【発明の詳細な説明】
本発明は球状、円筒形あるいは長方形状の粒状
物を充填する機械に関する。さらに詳しくは多管
垂直型反応器の反応管へ球状、円筒形状あるいは
長方形状の触媒粒子を均一に充填するための充填
機に関する。
従来、多管垂直型反応器はあらゆる産業分野に
おいて広く使用されているが、化学工業、とくに
触媒を用いる気相あるいは液相反応を行わせる場
合において多管垂直型反応器はもつとも多く使用
されている反応器である。この多管垂直型反応器
は各種反応により、あるいは用いる触媒により
種々形式が変化するが、外部熱交換式の多管垂直
型反応器について説明するならば、つぎのとおり
である。
この反応器形式は細長い反応管内に触媒を充填
し、管外の伝熱媒体が管壁を通して加熱あるいは
除熱し、触媒層の温度を反応に適する範囲に調節
するものである。通常、反応器は多数の垂直反応
管が並列にならべられ、大型の多管式熱交換器の
型になつている。この外部熱交換式の多管垂直型
反応器は、発熱あるいは吸熱反応で最適反応温度
の幅がせまく、しかもある程度の接触時間が必要
とされる種々の反応を行わせるのに用いられる。
上記した型の外部熱交換式の多管垂直型反応器
を使用する際、種々の問題が起つてくるが、その
うち反応管径の問題と触媒を含む反応管を流れる
原料ガスの均一通過の問題すなわち反応管への均
一な触媒充填の問題が重要である。
反応管径を温度調節の面から考えると、触媒上
で起る反応の際に生ずる発熱は、触媒層を半径方
向に移動し、管壁を通して熱媒体へ移動する。し
たがつて反応管径は小さい方が好ましい。しか
し、反応管径が小さいと反応管の数は莫大な数に
なり、さらに触媒の充填、抜き出しの手数も増加
するから自から限界がある。工業上使用可能な管
径の最小限度は15mmぐらいである。
反応管に触媒を充填する際、反応管径が収率向
上、反応温度調節の面から考慮され、管径が小さ
く、管長が長くなつているため、幾つかの触媒粒
子が管内を落下してゆく途中において互いにせり
合う形になり、また一度に多数の触媒粒子が殺到
するなどの原因で反応管内に架橋、いわゆるブリ
ツジングという現象が起り易い。このブリツジン
グ現象によつて各反応管の触媒充填状態が不均一
となり、それによつて各反応管の通風抵抗が異な
つてくる。したがつて、ある管では反応ガスの触
媒との接触時間が過少で未反応成分が多くなり、
別のある管では反応ガスの触媒との接触時間が過
大で副反応が多く起ることになる。このように各
反応管により反応状態が異なることは、全体の収
率を低下させるばかりでなく、触媒活性の低下を
速め、また吸熱反応においてはまつたく反応が起
らなくなることがある。だから、各反応管への触
媒粒子の充填には細心の注意を払い、各反応管の
触媒抵抗が同じになるように触媒粒子を充填し、
反応ガスが各反応管を均等に通ずるようにしなけ
ればならない。
多数の反応管に触媒粒子を均等に充填するに
は、反応管へ一時に二個以上の触媒粒子を充填し
ないことが最良の方法である。しかし、このよう
な方法では、反応管の管長が長く、数も莫大の数
であるため、触媒粒子の充填についやす時間と労
力は計り知れないものがある。したがつて、この
ような方法は実際的でない。
従来、触媒粒子を反応管に充填する場合、上記
した最良の方法とまではゆかなくとも、それに近
い方法で莫大な量の時間と労力をかけて人手によ
つて行われている。しかし、それにもかかわらず
触媒充填状態は不均一となる場合が多い。
莫大な量の時間と労力をはぶき、触媒充填状態
が均一となるような充填機について種々考えられ
るが、せまい域内に数千本にわたる多数の反応管
がぎつしりと納つているので、効果的な充填機を
発明されるにいたつていない。
この発明者らは、従来の触媒充填に際して遭遇
した数多くの困難を解決するため鋭意研究し、短
時間で、しかも触媒粒子の充填状態が均一である
ような触媒充填機を見出し、この発明を完成し
た。
したがつて、本発明の目的は触媒粒子の充填に
際して生ずるブリツジング現象を防ぎ、均一に充
填する点にある。他の目的は充填作業に必要な時
間を短縮する点であり、さらに他の目的は充填作
業を人手に頼らず機械で行う点である。その他の
目的は、以下の発明の詳細な説明によつて明らか
である。
本発明はホツパー1、ロート4およびロート4
の触媒粒子出口と反応管とを連絡する導管5を備
えた触媒充填機において、ホツパー1とロート4
との間にホツパー1およびロート4に触媒させず
に、電磁フイダー駆動部2およびトラフ3からな
る電磁フイダー3を設けたことを特徴とする触媒
充填機からなつており、反応器上部に据付け、移
動が自由にできる構造になつている。
本発明に用いられる、電磁フイダー駆動部2は
通常市販されているもので十分使用でき、電磁フ
イダー駆動部2の電磁石にかける電圧を変化させ
ることにより、触媒粒子送りスピードを変化させ
ることができる。またホツパー1から落ちる触媒
粒子を受け、振動させながらロート4へ送り込む
トラフ3の幅は、触媒の形、粒径等によつて適当
に変えることができる。
本発明に用いられるホツパー1は、反応管へ充
填する所要の触媒量を受入れることができ、触媒
粒子の安息角以上の傾斜を持ち、電磁フイダー駆
動部2のトラフ3部に触媒を落し込むようにホツ
パー1下部に開口部を設けたものである。ホツパ
ー1出口とトラフ3との間は、60mm以下、好まし
くは1〜60mmの範囲で選ばれる間〓が適当であ
る。
本発明に用いられるロート4はトラフ3から落
し込まれる触媒を受けて導管5に送り込むもの
で、円錐ないし角錐部の受け口と導管が直結され
る円管部とからなつている。トラフ3とロート4
との間は、20mm以下の範囲で選ばれる間〓が適当
である。
本発明に用いられる導管5は、ロート出口から
触媒粒子を反応管へ導くためのものであり、ゴム
あるいは塩化ビニル、あるいはポリエチレン等の
材質で作られた柔軟な導管を使用することができ
る。
本発明による触媒充填機を用いて数千本におよ
ぶ反応管からなる反応器、たとえば酸化エチレ
ン、無水フタル酸、無水マレイン酸、アクロレイ
ン、アクリル酸などの製造における反応器へ触媒
粒子を充填するとき、本発明による効果はきわめ
