JPH0397649A - Inorganic powder suspension and inorganic powder sintered material produced from the suspension - Google Patents

Inorganic powder suspension and inorganic powder sintered material produced from the suspension

Info

Publication number
JPH0397649A
JPH0397649A JP2174040A JP17404090A JPH0397649A JP H0397649 A JPH0397649 A JP H0397649A JP 2174040 A JP2174040 A JP 2174040A JP 17404090 A JP17404090 A JP 17404090A JP H0397649 A JPH0397649 A JP H0397649A
Authority
JP
Japan
Prior art keywords
suspension
pectin
viscosity
powder
inorganic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2174040A
Other languages
Japanese (ja)
Inventor
Tatsuro Takeuchi
竹内 辰郎
Tetsuya Sawara
佐原 哲也
Takuo Tsuchida
土田 拓生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Publication of JPH0397649A publication Critical patent/JPH0397649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Colloid Chemistry (AREA)

Abstract

PURPOSE:To facilitate the operation in forming and to improve the productivity of the sintered material by adding >=1 kind of polysaccharide to a dispersion of inorg. powder in solvent to obtain an inorg. powder suspension or further sintering the formed material obtained from the suspension. CONSTITUTION:One or more kinds of polysaccharides selected from pectin, pectic acid, 1,3-glucan originated from microbes and animal polysaccharides are added to an aq. dispersion of inorg. powder (e.g. ceramic powder) or the dispersion in water and alcohol. In this case, the reaction is carried out at pH7.0-12.0, the reaction temp. is ordinarily controlled to room temp., and the reaction time is adjusted to about 24hr. The inorg. powder is deflocculated and dispersed in a solvent by the treatment to obtain the inorg. powder suspension having the above mentioned characteristics. The suspension is formed by casting, press forming, etc., and the formed material is sintered to obtain an inorg. powder sintered material, namely a ceramic sintered material.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、無機粉体懸濁液並びに当該懸濁液から製造し
た無機粉体焼結物に関し、より具体的には、例えば、セ
ラミックス懸濁液並びにこれから製造したセラミックス
焼結物に関し、成形処理時の操作性を容易にするととも
に、焼結物の生産性を向上できるものを提供する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to an inorganic powder suspension and an inorganic powder sintered product produced from the suspension, and more specifically, for example, to ceramic suspensions. The present invention relates to a suspension liquid and a ceramic sintered product manufactured from the suspension, and provides one that facilitates operability during molding treatment and improves the productivity of the sintered product.

〈従来技術〉 例えば、上記セラミックス焼結物は、一般に、粉体原料
調合物に分散剤、結合剤及び水(溶媒)を添加してセラ
ミックス粉体懸濁液を調製し、■当該懸濁液をそのまま
泥漿鋳込み成形したり、■懸濁液から造粒した顆粒を加
圧或形したり、■その他の方法で或形したうえで、これ
を焼結したものである。
<Prior art> For example, the ceramic sintered product described above is generally produced by adding a dispersant, a binder, and water (solvent) to a powder raw material mixture to prepare a ceramic powder suspension, and (1) Pressurize or shape granules made from a suspension, (2) Shape granules by other methods, and then sinter the resulting product.

この場合、上記懸濁液を調製する方法としては、■塩化
水素、水酸化ナトリウム、アンモニアなどの酸或いは塩
基によりpHを調整する方法■ソーダ灰、水ガラス、ポ
リリン酸塩などのような、多価陽イオンに対して不溶性
塩や錯塩を形戒する無機塩を添加する方法 ■CMC塩、リグニンスルホン酸塩、ポリアクリル酸塩
などのようなボリアニオン分散剤を添加する方法 などが知られている. 上記■及び■の方法は、陶磁器製造の分野では旧来から
広く使用されているが、これらの分散剤は焼結物中にナ
トリウム化合物などの不純物を残留させる虞れが大きく
、IC基板、コンデンサなどの電子部品、或いは人工骨
などを代表とするファインセラミックスの分野では、微
量の不純物の混人を嫌う観点から、これらの使用は好ま
しくなく、■のボリアニオン分散剤が常用されている。
In this case, methods for preparing the above suspension include: (1) adjusting the pH with an acid or base such as hydrogen chloride, sodium hydroxide, ammonia, etc. (2) using a polyester such as soda ash, water glass, polyphosphate, etc. Methods of adding inorganic salts that form insoluble salts or complex salts for valent cations Methods of adding borianion dispersants such as CMC salts, lignin sulfonates, polyacrylates, etc. are known. .. Methods (2) and (2) above have long been widely used in the field of ceramic manufacturing, but these dispersants have a high risk of leaving impurities such as sodium compounds in the sintered product, and are used for IC boards, capacitors, etc. In the field of fine ceramics, typified by electronic parts and artificial bones, their use is undesirable from the viewpoint of dissatisfaction with trace amounts of impurities, and borianion dispersants (2) are commonly used.

即ち、上記ボリアニオン分散剤は、分子m造内にカルボ
キシル基、スルホン酸基などの官能基を有するために、
水中で解離してボリアニオンを生じ、これらが無機粉体
(例えば、粘土粒子)に吸着しているカルシウムイオン
、マグネシウムイオンなどの多価イオンを捕集し、粘土
粒子には一価イオンが置換することにより、当該粒子に
静電反発力を与えて解膠を促進するように機能する。
That is, the borianion dispersant has functional groups such as a carboxyl group and a sulfonic acid group in its molecular structure, so that
It dissociates in water to produce borian anions, which collect polyvalent ions such as calcium ions and magnesium ions adsorbed on inorganic powders (e.g. clay particles), and monovalent ions replace the clay particles. This functions to promote peptization by imparting electrostatic repulsion to the particles.

また、当該分散剤は炭化水素或いは人工多糖類系のボリ
マーであって、成分は焼結時に飛んでしまうので、上記
■〜■の分散剤に比べて焼結物に不純物が残留しにくい
6 く発明が解決しようとする課題〉 一般に、セラミックスの成形工程においては、乾燥時間
の短縮による生産性の向上と、ハンドリング(取り扱い
〉の容易化の要求から、セラミックス粉体懸濁液の水分
量をできるだけ少なくシ、且つ、流動性を持たせる必要
がある。
In addition, the dispersant is a hydrocarbon or artificial polysaccharide-based polymer, and the components are blown away during sintering, so impurities are less likely to remain in the sintered product compared to the dispersants described in ■ to ■ above. Problems to be Solved by the Invention In general, in the ceramic molding process, the water content of the ceramic powder suspension is reduced as much as possible in order to improve productivity by shortening drying time and to facilitate handling. It needs to be small and fluid.

しかしながら、上記■の分散剤では、自身がボリマーで
あるために、これを懸濁液に添加した場合、液全体の粘
度は本来的に上昇することが推定できるとともに、ボリ
マーの官能基がカルシウムイオンなどの多価イオンと反
応すると、当該多価イオンを介してボリマーの官能基同
士が架橋してゲル化し、粘度が増大する虞れもある。
However, since the above dispersant (■) is a polymer, it can be assumed that when it is added to a suspension, the viscosity of the entire liquid will inherently increase, and the functional group of the polymer will contain calcium ions. When it reacts with polyvalent ions such as polyvalent ions, the functional groups of the polymer may be crosslinked and gelled through the polyvalent ions, which may increase the viscosity.

従って、懸濁液の水分量が少ない場合(即ち、分散剤の
混合濃度が増加する場合)には、懸濁液の粘度がより高
まってハンドリング性が低下する虞れが大きい. 一方、特開昭58−172227号公報には、天然多糖
類であるカラゲナンを分散剤として添加することにより
、長時間に亘り安定した水性ゼオライト懸濁液を調製す
る技術が開示されている.しかしながら、上記公報の第
1−表によると、カラゲナンの混合量が増すにつれて、
懸濁液の粘度は飛躍的に増大することが判り、特に、カ
ラゲナンの混合分率が0.2→0.4重量%になると、
42.5重量%ゼオライト懸濁液の粘度は700→40
00cPに一挙に略6倍に増大することから、有機ボリ
マー系分散剤の添加は、ハンドリング性の点で問題があ
ることを窺わせる. また、一方、上記力ラゲナンはスルホン酸基を有するた
め、焼結時に当該官能基の硫黄分が無機粉体に含有され
る金属と結合して金属硫化鞠を形戒し、焼結物の着色原
因にもなるため、洗剤、乾燥剤などのような着色性があ
まり問題にならない分野なら良いが、例えば、上記ファ
インセラミックスのような用途には好ましくない. 本発明は、無機粉体の成形時のハンドリング性並びに成
形物から製造した焼結物の取り扱いを良好にすることを
主な技術的課題とする。
Therefore, when the water content of the suspension is small (that is, when the mixed concentration of the dispersant increases), there is a strong possibility that the viscosity of the suspension will increase and the handling properties will deteriorate. On the other hand, JP-A-58-172227 discloses a technique for preparing an aqueous zeolite suspension that is stable over a long period of time by adding carrageenan, which is a natural polysaccharide, as a dispersant. However, according to Table 1 of the above publication, as the amount of carrageenan mixed increases,
It was found that the viscosity of the suspension increased dramatically, especially when the carrageenan mixture ratio increased from 0.2 to 0.4% by weight.
The viscosity of the 42.5% by weight zeolite suspension is 700 → 40
00 cP, which indicates that the addition of an organic polymer dispersant poses a problem in terms of handling. On the other hand, since the above-mentioned lagenane has a sulfonic acid group, the sulfur content of the functional group combines with the metal contained in the inorganic powder during sintering, forming a metal sulfide ball and causing coloration of the sintered product. This is fine in fields where coloring is not a big problem, such as in detergents and desiccants, but it is undesirable for applications such as the fine ceramics mentioned above. The main technical problem of the present invention is to improve the handling properties during molding of inorganic powder and the handling of sintered products produced from molded products.

