わされる脂肪族ジカルボ
ン酸と、一般式が下式〔II〕で表わされるジヒドロキシ
化合物と、脂肪族ジオールとを主たる構成成分とするポ
リエステルを製造するにあたり、 ジカルボン酸の低級エステルと、脂肪族ジオールとをジ
ヒドロキシ化合物が溶融しない温度でエステル交換反応
を行い、そのエステル交換反応が終了した後、反応温度
を昇温してジヒドロキシ化合物を溶解させ、次にジヒド
ロキシ化合物が析出しない範囲の温度まで降温して、こ
の温度でさらにエステル交換反応を行なうことを特徴と
するポリエステルの製造方法。 HOOC−(CH_2)n−COOH〔 I 〕(式中、
nは0〜10の整数を示す。) ▲数式、化学式、表等があります▼〔II〕 (式中、R^1,R^2は独立的にアルキレン基を示し
、pは3または4であり、q,rは独立的に0または1
以上の整数を示す。)
[Claims] 1. Main constituents are an aliphatic dicarboxylic acid whose general formula is represented by the following formula [I], a dihydroxy compound whose general formula is represented by the following formula [II], and an aliphatic diol. In producing polyester, a lower ester of dicarboxylic acid and an aliphatic diol are transesterified at a temperature at which the dihydroxy compound does not melt, and after the transesterification reaction is completed, the reaction temperature is raised to convert the dihydroxy compound into A method for producing polyester, which comprises dissolving the polyester, then lowering the temperature to a temperature within a range at which a dihydroxy compound does not precipitate, and further carrying out a transesterification reaction at this temperature. HOOC-(CH_2)n-COOH[I] (in the formula,
n represents an integer of 0 to 10. ) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [II] (In the formula, R^1 and R^2 independently represent an alkylene group, p is 3 or 4, and q and r are independently 0 or 1
Indicates an integer greater than or equal to )
JP1235374A 1989-09-11 1989-09-11 Method for producing polyester Expired - Lifetime JP2551664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235374A JP2551664B2 (en) 1989-09-11 1989-09-11 Method for producing polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235374A JP2551664B2 (en) 1989-09-11 1989-09-11 Method for producing polyester

Publications (2)

Publication Number Publication Date
JPH0397725A true JPH0397725A (en) 1991-04-23
JP2551664B2 JP2551664B2 (en) 1996-11-06

Family

ID=16985141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235374A Expired - Lifetime JP2551664B2 (en) 1989-09-11 1989-09-11 Method for producing polyester

Country Status (1)

Country Link
JP (1) JP2551664B2 (en)

Also Published As

Publication number Publication date
JP2551664B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
AU619840B2 (en) A polyester and an article made of the same
US5235024A (en) Polyester and an article made of the same
JPH04222822A (en) Polyester carbonate copolymer
JPH06184290A (en) Production of polyester copolymer
JPH0397725A (en) Production of polyester
JP2537563B2 (en) Method for producing aliphatic polyester
JPH0859809A (en) Preparation of polyester with high degree of polymerization
JP2551667B2 (en) Method for producing polyester
JP2512615B2 (en) Method for producing aliphatic polyester
JP2556907B2 (en) Aliphatic polyester
JPH04222824A (en) Polyester copolymer
JP2551663B2 (en) Method for producing aliphatic polyester
JP2532168B2 (en) Method for producing polyester
JPH0397726A (en) Production of aliphatic polyester
JPH04366160A (en) Polyester composition
JPH04323253A (en) Polyester composition
JP2537567B2 (en) Method for producing aliphatic polyester
JPH03115325A (en) Thin plate molding of polyester elastomer
JPH02311525A (en) Aliphatic polyester
JPH0446955A (en) Polyester composition
JPH04136025A (en) Preparation of polyester
JPH04136026A (en) Preparation of polyester
JPH02311527A (en) Polyester
JPH03247649A (en) Aliphatic polyester composition
JPH0491157A (en) Fatty polyester composition