て大きい。すなわち、従来数千本におよぶ反応管
からなる反応器に触媒を充填するために7〜30日
間におよぶ長時間と多大な労力を必要としたのに
たいし、本発明による触媒充填機を用いると5〜
120時間という極めて短かい時間で、かつ少い労
力で済せることができる。さらに、充填後の触媒
充填状態はブリツジングによるむらがなく均一
で、触媒抵抗の調整は不必要であり、触媒活性も
安定した値を示すという工業的に有利な効果をえ
ることができる。
本発明をさらに詳しく述べるため、図面を用い
て説明する。と同時に、本発明による充填機の使
用法を図面を用いて説明する。しかし、図面は本
発明の図式的一態様であつて、特許請求の範囲に
包含されるかぎり、すべての変形は本発明に包含
される。
本発明の触媒充填機は反応器上部に据付け、マ
ンホール等充填口から導管をおろし各反応管上部
に導管の他端をつなぎ、所要触媒量をホツパー1
に注入することができる。ホツパー1は第1図で
示したように同一円周上に配列することが好まし
いが、横一列ないし背中合せで二列に配列するこ
ともできる。所要触媒量、反応器径、許要充填機
径、他端によりホツパー1の配列数も増減する
が、多くした方が能率的である。
ホツパー1の下部は触媒粒子の安息角より大き
な傾斜になつており、さらに電磁フイダー駆動部
2を有するトラフ3上で四角形にした開口部が設
けてあり、これが触媒出口となる。ホツパー1に
注入された触媒はこのホツパー1出口から電磁フ
イダー駆動部2を有するトラフ3上に落ち、さら
に電磁フイダー駆動部2の振動により、トラフ3
が振動し触媒が移動しロート4に落とすことがで
きる。この電磁フイダー駆動部2の振動のさせ方
により充填スピードを変えることができる。主に
それは振幅の大きさを電圧の調整によつて変え、
移動スピードつまり充填スピードを変化させるこ
とになる。このスピードにより反応管中での触媒
の充填のされ方が決まるので十分注意を払わねば
ならない。
またトラフ3の溝幅も充填スピード、触媒粒
径、形状等により、トラフ上での触媒粒子のつま
り、残りが生ずるので若干変化させねばならない
かもしれない。トラフ3から少量ずつ連続的に落
ちた触媒はロート4に入る。ロート4は下部で円
管になつており導管5に連結されている。円管径
は反応管径と同じが望ましいが、必ずしも同じで
なくて良い。
触媒はロート4から導管5に入り導管5を通り
反応管に入る導管5は反応器のすべての位置の反
応管に充填できるように自由に折曲げのできる柔
軟な材料を選ぶことが好ましい。また、簡単に取
りばずせる様な接続形式が望ましい。
ホツパー1、電磁フイダー駆動部2、ロート
4、導管5の組み合せを、何組触媒充填機に設け
るかは、所要触媒量、反応器径、許要充填機径等
によつて変るが、触媒充填時の作業性、能率性も
考慮して一度に数本あるいは数十本の反応管に充
填できるよう設計しておくことが好ましい。その
配列は図−1の如く同一円周上に配するも良し、
横一列にするも良し、背中合せ二列に配するも良
い。
以下実施例により詳しくこの発明を説明する。
ただし、本発明はその主旨に反しない限り、こ
の実施例に限定されるものではない。
実施例 1
内径30mm、長さ12mの反応管が3800本在る多管
垂直型反応器に、直径6.4mm、長さ6.4mmのシリン
ダー状触媒粒子を充填する為に、第1図および第
2図に示した型で設計し触媒充填機を製作した。
電磁フイダー駆動部2を取付けたトラフ3;
200V、50Hz、トラフ巾60mm32個
ホツパー:外周1600mmの円周上に32個
導管;内径30mmのビニール管
ホツパー1とトラフ3との間〓5mm
トラフ3とロート4との間〓5mm
32個のホツパー1各々へ触媒粒子7000mlずつ入
れた。電磁フイダー駆動部2を駆動させ、振動を
トラフ3に与え、触媒粒子をホツパー1出口から
少しずつトラフ3上に移しトラフ3上を徐々に移
動させた。触媒粒子はトラフ3からロート4に落
され、さらに内径30mmのビニール製導管5を通り
反応管へ充填した。反応管1本に触媒7000ml充填
するのに7分の時間を要した。3800本の反応管全
部に触媒を充填するのに約24時間を要した。
実施例 2
実施例1において、触媒充填機の反応管1本を
用いて、実施例1と同様の触媒8500gを1000gの
速度で充填されるようにし、触媒全量をホツパー
に入れ、実施例1と同様にして触媒を充填した。
触媒全量の充填時間は8分30秒を要した。触媒充
填開始後、1〜2分の間、4〜5分の間および7
〜8分の間の各1分間の触媒充填重量を測定し
た。その結果を表−1に示す。
比較例 1
実施例1において、ホツパー1に電磁フイダー
駆動部2を設け、ホツパー1とロート4を接続し
た以外は実施例2と同様にし、触媒を充填した。
触媒全量の充填時間は8分30秒を要した。触媒充
填開始後、1〜2分の間、4〜5分の間および7
〜8分の間の各1分間の触媒充填重量を測定し
た。その結果を表−1に示す。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a machine for filling spherical, cylindrical or rectangular granules. More specifically, the present invention relates to a filling machine for uniformly filling spherical, cylindrical, or rectangular catalyst particles into reaction tubes of a multitubular vertical reactor. Conventionally, multi-tube vertical reactors have been widely used in all industrial fields, but multi-tube vertical reactors are not often used in the chemical industry, especially when