〈課題を解決するための手段〉 本発明者等は、天然多糖類の中のある種のものを分散剤
に選択すると、無機粉体(例えば、セラミックス粉体)
スラリーの分散安定性を高めながら、しかも液全体の粘
度を低下できることを発見し、この発見に基づいて本発
明を完戒した。
<Means for Solving the Problems> The present inventors have discovered that by selecting certain types of natural polysaccharides as dispersants, inorganic powders (e.g. ceramic powders)
It was discovered that the viscosity of the entire liquid could be lowered while increasing the dispersion stability of the slurry, and based on this discovery, the present invention was completed.

即ち、第1発明は、無機粉体を分散させた溶媒系に、ペ
クチン、ペクチン酸、微生物起源1.3ーグルカン、動
物起源多糖類の群より選ばれた多糖類の少なくとも一種
を添加して、無機粉体を溶媒中に解膠・分散させたこと
を特徴とする無機粉体懸濁液である6 第2発明は、第1発明において、ペクチン又はペクチン
酸が、塩基性物質の存在下でエージングされたものであ
ることを特徴とするものである,第3発明は、第1又は
2発明において、多糖類が、酵素分解、酸分解などによ
って低分子化処理されたものであることを特徴とするも
のである。
That is, the first invention adds at least one polysaccharide selected from the group of pectin, pectic acid, microbial origin 1.3-glucans, and animal origin polysaccharides to a solvent system in which inorganic powder is dispersed, 6. The second invention is an inorganic powder suspension characterized by peptizing and dispersing inorganic powder in a solvent. A third invention is characterized in that the polysaccharide in the first or second invention is one that has been treated to have a lower molecular weight by enzymatic decomposition, acid decomposition, etc. That is.

第4発明は、無機粉体を分散させた溶媒系に、ペクチン
、ペクチン酸、微生物起源1.3−グルカン、動物起源
多糖類の群より選ばれた多糖類の少なくとも一種を添加
して無機粉体懸濁液を調製し、当該懸濁液から成形物を
製造するとともに、この成形物を焼結することを特徴と
する無機粉体焼結物である. 第5発明は、上記第4発明において、懸濁液からスプレ
ードライヤーによって顆粒を造粒し、当該顆粒を加圧成
形して成形物を得ることを特徴とするものである。
The fourth invention provides an inorganic powder by adding at least one polysaccharide selected from the group of pectin, pectic acid, microbial origin 1,3-glucan, and animal origin polysaccharide to a solvent system in which the inorganic powder is dispersed. This is an inorganic powder sintered product, which is characterized by preparing a powder suspension, producing a molded product from the suspension, and sintering the molded product. A fifth invention is the fourth invention, characterized in that granules are granulated from the suspension using a spray dryer, and the granules are pressure-molded to obtain a molded product.

上記無機粉体とは、下記の単独粉体或いは混合粉体をい
う。
The above-mentioned inorganic powder refers to the following individual powder or mixed powder.

■アルミナ、シリカ、マグネシア、ジルコニア、チタニ
ア、フエライト、チタン酸バリウム、合成コージェライ
ト、ムライトなどの酸化物■炭化ケイ素、炭化ホウ素、
炭化チタンなどの炭化物 ■窒化ケイ素、窒化ホウ素、窒化アルミニウム、窒化チ
タンなどの窒化物 ■ホウ化ジルコニウム、ホウ化チタンなどのホウ化物 ■カオリン、カオリナイト、ベントナイト、ゼオライト
、タルク、セビオライト、合戒粘土、ヒドロキシアパタ
イト(リン酸カルシウム系化合物)などの天然或いは合
成鉱物 ■炭素、カーボンブラック或いは黒鉛粉体、磁石などの
磁性材料粉体、砂鉄粉体、燃料粉体、顔料粉体、超伝導
材料粉体などの無機物の粉体また、上記微生物起源1.
3−グルカンとは、D−グルコースを単糖単位とし、微
生物によって生産される1.3−結合重合物を主戒分と
する多糖類であって、例えば、下記の(a)〜(c)に
示すβ一1,3結合物やα一結合物などをいう.(a)
土壌細菌の一種である^lcaligenes fae
calisvar. +*yoxgenes 10C3
Kなどから生産されるカードラン(アグリ力ルチュアル
・バイオロジカル・ケミストリー「^Hlicultu
ral Biologieal ChemistryJ
.第30巻.第196頁{1966年}参照)(b)単
細胞藻類EugIena gracilisにより生産
されるバラミロン(特開昭64−37297号公報参照
)(c)Poria cocasから得られるパキマン
、Sclerocius glucanicumの生産
するスクレログルカンなど従って、微生物起源多糖類で
も、■グルコース以外の単糖単位を多く含むキサンタン
ガム、■微生物起源1.6或いは1,4−グルカンであ
るブルランなどは排除される。
■Oxides such as alumina, silica, magnesia, zirconia, titania, ferrite, barium titanate, synthetic cordierite, mullite, etc.■Silicon carbide, boron carbide,
Carbides such as titanium carbide ■Nitrides such as silicon nitride, boron nitride, aluminum nitride, titanium nitride ■Borides such as zirconium boride and titanium boride ■Kaolin, kaolinite, bentonite, zeolite, talc, Seviolite, Hekai clay , natural or synthetic minerals such as hydroxyapatite (calcium phosphate compound), carbon, carbon black or graphite powder, magnetic material powder such as magnets, iron sand powder, fuel powder, pigment powder, superconducting material powder, etc. The inorganic powder also has the above-mentioned microbial origin 1.
3-glucan is a polysaccharide whose main component is D-glucose as a monosaccharide unit and a 1,3-bond polymer produced by microorganisms, for example, the following (a) to (c). Refers to β-1,3-conjugates and α-1-conjugates shown in . (a)
^lcaligenes fae, a type of soil bacteria
calisvar. +*yoxgenes 10C3
Curdlan (agricultural biological chemistry) produced from K, etc.
ral Biological ChemistryJ
.. Volume 30. p. 196 {1966}) (b) Valamilon produced by the unicellular alga EugIena gracilis (see JP-A-64-37297) (c) Pachyman obtained from Poria cocas, scleroglucan produced by Sclerocius glucanicum Therefore, among polysaccharides of microbial origin, 1.

上記動物起源多糖類とは、動物の身体の楕成或分から取
得される多糖類を指し、コンドロイチン&EM、ヒアル
ロン酸などをいう。
The above-mentioned animal-derived polysaccharides refer to polysaccharides obtained from the oval tissue of animal bodies, and include chondroitin & EM, hyaluronic acid, and the like.

一方、本発明の多糖類は、下記の(イ)又は(ロ)の要
件を満たすような天然起源のく即ち、天然物からの取得
を基本とする)多糖類を特定化したものである。
On the other hand, the polysaccharide of the present invention is a specified polysaccharide of natural origin (i.e., obtained from natural products) that satisfies the following requirements (a) or (b).

(イ)天然物からそのまま或は所定の抽出処理などで取
得した、通常知られている天然の多糖類。
(a) Commonly known natural polysaccharides obtained from natural products as they are or through a prescribed extraction process.

(ロ)上記(イ)の天然の多糖類に化学的処理を施した
もの。
(b) Chemically treated natural polysaccharides mentioned in (a) above.

この場合、上記化学的処理とは次の処理などを指す。In this case, the chemical treatment mentioned above refers to the following treatment, etc.

■アンモニア、トリエタノールアミンなどの非金属系塩
基性物質、或は、水酸化ナトリウム、水酸化カリウム、
重曹、炭酸カルシウムなどの塩基性物質の水溶液の存在
下(又は当該水溶液とアセトン、エタノール、メタノー
ルなどの水性溶剤との混合液などの存在下)で処理する
エージング。
■Non-metallic basic substances such as ammonia and triethanolamine, or sodium hydroxide, potassium hydroxide,
Aging performed in the presence of an aqueous solution of a basic substance such as baking soda or calcium carbonate (or in the presence of a mixture of the aqueous solution and an aqueous solvent such as acetone, ethanol, or methanol).

■酵素分解による低分子化. ■酸分解による低分子化(例えば、カードランを90%
ギ酸に溶解させ、100℃で10〜20分反応させると
、重合度400〜500程度のものから70〜100程
度に低分子化されたカードランが得られる)。
■Low-molecularization through enzymatic decomposition. ■Low molecular weight reduction by acid decomposition (for example, 90% curdlan)
When dissolved in formic acid and reacted at 100°C for 10 to 20 minutes, curdlan with a polymerization degree of about 400 to 500 reduced to a low molecular weight of about 70 to 100 is obtained.

■水中での加熱や希酸の混合によるカルボキシル基のメ
チルエステル化度の低下処理。
■Reducing the degree of methyl esterification of carboxyl groups by heating in water or mixing with dilute acid.

■カルボキシメチル化、ニトロ化、硫酸化などのエステ
ル化処理。
■Esterification treatments such as carboxymethylation, nitration, and sulfation.

因みに、上記多糖類のうち、ペクチン又はペクチン酸を
エージングすると、多糖類中のフリーのカルボキシル基
が中和されて塩基性塩になり、カルボキシル・アニオン
への解離が進むとともに、加水分解により若干の低分子
化が起こる.上記エージングの反応条件は、次の通りで
ある。
Incidentally, among the above polysaccharides, when pectin or pectic acid is aged, the free carboxyl groups in the polysaccharide are neutralized and become basic salts, and dissociation into carboxyl anions progresses, and some degradation occurs due to hydrolysis. Lower molecular weight occurs. The reaction conditions for the above aging are as follows.

(1)前記塩基性物質は、ペクチン又はペクチン酸のフ
リーのカルボキシル基に対して当量以上加える。
(1) The basic substance is added in an amount equal to or more than the free carboxyl group of pectin or pectic acid.

(2)pHは7.0〜12.0に調整されるが、好まし
くは8.0〜10,5である.但し、pHが塩基性に傾
くと反応は促進される。
(2) The pH is adjusted to 7.0 to 12.0, preferably 8.0 to 10.5. However, the reaction is accelerated when the pH becomes basic.

(3)反応温度は通常、室温である。但し、加熱すると
反応は促進される. (4)反応時間は通常、1昼視程度である。
(3) The reaction temperature is usually room temperature. However, heating accelerates the reaction. (4) Reaction time is usually about one day's vision.

前記■に示す酵素分解処理では、ペクチン、ペクチン酸
は後述するペクチナーゼEC・3・2・1・15、ペク
チン・トランス・エリミナーゼなどのペクチン主鎖分解
酵素で分解されるのを始め、その外の多糖類もグルカナ
ーゼ系酵素で分解される。
In the enzymatic decomposition treatment shown in (2) above, pectin and pectic acid are degraded by pectin main chain degrading enzymes such as pectinase EC-3, 2, 1, and 15, and pectin trans-eliminase, which will be described later. Polysaccharides are also broken down by glucanase enzymes.

上記懸濁液は、無機粉体と所定多糖類とを必須要件とす
るものであるが、この他に、例えば、焼結助剤、結合剤
、滑剤、可塑剤などの他の充填剤を加えても差し支えな
い。
The above suspension essentially contains an inorganic powder and a specified polysaccharide, but may also contain other fillers such as a sintering aid, a binder, a lubricant, and a plasticizer. There is no problem.

上記無機粉体の分散溶媒系は、水系に限らず、水とアル
コールとの混合液系、或いは、無機粉体がカルシア、マ
グネシアなどのように、水に対して若干の溶解度を示す
ものでは、エタノールなどの有機溶媒系でも差し支えな
い. 一方、上記無機粉体懸濁液の成形は、鋳込或形法、ドク
ターブレード成形法、加圧成形法などによって行う. 当該鋳込成形法には、下記(a)〜(e)に示すものな
どがある. 〈a)@濁液を多孔質型に流し込み、型の吸水により所
定肉厚のキャストが形成された時点で、余剰懸濁液を排
出して成形体を得る排泥鋳込み成形法(b)懸濁液を鋳
型に流し込み、型内の懸濁液を全て固化させて成形体を
得る固形鋳込み成形法(c)懸濁液及び鋳型に振動など
の機械的エネルギーを与え、懸濁液の揺変性を利用して
行う振動鋳込み成形法 (d)鋳型に流し込んだ懸濁液に高い圧力をかけて行う
圧力鋳込み成形法 (e)水溶性鋳型、溶媒崩壊性型、温度崩壊性型などに
懸濁液を流し込んで行う可溶型鋳込み或形法また、上記
加圧成形法は、懸濁液をスプレードライヤーによって一
旦顆粒のような造粒物とし、これを加圧して成形するも
ので、具体的には、乾式或いは半乾式プレス法、アイソ
タクチックプレス法(C I P法)、ホットプレス法
(HP法)、アイソタクチックホットプレス法(H I
 P法)などがある。
The dispersion solvent system for the above-mentioned inorganic powder is not limited to an aqueous system, but also a mixed liquid system of water and alcohol, or an inorganic powder that shows some solubility in water, such as calcia or magnesia. Organic solvents such as ethanol may also be used. On the other hand, the above-mentioned inorganic powder suspension is molded by a casting method, a doctor blade molding method, a pressure molding method, or the like. The casting method includes those shown in (a) to (e) below. (a) @ Sludge casting molding method in which the suspension is poured into a porous mold, and when a cast with a predetermined thickness is formed by water absorption in the mold, the excess suspension is discharged to obtain a molded body. A solid casting method in which a suspension is poured into a mold and all of the suspension in the mold is solidified to obtain a molded object. (d) Pressure casting method, in which high pressure is applied to the suspension poured into the mold. (e) Vibration casting method, which uses suspension in water-soluble molds, solvent-disintegrating molds, temperature-disintegrating molds, etc. The soluble mold casting or shaping method, which involves pouring a liquid into the mold, and the pressure molding method, in which the suspension is turned into granules using a spray dryer, and then molded under pressure. The methods include dry or semi-dry press method, isotactic press method (CIP method), hot press method (HP method), and isotactic hot press method (HIP method).
P method) etc.

尚、上記ドクターブレード成形法では、通常、有機溶剤
を分散媒とするが、本発明を適用すると、水の使用が可
能になる。
Incidentally, in the above-mentioned doctor blade molding method, an organic solvent is normally used as a dispersion medium, but when the present invention is applied, water can be used.

く実施例〉 以下、本発明に係わる懸濁液の実施例を順次説明すると
ともに、当該懸濁液から製造した焼結物の実施例を併記
する。
Examples> Examples of suspensions according to the present invention will be sequentially described below, and examples of sintered products produced from the suspensions will also be described.

《実施例1》 平均粒径60μのカードランを200mj!ビーカーに
秤取し、50gの蒸留水を加えてマグネチックスタラー
で30分撹拌し、蒸留水中に充分に分散させた. 別に、純度99.99%、BET表面fi14m2/g
、平均粒径0.22μの高純度アルミナ粉体50gを秤
取し、撹拌しながら上記カ一ドランの分散水中に加えて
ゆき、マグネチックスタラーで30分撹拌して50重量
%のアルミナ懸濁液を調製した。
《Example 1》 200mj of curdlan with an average particle size of 60μ! It was weighed into a beaker, 50 g of distilled water was added, and the mixture was stirred with a magnetic stirrer for 30 minutes to fully disperse it in the distilled water. Separately, purity 99.99%, BET surface fi14m2/g
, 50g of high purity alumina powder with an average particle size of 0.22μ was weighed out, added to the dispersion water of the above Cadran while stirring, and stirred with a magnetic stirrer for 30 minutes to form a 50% by weight alumina suspension. A liquid was prepared.

この場合、アルミナ粉体100重量部に対するカードラ
ンの混合分率を、第1図に示すように、0.2〜1.0
重量部の5段階に変化させて、計5種類のアルミナ懸濁
液を調製した(@えば、組成lの懸濁液では、アルミナ
50g(100重量部)にカードラン0.1.g(0.
2重量部)を混合した)。
In this case, the mixing ratio of curdlan to 100 parts by weight of alumina powder is 0.2 to 1.0 as shown in Figure 1.
A total of 5 types of alumina suspensions were prepared by changing the parts by weight in 5 steps (For example, in the suspension of composition 1, 50 g (100 parts by weight) of alumina and 0.1 g (0.0 ..
2 parts by weight).

そして、粘度計(東京計器製ELD型〉により、ロータ
回転数5rpm、20℃の条件で調製直後の各懸濁液の
粘度を測定するとともに、当該懸濁液を室温で1週間保
存した後に再び粘度を測定した。
Then, the viscosity of each suspension was measured immediately after preparation using a viscometer (ELD type manufactured by Tokyo Keiki Co., Ltd.) at a rotor rotation speed of 5 rpm and 20°C, and the suspension was stored at room temperature for one week and then tested again. The viscosity was measured.

但し、カードラン無添加のアルミナ粉体懸濁液を比較例
とした。
However, an alumina powder suspension without the addition of curdlan was used as a comparative example.

第1図はその結果を示し、調製直後では、力一ドランの
混合分率が0.2〜0.4重量部の場合にアルミナ懸濁
液の粘度が最小になり、混合分率がこれより増・減する
と、粘度は上昇することが判る。
Figure 1 shows the results. Immediately after preparation, the viscosity of the alumina suspension is at its minimum when the mixing fraction of Riki-Dran is 0.2 to 0.4 parts by weight; It can be seen that when increasing or decreasing, the viscosity increases.

上記混合範囲では、粘度は比較例の65〜66%に低下
し、或形処理におけるハンドリング性能を有効に改善で
きる。
In the above mixing range, the viscosity is reduced to 65-66% of that of the comparative example, which can effectively improve the handling performance in certain processing.

また、第2図は、アルミナ懸濁液の経時変化を示し、1
週間後でも安定した低粘度を示すことが判る。
In addition, Figure 2 shows the change over time of the alumina suspension.
It can be seen that the viscosity remains stable and low even after several weeks.

《実施例2》 分散剤をカードランからバラミロンに代えて、上記実施
例1と同様の条件でアルミナ懸濁液を調製し、当該懸濁
液の粘度を測定した結果、カードランと同様な減粘効果
が認められた. 《実施例3》 分散剤をカードランからペクチン(ライムペクチン)に
代え、上記実施例1と同様の条件で、50重量%のアル
ミナ懸濁液を調製し、ペクチン混合分率を0.2〜1,
5重量部の6段階に変化させて、その各々の懸濁液につ
いて粘度を測定した。
<<Example 2>> An alumina suspension was prepared under the same conditions as in Example 1 above by replacing curdlan with varamylon as the dispersant, and the viscosity of the suspension was measured. A viscous effect was observed. <<Example 3>> A 50% by weight alumina suspension was prepared under the same conditions as in Example 1, except that the dispersant was changed from curdlan to pectin (lime pectin), and the pectin mixing fraction was set to 0.2 to 0.2. 1,
The viscosity of each suspension was measured by varying the suspension in 6 steps of 5 parts by weight.

尚、ペクチン無添加のアルミナ懸濁液を比較例とした。Note that an alumina suspension without addition of pectin was used as a comparative example.