conducting gas phase or liquid phase reactions using catalysts. This is a reactor. The form of this multi-tube vertical reactor varies depending on various reactions or catalysts used, but the external heat exchange type multi-tube vertical reactor will be explained as follows. In this reactor type, a long and narrow reaction tube is filled with a catalyst, and a heat transfer medium outside the tube heats or removes heat through the tube wall to adjust the temperature of the catalyst layer to a range suitable for the reaction. Usually, the reactor consists of a large number of vertical reaction tubes arranged in parallel, in the form of a large shell-and-tube heat exchanger. This external heat exchange type multitubular vertical reactor is used to carry out various reactions in which the optimal reaction temperature range is narrow in exothermic or endothermic reactions, and moreover, a certain amount of contact time is required. When using the above-mentioned type of external heat exchange type multi-tube vertical reactor, various problems arise, among them the problem of the reaction tube diameter and the problem of uniform passage of the raw material gas flowing through the reaction tubes containing the catalyst. That is, the problem of uniformly filling the catalyst into the reaction tube is important. Considering the diameter of the reaction tube from the viewpoint of temperature control, the heat generated during the reaction occurring on the catalyst moves in the radial direction through the catalyst layer and through the tube wall to the heat medium. Therefore, it is preferable that the diameter of the reaction tube is small. However, if the diameter of the reaction tube is small, the number of reaction tubes becomes enormous, and the time and effort required to fill and extract the catalyst also increases, so there is a limit to this. The minimum pipe diameter that can be used industrially is about 15 mm. When filling a reaction tube with a catalyst, the diameter of the reaction tube is taken into consideration from the viewpoint of improving yield and controlling the reaction temperature, and because the tube diameter is small and the tube length is long, some catalyst particles may fall down inside the tube. During the process, they come into contact with each other, and a large number of catalyst particles rush in at once, which tends to cause crosslinking, a phenomenon called bridging, in the reaction tube. This bridging phenomenon causes the catalyst filling state of each reaction tube to be non-uniform, thereby causing the ventilation resistance of each reaction tube to differ. Therefore, in some tubes, the contact time of the reaction gas with the catalyst is too short, resulting in a large amount of unreacted components.