第3図はその結果を示し、本実施例のアルミナ懸濁液は
比較例に対して8,5%以下の低粘度を示し、特に、0
.4重量部懸濁液では、127CPという極めて低い粘
度(対比較例の減粘率は、1.2%〉を示すことが判る
. 《実施例4》 実施例3と同様に、分散剤にペクチンを使用するととも
に、アルミナ粉体とペクチンから戒る混合粉体に対する
水の混合割合を変えて60重量%のアルミナ懸濁液を調
製し、ペクチン混合分率を0,1〜1.0重量部の5段
階に変化させるとともに、ペクチン無添加のアルミナ懸
濁液を比較例として各懸濁液の粘度を測定した. 第4図はその結果を示し、ペクチンの混合分率0.1〜
0.4重量部では、60重量%アルミナ懸濁液は、比較
例に対して5.1〜10.4%の低粘度を示し、アルミ
ナ懸濁液の濃度が10重量%増えてもぐ実施例3→4〉
、ペクチンの減粘効果は大きいことが判る. 《実施例5》 分散剤をペクチンからペクチン酸に代えて、実施例4と
同様の条件で、60重量%のアルミナ懸濁液を調製し、
ペクチン混合分率を0.1及び02重量部に変化させる
とともに、ペクチン酸無添加のアルミナ懸濁液を比較例
として各懸濁液の粘度を測定した. 第5図はその結果を示し、本実施例のアルミナ懸濁液は
、比較例に対して5.8〜11.0%の低粘度を示し、
ペクチン酸はペクチンと同様に大きな減粘効果を示すこ
とが判る。
Figure 3 shows the results, and the alumina suspension of this example showed a low viscosity of 8.5% or less compared to the comparative example, and in particular,
.. It can be seen that the 4 parts by weight suspension has an extremely low viscosity of 127 CP (viscosity reduction rate of 1.2% compared to the comparative example). A 60% by weight alumina suspension was prepared by changing the mixing ratio of water to the mixed powder of alumina powder and pectin, and the pectin mixing ratio was 0.1 to 1.0 parts by weight. The viscosity of each suspension was measured using an alumina suspension without pectin as a comparative example. Figure 4 shows the results.
At 0.4 parts by weight, the 60 wt% alumina suspension exhibits a lower viscosity of 5.1-10.4% relative to the comparative example, and the concentration of the alumina suspension increases by 10 wt%. 3→4〉
, it can be seen that pectin has a large viscosity-reducing effect. <<Example 5>> A 60% by weight alumina suspension was prepared under the same conditions as in Example 4, except that pectin was replaced with pectic acid as the dispersant.
The pectin mixing fraction was changed to 0.1 and 0.2 parts by weight, and the viscosity of each suspension was measured using an alumina suspension without pectic acid as a comparative example. FIG. 5 shows the results, and the alumina suspension of this example showed a lower viscosity of 5.8 to 11.0% compared to the comparative example.
It can be seen that pectic acid exhibits a large viscosity-reducing effect similar to pectin.

《実施例6》 合戒コージエライト粉体100gにペクチン(ライムペ
クチン)を混合分率0.1〜1.0重量部の5段階に変
化させて混合し、その各々についてビニール袋中で乾式
混合した。
<<Example 6>> Pectin (lime pectin) was mixed with 100 g of Gakkai cordierite powder at a mixing ratio of 0.1 to 1.0 parts by weight in five stages, and each mixture was dry mixed in a plastic bag. .

そして、ボールミル用500mfコランダム製ポットに
蒸留水100gを秤取し、これに上記混合粉体100g
を撹拌しながら加えた後、20mmφのコランダム製ボ
ール25個を投入し、遊星型ボールミル装置によりポッ
ト回転数500rpmで30分撹拌して、50重量%の
合或コージェライト懸濁液を5種類調製するとともに、
ペクチン無添加の合成コージェライト懸濁液を比較例と
して、懸濁液の粘度を20℃で各々測定した。
Then, 100g of distilled water was weighed into a 500mf corundum pot for a ball mill, and 100g of the above mixed powder was added to it.
After adding with stirring, 25 corundum balls with a diameter of 20 mm were added, and the mixture was stirred for 30 minutes at a pot rotation speed of 500 rpm using a planetary ball mill to prepare five types of 50% by weight cordierite suspensions. At the same time,
Using a synthetic cordierite suspension without addition of pectin as a comparative example, the viscosity of each suspension was measured at 20°C.

第6図はその結果を示し、ペクチンの混合分率0.1〜
0.6重量部では、コージェライト懸濁液は、比較例に
対して2.6〜10.3%の低粘度になり、特に、ペク
チン0.4重量部では58cPの最小粘度を示す。
Figure 6 shows the results, with the mixing fraction of pectin ranging from 0.1 to
At 0.6 parts by weight, the cordierite suspension has a lower viscosity of 2.6-10.3% compared to the comparative example, in particular with 0.4 parts by weight pectin it shows a minimum viscosity of 58 cP.

即ち、ペクチンはコージェライト懸濁液に対しても減粘
効果が顕著である。
That is, pectin has a remarkable viscosity-reducing effect even on cordierite suspensions.

《実施例7》 ニュージーランドカオリン粉体100g及びペクチン(
ライムペクチン)0.4gを夫々秤取して、ビニール袋
中で乾式混合した。
《Example 7》 100g of New Zealand kaolin powder and pectin (
0.4 g of each lime pectin was weighed out and dry mixed in a plastic bag.

そして、ボールミル用500mlコランダム製ポットに
蒸留水1 50gを秤取し、これに上記混合粉体100
.4gを撹拌しながら加えて、実施例6と同様の処理で
40重量%のカオリン懸濁液を調製するとともに、ペク
チン無添加のカオリン懸濁液を比較例として、懸濁液の
粘度を各々20℃で測定した. 第7図はその結果を示し、本実施例のカオリン懸濁液は
比較例に対して7.1%の低粘度になる.従って、ペク
チンは、アルミナ、合成コージエライト懸濁液のみなら
ず、カオリン懸濁液に対してもきわめて有効な減粘効果
を示す。
Then, 150 g of distilled water was weighed into a 500 ml corundum pot for a ball mill, and 100 g of the above mixed powder was added to this.
.. 4 g was added with stirring to prepare a 40% by weight kaolin suspension in the same manner as in Example 6. A kaolin suspension without pectin was used as a comparative example, and the viscosity of each suspension was adjusted to 20% by weight. Measured at °C. Figure 7 shows the results, and the kaolin suspension of this example has a viscosity 7.1% lower than that of the comparative example. Therefore, pectin exhibits a very effective viscosity-reducing effect not only on alumina and synthetic cordierite suspensions but also on kaolin suspensions.

《実施例8》 ペクチン(ライムペクチン)、カードラン及び高純度ア
ルミナ粉体1 00gを夫々秤取し、第8図に示すよう
に、アルミナ粉体100重量部に対するペクチンとカー
ドランの混合重量部を4段階に変化させて、その各々を
ビニール袋中で乾式混合した。
<<Example 8>> 100 g of pectin (lime pectin), curdlan, and high-purity alumina powder were each weighed, and as shown in Figure 8, the mixed weight parts of pectin and curdlan were calculated based on 100 parts by weight of the alumina powder. were varied in four stages, and each was dry mixed in a plastic bag.

そして、ボールミル用ポットに蒸留水67gを秤取し、
これに上記混合粉体を撹拌しながら加えていき、上記実
施例6と同様の操作で略60重量%のアルミナ懸濁液を
4種類調製するとともに、分散剤無添加のアルミナ懸濁
液を比較例として、懸濁液の粘度を20℃で各々測定し
た。
Then, weigh out 67g of distilled water into a ball mill pot,
The above mixed powder was added to this while stirring, and four types of approximately 60% by weight alumina suspensions were prepared in the same manner as in Example 6, and alumina suspensions without a dispersant were compared. As an example, the viscosity of each suspension was measured at 20°C.

第8図はその結果を示し、ペクチンとカードランとの混
合剤は、60重量%の高濃度のアルミナ懸濁液に対して
も、減粘効果が顕著であり、比較例に対して8.0〜1
5.6%の低粘度を示す。
FIG. 8 shows the results. The mixture of pectin and curdlan has a remarkable viscosity-reducing effect even on an alumina suspension with a high concentration of 60% by weight. 0-1
It exhibits a low viscosity of 5.6%.

また、ペクチンを単独で混合した60重量%アルミナ懸
濁液を対象とする前記実施例3(第4図参照)と比較す
ると、例えば、分散剤を0.6重量部混合した場合の粘
度は、実施例4では2680cPであるのに対し、本実
施例の組成2〈ペクチン;カードラン=0.2:0.4
)では201.1cPを示し、ペクチンの半分以上をカ
ードランに置換すると、粘度がさらに低下することが判
る。
Furthermore, when compared with Example 3 (see Figure 4), which deals with a 60% by weight alumina suspension mixed with pectin alone, for example, the viscosity when 0.6 parts by weight of a dispersant is mixed is as follows. In Example 4, it was 2680 cP, whereas in this example, composition 2 <pectin; curdlan = 0.2:0.4
) shows 201.1 cP, and it can be seen that when more than half of the pectin is replaced with curdlan, the viscosity is further reduced.

《実施例9》 ライムペクチン(メチルエステル化度65%)の4%水
溶液100gに25%のアンモニア水溶液2mlを加え
て撹拌したのち、 ■3日間エージングしてカルボキシル基のアンモニウム
塩への形戒を促進させたもの、及び■工一ジングしない
ものを 各々分散剤として調製した. 上記各分散剤15gをボールミル用ポットに秤取し、8
5.6gの蒸留水で希釈した。
<<Example 9>> 2 ml of 25% ammonia aqueous solution was added to 100 g of 4% aqueous solution of lime pectin (degree of methyl esterification 65%) and stirred, and then aged for 3 days to convert carboxyl groups into ammonium salts. A promoted dispersant and a non-processed dispersant were prepared. Weigh out 15g of each of the above dispersants into a ball mill pot, and
Diluted with 5.6 g of distilled water.

別に、純度99.8%、BET表面fl7m2/g、平
均粒径0.6μのアルミナ粉体150gを秤取し、上記
ペクチンの希釈液中に撹拌しながら加えてゆき、前記実
施例6と同様の条件で(即ち、遊星ボー゛ルミル装置を
使用して)、60重量%のアルミナ懸濁液を調製し、2
0℃での懸濁液の粘度を夫々測定した. 但し、ペクチン混合分率がO重量部のアルミナ懸濁液を
比較例とした。
Separately, 150 g of alumina powder with a purity of 99.8%, a BET surface of 7 m2/g, and an average particle size of 0.6 μm was weighed out, and added to the diluted pectin solution with stirring, as in Example 6. A 60% by weight alumina suspension was prepared under the conditions of (i.e. using a planetary ball mill apparatus) and
The viscosity of each suspension at 0°C was measured. However, an alumina suspension with a pectin mixing fraction of 0 parts by weight was used as a comparative example.

第9図はその結果を示し、アルミナ懸濁液の粘度は、ペ
クチンの混合により大幅に低減したが(20000cp
以上−775cp以下〉、ペクチンをエージングするこ
とでなお一層の低下を示し、エージングしないものに比
べて略1/20の飛留的な減少を示した。
Figure 9 shows the results, and the viscosity of the alumina suspension was significantly reduced by mixing with pectin (20,000 cp).
-775 cp or less>, the aging of the pectin showed a further decrease, and showed a drop-off reduction of about 1/20 compared to that without aging.

このことは,ペクチン分子内のカルボキシル基がエージ
ングによりアニオンに解離し、懸濁液のコロイド粒子間
の解膠を助長したものと推定できる. 《実施例10) 上記実施例9で調製したエージング済みのべクチン希釈
液に、アルミナ粉体175gを撹拌しながら加えていき
、ペクチン混合分率を0.1,〜06重量部の4段階に
変化させて、前記実施例6と同様の条件で、70重量%
のアルミナ懸濁液を調製し、その粘度を各々測定した。
This suggests that the carboxyl groups in the pectin molecules dissociate into anions due to aging, which facilitates peptization between colloidal particles in the suspension. <<Example 10>> 175 g of alumina powder was added to the aged pectin diluted solution prepared in Example 9 above while stirring, and the pectin mixing fraction was adjusted to 4 levels from 0.1 to 0.6 parts by weight. 70% by weight under the same conditions as in Example 6.
Alumina suspensions were prepared and the viscosity of each was measured.

但し、ペクチン混合分率がO重量部のアルミナ懸濁液を
比較例とした。
However, an alumina suspension with a pectin mixing fraction of 0 parts by weight was used as a comparative example.

第10図はその結果を示し、70重量%という高濃度の
アルミナ懸濁液では、分散剤を入れなければ20000
cp以上の高粘度を示したが、エージングしたべクチン
を分散剤とすることで,粘度は大幅に低減し、特に、ペ
クチン混合分率が0,4重量部では、懸濁液の粘度は比
較例の1/36以下になった。
Figure 10 shows the results. In an alumina suspension with a high concentration of 70% by weight, if no dispersant is added, 20,000
However, by using aged pectin as a dispersant, the viscosity was significantly reduced, and especially when the pectin mixing fraction was 0.4 parts by weight, the viscosity of the suspension was It became less than 1/36 of the example.

《実施例11) メチルエステル化度の異なる4種類のべクチンを用い、
各ペクチンの4%水溶液100gに25%アンモニア水
溶液2mlを加えて撹拌したのち、3日間エージングし
て4種類の分散剤を調製した。
<Example 11> Using four types of vectins with different degrees of methyl esterification,
After adding 2 ml of a 25% ammonia aqueous solution to 100 g of a 4% aqueous solution of each pectin and stirring, the mixture was aged for 3 days to prepare four types of dispersants.

上記各分散剤i7.5gを前記実施例6と同様の条件で
、希釈し、アルミナ粉体を加えて、アルミナ70重量%
/ペクチン混合分率0.4重量部のアルミナ懸濁液を調
製し、その粘度を測定した。
7.5 g of each of the above dispersants i was diluted under the same conditions as in Example 6, and alumina powder was added to make the alumina 70% by weight.
An alumina suspension containing 0.4 parts by weight of pectin/pectin was prepared, and its viscosity was measured.

第11図はその結果を示し、ペクチンのメチルエステル
化度が74%→65%−50%に低減すると、アルミナ
懸濁液の粘度も減少するが、メチルエステル化度が50
%→30%の場合には、粘度は逆に増えていた。
Figure 11 shows the results; when the degree of methyl esterification of pectin decreases from 74% to 65%-50%, the viscosity of the alumina suspension also decreases, but the degree of methyl esterification decreases to 50%.
% → 30%, the viscosity increased on the contrary.

即ち、メチルエステル化度の低いペクチンをエージング
した場合には、アンモニウム塩の形或が一層促進されて
、懸濁液が減粘すると理論的には推定できるが、本結果
によれば、低くし過ぎない範囲でなら、メチルエステル
化度の低減は懸濁液の減粘に有利であると考えられる, 《実方龜例12> ペクチンをエージング処理する場合のアンモニア水溶液
の添加量をlmlとし、その外の条件は全て上記実施P
Aitと同様に設定して、4種類のアルミナ懸濁液の粘
度を測定した。
In other words, it can be theoretically assumed that when pectin with a low degree of methyl esterification is aged, the formation of ammonium salts is further promoted and the suspension becomes less viscous. Reducing the degree of methyl esterification is considered to be advantageous for reducing the viscosity of the suspension as long as the degree of methyl esterification is within a certain range. All other conditions are implemented above.
Using the same settings as Ait, the viscosity of four types of alumina suspensions was measured.

第12図はその結果を示し、アンモニア添加量を2ml
→lmlに減少させて、エージングの際のアンモニア濃
度を薄めると、ペクチン分子内のアンモニウム塩の形成
度合が低下して、懸濁液の粘度に影響を及ぼすことが考
えられたが、本結果によると、懸濁液の粘度にあまり差
異は認められなかった。
Figure 12 shows the results, and the amount of ammonia added was 2ml.
→ lml and dilute the ammonia concentration during aging, it was thought that the degree of formation of ammonium salts within pectin molecules would decrease and affect the viscosity of the suspension. There was no significant difference in the viscosity of the suspensions.

《実施例13> ライムペクチン′くメチlレエステlレfヒ度50%)
の4%水溶液100gにペクチン酸分解酵素であるペク
チナーゼEC・34・1 45(Polygalact
uronase;起源アスベルギルスニガー、SIGM
A社1)2.5μ1を加え、マグネチック・スタラーで
ゆっくりと撹拌しながら、40℃の水浴中で夫々16時
間乃至40時間保持して酵素反応を行った後、85℃の
高温域に15分間置いて酵素を失活させ、2種類のべク
チン溶液を得た。
《Example 13〉 Lime pectin 50%
Pectinase EC-34-145 (Polygalact
uronase; origin Asbergus niger, SIGM
Company A 1) Add 2.5μ1 of the enzyme and hold each in a 40℃ water bath for 16 to 40 hours while stirring slowly with a magnetic stirrer to carry out the enzyme reaction. The enzyme was left to inactivate for a minute, and two types of vectin solutions were obtained.

上記各ペクチン溶液に25%アンモニア水溶液2mlを
加えて撹拌したのち、3日間エージングして、2種類の
分散剤を調製した。
After adding 2 ml of 25% ammonia aqueous solution to each of the above pectin solutions and stirring, the mixture was aged for 3 days to prepare two types of dispersants.

100mlビーカーに上記分散剤1 .7 5 gを夫
々秤取し、13.32gの蒸留水で希釈した。
Add the above dispersant 1 to a 100ml beaker. 75 g of each was weighed out and diluted with 13.32 g of distilled water.

別に秤収したアルミナ粉体35gを撹拌しながら、酵素
分解処理した上記ペクチンの希釈液中に加えてゆき,マ
グネチック・スタラーで30分間撹拌を続けてアルミナ
70重量%/ペクチン混合分率0.2重量部のアルミナ
懸濁液を調製し、各懸濁液の粘度を測定した6 第13図はその結果を示し、ペクチンに対する酵素反応
時間が長い方が(16→40時間)、懸濁液の粘度が低
減している(487→218cp)ことが判る. 《実施例14》 ライムペクチン(メチルエステル化度65%)の425
水溶液200gに、ペクチン酸分解酵素であるペクチン
・トランス・エリミナーゼ(盛進製薬〈株)製商品名「
ベクトリアーゼ」)50mgを加え、反応時間を4段階
に変化させながら、45℃で酵素反応を行ったのち、8
5℃の高温域に15分間置いて酵素を失活させ、各ペク
チン溶液を得た。
35 g of separately weighed alumina powder was added to the enzymatically decomposed diluted pectin solution while stirring, and stirring was continued for 30 minutes using a magnetic stirrer to obtain a mixture ratio of 70% alumina/pectin of 0. 2 parts by weight of alumina suspensions were prepared, and the viscosity of each suspension was measured.6 Figure 13 shows the results. It can be seen that the viscosity has decreased (487 → 218 cp). <<Example 14>> 425 of lime pectin (degree of methyl esterification 65%)
Pectin trans-eliminase (product name: Seishin Pharmaceutical Co., Ltd.), which is a pectic acid degrading enzyme, was added to 200 g of an aqueous solution.
After adding 50 mg of ``vectolyase'' and carrying out the enzyme reaction at 45°C while changing the reaction time in 4 steps,
Each pectin solution was obtained by placing it in a high temperature range of 5° C. for 15 minutes to inactivate the enzyme.