In another tube, the contact time of the reaction gas with the catalyst is too long and many side reactions occur. Such differences in reaction conditions between reaction tubes not only reduce the overall yield, but also accelerate the decline in catalyst activity, and may even prevent endothermic reactions from occurring immediately. Therefore, pay close attention to the filling of catalyst particles into each reaction tube, and fill the catalyst particles so that the catalyst resistance of each reaction tube is the same.
It is necessary to ensure that the reaction gas passes through each reaction tube evenly. In order to evenly fill a large number of reaction tubes with catalyst particles, it is best not to fill the reaction tubes with more than one catalyst particle at a time. However, in such a method, the length of the reaction tube is long and the number of reaction tubes is enormous, so the time and effort required to fill the catalyst particles are immeasurable. Therefore, such a method is not practical. Conventionally, when filling a reaction tube with catalyst particles, it has been carried out manually, using a method that is close to, if not the best method described above, and which requires a huge amount of time and effort. However, in spite of this, the catalyst filling state is often non-uniform. There are many ways to create a filling machine that would require a huge amount of time and effort to achieve a uniform catalyst filling state, but since thousands of reaction tubes are tightly packed in a narrow area, it is difficult to find an effective filling machine. The filling machine has yet to be invented. The inventors conducted extensive research to solve the many difficulties encountered in conventional catalyst filling, discovered a catalyst filling machine that could be used in a short time, and evenly packed the catalyst particles, and completed this invention. did. Therefore, an object of the present invention is to prevent the bridging phenomenon that occurs when filling catalyst particles and to uniformly fill the catalyst particles. Another objective is to shorten the time required for the filling operation, and still another objective is to perform the filling operation mechanically without relying on manual labor. Other objects will become apparent from the detailed description of the invention below. The present invention includes a hopper 1, a funnel 4, and a funnel 4.
In a catalyst filling machine equipped with a conduit 5 connecting a catalyst particle outlet and a reaction tube, a hopper 1 and a funnel 4 are connected.