そして、上記各ペクチン溶液をr過し、得られた枦液1
 0 0 gに25%アンモニア水溶液2mlを加えて
撹拌したのち、3日間エージングして4種類の分散剤を
調製した。
Then, each of the above pectin solutions was filtered, and the resulting pectin solution 1
After adding 2 ml of 25% ammonia aqueous solution to 0.0 g and stirring, the mixture was aged for 3 days to prepare four types of dispersants.

また、別途、上記ライムペクチンを酵素処理しないでエ
ージングしたものを分散剤として用意した. この計5種類の分散剤をゲル浸透クロマトグラフィーに
より、ブルランを基準物質として各々分子量測定をした
Separately, the above-mentioned lime pectin was aged without enzyme treatment and prepared as a dispersant. The molecular weight of each of these five types of dispersants was measured by gel permeation chromatography using bullulan as a standard substance.

一方、上記各分散剤を蒸留水で希釈し、前記実施例9で
用いたアルミナ粉体を当該希釈液中に加え、遊星ボール
ミル装置で撹拌・混合して、アルミナ77.5重量%/
ペクチン混合分率0.2重量部のアルミナ懸濁液を調製
し、各懸濁液の粘度を測定した。
On the other hand, each of the above-mentioned dispersants was diluted with distilled water, the alumina powder used in Example 9 was added to the diluted solution, and the mixture was stirred and mixed using a planetary ball mill.
Alumina suspensions containing 0.2 parts by weight of pectin were prepared, and the viscosity of each suspension was measured.

第14図はその結果を示し、ペクチンを酵素分解すると
、処理時間の増加に伴いペクチンの分子量及び懸濁液の
粘度がともに減少傾向を示し、分散剤であるペクチンの
分子量の低下が懸濁液の減粘をもたらしていると推定で
きる. 即ち、0.2重量部という微量しか混合していないペク
チンの低分子化が、アルミナ懸濁液全体の粘度の低下を
引き起こすという予測外の結果を示したのである. 《実施例15》 上記実施例l3及び14では、ペクチンを酵素分解した
場合の懸濁液の粘度変化を調べたが、本実施例では、ペ
クチンのメチルエステル化度と酵素反応時間を変えた場
合に、懸濁液の粘度への影響を調べた。
Figure 14 shows the results. When pectin is enzymatically decomposed, both the molecular weight of pectin and the viscosity of the suspension tend to decrease as the treatment time increases. It can be assumed that this causes a decrease in viscosity. In other words, the unexpected result was that the lowering of the molecular weight of pectin, which was mixed in only a trace amount of 0.2 parts by weight, caused a decrease in the viscosity of the entire alumina suspension. <<Example 15>> In Examples 13 and 14 above, changes in the viscosity of the suspension when pectin was enzymatically decomposed were investigated, but in this example, when the degree of methyl esterification of pectin and the enzyme reaction time were changed. Next, the effect on the viscosity of the suspension was investigated.

即ち、メチルエステル化度の異なる3種類のべクチン(
50%、65%、74%〉を用意し、各ペクチンの4%
水溶液200gに、前記ペクチン・トランス・エリミナ
ーゼ50mgを加え、反応時間を複数段階に変化させな
がら、上記実施例14と同様の条件で、反応の失活、P
過、F液のエージングを行って各分散剤を調製した。
That is, three types of vectins with different degrees of methyl esterification (
50%, 65%, 74%> and 4% of each pectin.
50 mg of the pectin trans-eliminase was added to 200 g of the aqueous solution, and the reaction was deactivated and P
Each dispersant was prepared by aging the F solution.

そして、前記実施例13と同様に、当該分散剤の希釈液
にアルミナ粉体を加え、マグネチック・スタラーで撹拌
して、アルミナ70重量%/ペクチン混合分率0.2重
量部のアルミナ懸濁液を調製し、各懸濁液の粘度を測定
した。
Then, in the same manner as in Example 13, alumina powder was added to the diluted solution of the dispersant and stirred with a magnetic stirrer to suspend the alumina at a mixed proportion of 70% by weight of alumina/0.2 parts by weight of pectin. A liquid was prepared and the viscosity of each suspension was measured.

第15図はその結果を示し、メチルエステル化度が同じ
場合、酵素反応時間とアルミナ懸濁液の粘度との関係で
は、下記のことが認められた。
FIG. 15 shows the results, and when the degree of methyl esterification was the same, the following was observed regarding the relationship between the enzyme reaction time and the viscosity of the alumina suspension.

■メチルエステル化度が74%及び65%のとき、酵素
反応時間が1時間→2時間→4時間に長くなると、懸濁
液の粘度は順次低下した。
(2) When the degree of methyl esterification was 74% and 65%, the viscosity of the suspension gradually decreased as the enzyme reaction time increased from 1 hour to 2 hours to 4 hours.

■反応時間が4時間と8時間との間では、粘度の低下は
見られなかった. 《実施例16》 800gの合成ゼオライト4Aに200gのベン1・ナ
イト(モンモリロナイトを主成分とする粘度鉱物質〉を
焼結助剤として添加し、これにカードランLogを混合
するとともに、蒸留水1500gをこの混合粉体に加え
て充分に撹拌混合し、合成ゼオライト粉体の懸濁液を調
製し、粘度を測定した。
■ No decrease in viscosity was observed between reaction times of 4 and 8 hours. 《Example 16》 200g of ben-1-night (viscosity mineral material whose main component is montmorillonite) was added to 800g of synthetic zeolite 4A as a sintering aid, and curdlan Log was mixed therein, and 1500g of distilled water was added. was added to this mixed powder and thoroughly stirred and mixed to prepare a suspension of synthetic zeolite powder, and the viscosity was measured.

次に、この懸濁液を送液可能な供給速度でスプレードラ
イヤーに送液して、粒径30〜150μ、含水率略20
%の顆粒を乾燥造粒し、当該顆粒を200kg/cm”
で加圧成形し、直径10mmφ、厚さ3mmの錠剤型ペ
レットを造り、硬度計でその圧縮強度を測定した。
Next, this suspension was fed to a spray dryer at a feed rate that allowed the liquid to be fed, so that the particle size was 30 to 150 μm and the water content was approximately 20 μm.
% granules are dry granulated, and the granules are 200 kg/cm"
A tablet-shaped pellet having a diameter of 10 mmφ and a thickness of 3 mm was made by pressure molding, and its compressive strength was measured using a hardness meter.

また、このベレットを115℃で、1時間乾燥した後、
670℃で1時間焼結して、錠剤型焼結物を得るととも
に、この焼結物の圧縮強度を測定した。
In addition, after drying this pellet at 115°C for 1 hour,
Sintering was carried out at 670°C for 1 hour to obtain a tablet-shaped sintered product, and the compressive strength of this sintered product was measured.

尚、カードランに変えてメチルセルロース10gを混合
した合成ゼオライト懸濁液を比較例として、懸濁液の粘
度、当該懸濁液から得られた成形物及び焼結物の圧縮強
度などを測定した。
A synthetic zeolite suspension in which 10 g of methyl cellulose was mixed instead of curdlan was used as a comparative example, and the viscosity of the suspension and the compressive strength of molded and sintered products obtained from the suspension were measured.

第16図はその結果を示し、本懸濁液の粘度は比較例よ
り略70%低< (1050→730cp)、流動性が
それだけ高い。
FIG. 16 shows the results, and the viscosity of this suspension is approximately 70% lower than that of the comparative example (1050→730 cp), and the fluidity is correspondingly high.

このことは、スプレードライ処理における送液速度がメ
チルセルロースの場合に比べて1.22倍に増大する(
18.3→22.4g/分)ことからも判り、乾燥造粒
処理を迅速且つ容易に行える。
This means that the liquid delivery rate during spray drying increases by 1.22 times compared to the case of methylcellulose (
18.3→22.4 g/min), it is clear that the dry granulation process can be performed quickly and easily.

また、カードランは、上記顆粒或形時の保形性に優れ、
ポリビニルアルコールなどの結合剤を成形材料に別途加
える必要がない. このことは、本実施例における成形物並びに焼詰物の強
度が比較例より大きいことからも判る。
In addition, curdlan has excellent shape retention when formed into granules,
There is no need to separately add a binder such as polyvinyl alcohol to the molding material. This can be seen from the fact that the strength of the molded product and the baked product of this example were greater than those of the comparative example.

しかも、実際の成形処理においては、メチルセルロース
では、10回程度の成形の繰り返しで脱型時に成形材料
の一部が金型に残留付着するようになるが、カードラン
ではこのような現象は認められず、離型性にも浸れてい
る. 従って、カードランは本来の分散剤としての機能に止ど
まらず、結合剤及び離型剤としての機能も有効に兼ね備
えており、実際の或形・焼結処理が簡便・安価になる。
Moreover, in the actual molding process, with methylcellulose, some of the molding material will remain and adhere to the mold when demolding after about 10 molding cycles, but this phenomenon is not observed with curdlan. Also, it has excellent mold releasability. Therefore, curdlan not only functions as an original dispersant, but also effectively functions as a binder and a mold release agent, making the actual shaping and sintering process simple and inexpensive.