It consists of a catalyst filling machine characterized in that an electromagnetic feeder 3 consisting of an electromagnetic feeder drive unit 2 and a trough 3 is provided without catalyst in the hopper 1 and funnel 4, and is installed on the upper part of the reactor. The structure allows for free movement. The electromagnetic feeder drive unit 2 used in the present invention is usually commercially available and can be used, and by changing the voltage applied to the electromagnet of the electromagnetic feeder drive unit 2, the catalyst particle feeding speed can be changed. Further, the width of the trough 3 which receives the catalyst particles falling from the hopper 1 and sends them into the funnel 4 while being vibrated can be appropriately changed depending on the shape and particle size of the catalyst. The hopper 1 used in the present invention can receive the required amount of catalyst to be filled into the reaction tube, has an inclination equal to or higher than the angle of repose of the catalyst particles, and is designed to drop the catalyst into the trough 3 of the electromagnetic feeder drive unit 2. An opening is provided at the bottom of the hopper 1. The distance between the outlet of the hopper 1 and the trough 3 is preferably 60 mm or less, preferably within the range of 1 to 60 mm. The funnel 4 used in the present invention receives the catalyst dropped from the trough 3 and sends it into the conduit 5, and is made up of a conical or pyramidal receiving port and a circular pipe to which the conduit is directly connected. Trough 3 and funnel 4
It is appropriate to select a distance within the range of 20 mm or less. The conduit 5 used in the present invention is for guiding catalyst particles from the funnel outlet to the reaction tube, and can be a flexible conduit made of a material such as rubber, vinyl chloride, or polyethylene. When the catalyst packing machine according to the present invention is used to fill catalyst particles into a reactor consisting of several thousand reaction tubes, for example, a reactor in the production of ethylene oxide, phthalic anhydride, maleic anhydride, acrolein, acrylic acid, etc. , the effects of the present invention are extremely large. In other words, whereas conventionally it required a long time of 7 to 30 days and a great deal of labor to fill a reactor made up of several thousand reaction tubes, the catalyst filling machine of the present invention can be used to fill a reactor with catalyst. and 5~
It can be completed in an extremely short time of 120 hours and with little effort. Furthermore, the catalyst filling state after filling is uniform without any unevenness due to bridging, there is no need to adjust the catalyst resistance, and the catalyst activity exhibits a stable value, which is an industrially advantageous effect. In order to describe the present invention in more detail, the present invention will be explained using drawings. At the same time, the usage of the filling machine according to the present invention will be explained using the drawings. However, the drawing is a schematic embodiment of the present invention, and all modifications are included in the present invention as long as they fall within the scope of the claims. The catalyst filling machine of the present invention is installed at the top of the reactor, and the conduit is lowered from the filling port such as a manhole, and the other end of the conduit is connected to the top of each reaction tube, and the required amount of catalyst is loaded into the hopper.
can be injected into. The hoppers 1 are preferably arranged on the same circumference as shown in FIG. 1, but they can also be arranged in one horizontal row or in two rows back to back. The number of hoppers 1 arranged can be increased or decreased depending on the required amount of catalyst, the diameter of the reactor, the required diameter of the filling machine, and the other end, but it is more efficient to increase the number of hoppers 1. The lower part of the hopper 1 has a slope greater than the angle of repose of the catalyst particles, and is further provided with a rectangular opening on a trough 3 having an electromagnetic feeder drive 2, which serves as a catalyst outlet. The catalyst injected into the hopper 1 falls from the outlet of the hopper 1 onto a trough 3 having an electromagnetic feeder drive unit 2, and further, due to the vibration of the electromagnetic feeder drive unit 2,
vibrates, the catalyst moves, and can be dropped into the funnel 4. The filling speed can be changed depending on how the electromagnetic feeder drive unit 2 is vibrated. Mainly it changes the magnitude of the amplitude by adjusting the voltage and
This will change the moving speed, that is, the filling speed. This speed determines how the catalyst is packed in the reaction tube, so careful attention must be paid to it. Furthermore, the groove width of the trough 3 may have to be changed slightly depending on the filling speed, catalyst particle diameter, shape, etc., since catalyst particles may clog or remain on the trough. The catalyst that continuously falls from the trough 3 little by little enters the funnel 4. The funnel 4 has a circular tube at its lower part and is connected to a conduit 5. The diameter of the circular tube is preferably the same as the diameter of the reaction tube, but it does not necessarily have to be the same. The catalyst enters the conduit 5 from the funnel 4, passes through the conduit 5, and enters the reaction tube.The conduit 5 is preferably made of a flexible material that can be bent freely so that it can be filled into the reaction tubes at all positions in the reactor. It is also desirable to have a connection type that allows for easy removal. The number of combinations of the hopper 1, electromagnetic feeder drive unit 2, funnel 4, and conduit 5 to be installed in the catalyst filling machine varies depending on the required amount of catalyst, reactor diameter, permitted filling machine diameter, etc. In consideration of workability and efficiency, it is preferable to design the reaction tube so that it can be filled into several or several dozen reaction tubes at once. They can be arranged on the same circumference as shown in Figure 1.
You can arrange them in one row horizontally or in two rows back to back. The present invention will be explained in more detail with reference to Examples below. However, the present invention is not limited to this embodiment unless it goes against the spirit thereof. Example 1 In order to fill a multi-tube vertical reactor with 3800 reaction tubes with an inner diameter of 30 mm and a length of 12 m, cylindrical catalyst particles with a diameter of 6.4 mm and a length of 6.4 mm were prepared. A catalyst filling machine was designed and manufactured using the model shown in the figure. A trough 3 with an electromagnetic feeder drive unit 2 attached;
200V, 50Hz, trough width 60mm 32 pieces Hopper: 32 pieces on a circumference of 1600mm outer circumference Conduit: Vinyl pipe with inner diameter 30mm Between hopper 1 and trough 3 = 5mm Between trough 3 and funnel 4 = 5mm 32 hoppers 1. 7000 ml of catalyst particles were added to each. The electromagnetic feeder drive unit 2 was driven to apply vibration to the trough 3, and the catalyst particles were transferred little by little from the outlet of the hopper 1 onto the trough 3, and were gradually moved on the trough 3. The catalyst particles were dropped from the trough 3 into the funnel 4, and then passed through a vinyl conduit 5 with an inner diameter of 30 mm and filled into the reaction tube. It took 7 minutes to fill 7000ml of catalyst into one reaction tube. It took about 24 hours to fill all 3,800 reaction tubes with catalyst. Example 2 In Example 1, using one reaction tube of the catalyst filling machine, 8500 g of the same catalyst as in Example 1 was charged at a rate of 1000 g, the entire amount of catalyst was put into the hopper, and the same reaction tube as in Example 1 was used. The catalyst was charged in the same manner.
It took 8 minutes and 30 seconds to fill the entire amount of catalyst. After starting the catalyst filling, for 1 to 2 minutes, for 4 to 5 minutes, and for 7 minutes.
The catalyst loading weight was measured for each minute between ~8 minutes. The results are shown in Table-1. Comparative Example 1 A catalyst was filled in the same manner as in Example 2 except that the electromagnetic feeder drive unit 2 was provided in the hopper 1 and the funnel 4 was connected to the hopper 1.
It took 8 minutes and 30 seconds to fill the entire amount of catalyst. After starting the catalyst filling, for 1 to 2 minutes, for 4 to 5 minutes, and for 7 minutes.
The catalyst loading weight was measured for each minute between ~8 minutes. The results are shown in Table-1. 【table】
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は本発明の触媒充填機の一部切欠平面図
である。第2図は本発明の触媒充填機のA−A断
面図である。
1……ホツパー、2……電磁フイダー駆動部、
3……トラフ、4……ロート、5……導管、6…
…支持フレーム、7……固定脚、8……スプリン
グ、9……移動車輪、10……電磁フイダー保持
台、11……架台。
FIG. 1 is a partially cutaway plan view of the catalyst filling machine of the present invention. FIG. 2 is a sectional view taken along the line AA of the catalyst filling machine of the present invention. 1...Hopper, 2...Electromagnetic feeder drive unit,
3...trough, 4...funnel, 5...conduit, 6...
...Support frame, 7... Fixed leg, 8... Spring, 9... Moving wheel, 10... Electromagnetic feeder holding stand, 11... Frame.