《実施例17》 上記実施例16で製造した合戒ゼオライト顆粒をブレス
或形機にかけて150kg/cm2の成形圧で50X3
0X2mmの板状に加圧成形し、この成形物を実施例8
と同様の条件で焼結し、100kgのロードセルにより
当該板状焼結物の屈折強度を測定したところ、1880
gであった.因みに、板状物を機械によって自動供給す
る場合、実用上1 000gの屈折強度が要求されるが
、本実施例の焼結物はこの要求を充分に満たすので、薬
品或いは食品用の乾燥剤としてこの板状焼結物を薬品な
どと一緒に防湿袋に自動包装する場合には、欠損や崩壊
のない状態で楽にハンドリングができる。
<<Example 17>> The Gakkai zeolite granules produced in Example 16 above were put into a press molding machine to form 50×3 particles at a molding pressure of 150 kg/cm2.
Pressure molded into a plate shape of 0 x 2 mm, and this molded product was prepared in Example 8.
Sintered under the same conditions as above, and measured the refractive strength of the plate-shaped sintered material using a 100 kg load cell, it was found to be 1880
It was g. Incidentally, when a plate-shaped object is automatically fed by a machine, a refractive strength of 1,000 g is practically required, and the sintered product of this example fully satisfies this requirement, so it can be used as a desiccant for medicines or food. When this plate-shaped sintered product is automatically packaged together with chemicals and the like in a moisture-proof bag, it can be easily handled without breaking or collapsing.

《実施例18》 メチルエステル化度50%のライムペクチンを、前記実
施例9と同様の条件でエージングし、その希釈液にペク
チン混合分率が0.2重量部になるようにアルミナ粉体
を加えたのち、1 0mmφアルミナボール300gを
投入し、回転式ボールミル装置で16時間撹拌・混合し
て、80重量%乃至75重量%の2種類のアルミナ懸濁
液を調製し、各懸濁液の粘度を測定した。
<<Example 18>> Lime pectin with a degree of methyl esterification of 50% was aged under the same conditions as in Example 9, and alumina powder was added to the diluted solution so that the pectin mixing ratio was 0.2 parts by weight. After the addition, 300g of 10mmφ alumina balls were added and stirred and mixed in a rotary ball mill for 16 hours to prepare two types of alumina suspensions of 80% to 75% by weight. The viscosity was measured.

次に、固形鋳込み成形法により、各懸濁液を石膏型に鋳
込み、成形時間30分で6mmφX60mmの丸棒成形
体を夫々製造し、115℃で乾燥したのち、3点曲げ強
度及び成形密度を測定した。
Next, each suspension was cast into a plaster mold using the solid casting method to produce round bar moldings of 6 mm φ x 60 mm in a molding time of 30 minutes. After drying at 115°C, the three-point bending strength and molding density were evaluated. It was measured.

また、上記各成形体を1600℃で3時間焼結して丸棒
焼結物を製造し、その3点曲げ強度、成形密度などを測
定した。
In addition, each of the above molded bodies was sintered at 1600° C. for 3 hours to produce a round bar sintered product, and its three-point bending strength, molded density, etc. were measured.

第17図はその結果を示し、75〜80重量%というき
わめて高濃度のアルミナ懸濁液でも、本分散剤の使用に
より懸濁液の流動性を良好に保持して、スムーズに鋳込
み成形できた。
Figure 17 shows the results, showing that even with an extremely high concentration of alumina suspension of 75 to 80% by weight, the use of this dispersant maintains the fluidity of the suspension well and enables smooth casting. .

また、得られた成形体及び焼結物は、アルミナ含有率が
きわめて高いので、上図の測定数値にみるように、優れ
た特性を示す. 〈発明の効果〉 (1)冒述のように、一般に、懸濁液は無機粉体含有量
が多いほど生産効率が高く、懸濁液の粘度が低いほどハ
ンドリング性が良いが,この生産効率とハンドリング性
とは通常は相反するところ、本懸濁液ではこの点をみご
とに解消できる。
In addition, the obtained compacts and sintered products have extremely high alumina content, so they exhibit excellent properties as seen in the measured values in the above figure. <Effects of the invention> (1) As mentioned above, in general, the higher the inorganic powder content of a suspension, the higher the production efficiency, and the lower the viscosity of the suspension, the better the handling properties. Normally, there is a conflict between handling performance and handleability, but this suspension successfully solves this problem.

即ち、上記実施例1〜15から判るように、無機粉体懸
濁液に本発明の多糖類を添加すると、無添加のもの或い
はメチルセルロースなどの従来の分散剤を添加したもの
に比べて、懸濁液の粘度を極めて低くできる。
That is, as can be seen from Examples 1 to 15 above, when the polysaccharide of the present invention is added to an inorganic powder suspension, compared to one without additives or one with conventional dispersants such as methyl cellulose, The viscosity of the suspension can be made extremely low.

従って、本発明の懸濁液を例えば鋳込み成形、ドクター
ブレード成形などに適用すると、実施例18に示すよう
に、水分が少なく濃厚であると同時に、流動性の高い状
態で成形処理ができ、ハンドリングと生産性がともに向
上する. また、実施例16に示すように、本懸濁液を加圧成形に
適用し、スプレードライ法で顆粒を造粒する場合にも、
懸濁液の送液速度を高くできることから、送液量を増加
できるうえ、供給管或いは圧送ボンブの目詰まりなどの
虞れをなくして、ハンドリング性及び生産性などを有効
に高められる。
Therefore, when the suspension of the present invention is applied to, for example, casting molding, doctor blade molding, etc., as shown in Example 18, the molding process can be performed in a state with low moisture content and high fluidity, making it easy to handle. and productivity will both improve. Furthermore, as shown in Example 16, when this suspension is applied to pressure molding and granules are granulated by a spray drying method,
Since the suspension can be fed at a high speed, the amount of liquid to be fed can be increased, and the possibility of clogging of the supply pipe or the pressure bomb can be eliminated, thereby effectively improving handling efficiency and productivity.

因みに、本発明の懸濁液は、下記に示すような各種の無
機粉体の懸濁液に適用できる。
Incidentally, the suspension of the present invention can be applied to suspensions of various inorganic powders as shown below.

■電子部品、電気部品、人工骨などの各種ファインセラ
ミックスの製造材料となるセラミックス懸濁液 ■磁性材料の原料となるフエライト粉体の懸濁液■炭素
成形物の製造材料となる炭素粉体或いは力−ボンブラッ
ク懸濁液 ■顔料分散液或いは染料分散液 ■洗剤の原料となるゼオライト分散液 ■固体燃料の分散液 ■セメントミルクなどの鉱物懸濁液 ■ゼオライトなどの乾燥剤 (2)実施例16及び17に示ずように、成形物及び焼
結物は緻密で高強度になるので、欠損や崩壊の虞れが少
なく、焼結物の製造が楽になるとともに2焼結物を自動
包装する場合などでも、ハンドリングが容易になる。
■ Ceramic suspension, which is a manufacturing material for various fine ceramics such as electronic parts, electrical parts, and artificial bones. ■ Ferrite powder suspension, which is a raw material for magnetic materials. ■ Carbon powder, which is a manufacturing material for carbon molded products. - Bomb black suspension ■ Pigment dispersion or dye dispersion ■ Zeolite dispersion which is a raw material for detergent ■ Dispersion of solid fuel ■ Mineral suspension such as cement milk ■ Desiccant such as zeolite (2) Examples As shown in 16 and 17, the molded product and sintered product are dense and have high strength, so there is less risk of chipping or collapse, making it easier to manufacture the sintered product, and automatically packaging the sintered product. Handling becomes easier even in cases such as situations.

特に、カードランは、本来の分散剤としての機能の外に
、同実施例に示すように、 ■懸濁液の粘度を低下させる ■結合剤として作用する、及び、無機粉体に本分散剤な
どを加えて調製した成形原料の可塑性を高める ■加圧戊形に際しては、離型剤としての機能を有し、優
れた無機粉体造粒物を提供できるなどの顕著な効果を示
す。
In particular, in addition to its original function as a dispersant, curdlan also acts as a dispersant for inorganic powders, as shown in the same example. Increasing the plasticity of the molding raw material prepared by adding the following: 1) During pressure molding, it has a function as a mold release agent and exhibits remarkable effects such as being able to provide excellent inorganic powder granules.

この結果、実際の成形処理にあたっては、結合剤や離型
剤などを省略できるか、或いは、これらの助剤を使用す
るとしても少量で足りるので、成形を迅速且つ簡便に行
える。
As a result, in the actual molding process, binders, mold release agents, etc. can be omitted, or even if these auxiliary agents are used, only a small amount is sufficient, so that molding can be performed quickly and easily.

そのうえ、実施例8に示すように、減粘効果の大きいペ
クチンをカードランと複合して使用すると、ハンドリン
グ性を大きく改善させて、無機粉体の成形、焼結の生産
性をさらに高められる。
Furthermore, as shown in Example 8, when pectin, which has a large viscosity-reducing effect, is used in combination with curdlan, handling properties can be greatly improved, and the productivity of molding and sintering of inorganic powder can be further increased.

(3)予めアンモニア水溶液でエージングしたべクチン
を分散剤として用いると、実施例9及び10に示すよう
に、エージングしない場合より、懸濁液を有効に滅粘で
きる。
(3) When vectin that has been aged in advance with an aqueous ammonia solution is used as a dispersant, as shown in Examples 9 and 10, the suspension can be made more effectively thinner than when no aging is used.

従って、実施例18に示すように、従来では不可能と思
われるような高濃度の懸濁液(例えば、80重量%アル
ミナ懸濁液)を鋳込み成形に使用でき、焼結物の純度を
飛躍的に高められる。
Therefore, as shown in Example 18, it is possible to use a highly concentrated suspension (for example, 80% by weight alumina suspension) in casting molding, which would have been impossible in the past, and the purity of the sintered product can be dramatically improved. can be enhanced.

この場合、メチルエステル化度の低いペクチンを使用す
ると、実施例11に示すように、懸濁液の減粘には一層
有利である。
In this case, the use of pectin with a low degree of methyl esterification is more advantageous in reducing the viscosity of the suspension, as shown in Example 11.

(4〉ペクチンを初めとして、本発明の多糖類を予め酵
素分解処理すると、実施例13〜15に示すように、懸
濁液の減粘効果を高める傾向がある。
(4) When the polysaccharide of the present invention, including pectin, is previously subjected to enzymatic decomposition treatment, as shown in Examples 13 to 15, there is a tendency to enhance the viscosity-reducing effect of the suspension.

また、当該酵素分解処理を前記エージングと組み合わせ
ると、懸濁液の減粘に有利である。
Furthermore, combining the enzymatic decomposition treatment with the aging is advantageous in reducing the viscosity of the suspension.

〈5〉本発明の多糖類を分散剤として使用すると、例え
ば、カードランなとでは、結合剤や離型剤の成形助剤と
しての役目も果たし、懸濁液に対する混合量の全体を少
なくできるので、焼結物の純度をそれだけ高めることが
できる。
<5> When the polysaccharide of the present invention is used as a dispersant, for example, in curdlan, it also serves as a binder and a molding aid for the mold release agent, and the total amount mixed in the suspension can be reduced. Therefore, the purity of the sintered product can be increased accordingly.

また、冒述のボリアニオン分散剤は、例えば、CMC塩
のように、カルボキシル基、スルホン酸基などの官能基
がナトリウムなどの金属と結合した塩であるために、焼
結後もこれらの金属が不純物として残留する虞れがある
が、 ■上記多糖類では分散剤自体が塩ではない■たとえ、多
糖類をエージングする場合でも、エージング剤としてア
ンモニア、エタノールアミンなどを選択することで、非
金属の塩を形成するような処理ができる ので、この点からも焼結物の純度を向上できる。
In addition, the above-mentioned borianion dispersant is a salt in which functional groups such as carboxyl groups and sulfonic acid groups are bonded to metals such as sodium, such as CMC salts, so these metals remain intact even after sintering. Although there is a risk that it may remain as an impurity, ■The dispersant itself is not a salt in the above polysaccharides. ■Even when aging polysaccharides, by selecting ammonia, ethanolamine, etc. as the aging agent, nonmetallic Since a treatment that forms salt can be performed, the purity of the sintered product can be improved from this point as well.

従って、上記多糖類を有する本発明の懸濁液は、高純度
を要求されるファインセラミックス焼結物の製造に最適
である.
Therefore, the suspension of the present invention containing the above-mentioned polysaccharide is optimal for producing fine ceramic sintered products that require high purity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第15図は本発明の懸濁液の実施例を、また、
第16図〜第17図は本発明の焼結物の実施例を各々示
し、第1図はカードラン混合アルミナ懸濁液の粘度を示
す図表、第2図は同アルミナ懸濁液の経時変化図、第3
図はペクチンを混合した50重量%アルミナ懸濁液の粘
度を示す図表、第4図は同60重量%アルミナ懸濁液の
粘度を示す図表、第5図はペクチン酸混合アルミナ懸濁
液の粘度を示す図表、第6図はペクチン混合・合成コー
ジェライト懸濁液の粘度を示す図表、第7図はペクチン
混合カオリン懸濁液の粘度を示す図表、第8図はペクチ
ン及びカードラン混合アルミナ懸濁液の粘度を示す図表
、第9図はエージング処理したペクチンを分散剤とする
アルミナ懸濁液の粘度を示す図表、第10図はエージン
グしたべクチンの混合分率を変えたアルミナ懸濁液の粘
度を示す図表、第11図はペクチンのメチルエステル化
度を変えたアルミナ懸濁液の粘度を示す図表、第12図
はエージングにおけるアンモニア添加量を変えたべクチ
ン混合・アルミナ懸濁液の粘度を示す図表、第13図は
酵素分解処理したべクチンを分散剤とするアルミナ懸濁
液の粘度を示す図表、第14図はメチルエステル化度と
酵素反応時間を変えたペクチン混合・アルミナ懸濁液の
粘度を示す図表、第15図は酵素反応時間を変えた場合
のべクチンの分子量とペクチン混合・アルミナ懸濁液の
粘度とを示す図表、第16図はカードラン混合・合成ゼ
オライト悲濁液、成形物並びに焼結物の特性を示す図表
、第17図はペクチン混合・アルミナ懸濁液、成形物並
びに焼結物の特性を示す図表である.
Figures 1 to 15 show examples of suspensions of the present invention, and
Figures 16 to 17 show examples of the sintered product of the present invention, Figure 1 is a chart showing the viscosity of the curdlan mixed alumina suspension, and Figure 2 is the change over time of the same alumina suspension. Figure, 3rd
The figure shows the viscosity of a 50% by weight alumina suspension mixed with pectin, Figure 4 shows the viscosity of a 60% alumina suspension, and Figure 5 shows the viscosity of an alumina suspension mixed with pectic acid. Figure 6 is a diagram showing the viscosity of a pectin-mixed synthetic cordierite suspension, Figure 7 is a diagram showing the viscosity of a pectin-mixed kaolin suspension, and Figure 8 is a diagram showing the viscosity of a pectin- and curdlan-mixed alumina suspension. A chart showing the viscosity of a suspension; Figure 9 is a chart showing the viscosity of an alumina suspension using aged pectin as a dispersant; Figure 10 is a chart showing the viscosity of an alumina suspension using aged pectin as a dispersant. Figure 11 is a diagram showing the viscosity of alumina suspensions with different degrees of methyl esterification of pectin, Figure 12 is the viscosity of pectin-mixed alumina suspensions with different amounts of ammonia added during aging. Figure 13 is a diagram showing the viscosity of an alumina suspension using enzymatically decomposed pectin as a dispersant. Figure 14 is a diagram showing the viscosity of an alumina suspension using enzymatically decomposed pectin as a dispersant. Figure 14 is a diagram showing pectin mixtures and alumina suspensions with different degrees of methyl esterification and enzyme reaction time. A diagram showing the viscosity of the liquid. Figure 15 is a diagram showing the molecular weight of pectin and the viscosity of a pectin-mixed alumina suspension when the enzyme reaction time is changed. Figure 16 is a diagram showing the viscosity of a curdlan-mixed synthetic zeolite suspension. Figure 17 is a chart showing the properties of the pectin mixture/alumina suspension, the molded product, and the sintered product.

Claims (5)

【特許請求の範囲】[Claims] 1.無機粉体を分散させた溶媒系に、ペクチン、ペクチ
ン酸、微生物起源1,3−グルカン、動物起源多糖類の
群より選ばれた多糖類の少なくとも一種を添加して、無
機粉体を溶媒中に解膠・分散させたことを特徴とする無
機粉体懸濁液
1. At least one polysaccharide selected from the group of pectin, pectic acid, microbial-derived 1,3-glucans, and animal-derived polysaccharides is added to the solvent system in which the inorganic powder is dispersed, and the inorganic powder is dissolved in the solvent. An inorganic powder suspension characterized by being peptized and dispersed in
2.ペクチン又はペクチン酸が、塩基性物質の存在下で
エージングされたものである事を特徴とする請求項1に
記載の無機粉体懸濁液
2. The inorganic powder suspension according to claim 1, wherein the pectin or pectic acid has been aged in the presence of a basic substance.
3.多糖類が、酵素分解、酸分解などによって低分子化
処理されたものである事を特徴とする請求項1又は2に
記載の無機粉体懸濁液
3. The inorganic powder suspension according to claim 1 or 2, wherein the polysaccharide is one that has been treated to have a lower molecular weight by enzymatic decomposition, acid decomposition, etc.
4.無機粉体を分散させた溶媒系に、ペクチン、ペクチ
ン酸、微生物起源1,3−グルカン、動物起源多糖類の
群より選ばれた多糖類の少なくとも一種を添加して無機
粉体懸濁液を調製し、当該懸濁液から成形物を製造する
とともに、この成形物を焼結することを特徴とする無機
粉体焼結物
4. At least one polysaccharide selected from the group of pectin, pectic acid, microbial-derived 1,3-glucans, and animal-derived polysaccharides is added to a solvent system in which the inorganic powder is dispersed to form an inorganic powder suspension. An inorganic powder sintered product characterized by preparing a molded product from the suspension and sintering the molded product.
5.懸濁液からスプレードライヤーによつて顆粒を造粒
し、当該顆粒を加圧成形して成形物を得ることを特徴と
する請求項4に記載の無機粉体焼結物
5. The inorganic powder sintered product according to claim 4, wherein granules are granulated from the suspension using a spray dryer, and the granules are pressure-molded to obtain a molded product.
JP2174040A 1989-06-30 1990-06-29 Inorganic powder suspension and inorganic powder sintered material produced from the suspension Pending JPH0397649A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17066489 1989-06-30
JP1-170664 1989-06-30

Publications (1)

Publication Number Publication Date
JPH0397649A true JPH0397649A (en) 1991-04-23

Family

ID=15909087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174040A Pending JPH0397649A (en) 1989-06-30 1990-06-29 Inorganic powder suspension and inorganic powder sintered material produced from the suspension

Country Status (1)

Country Link
JP (1) JPH0397649A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248712A (en) * 1990-12-21 1993-09-28 Takeda Chemical Industries, Ltd. Binders for forming a ceramics sheet and applications thereof
WO1994002429A1 (en) * 1992-07-28 1994-02-03 Gauckler Ludwig J Process for producing ceramic green bodies
JPH08259331A (en) * 1995-03-22 1996-10-08 Agency Of Ind Science & Technol Preparation of aqueous boron nitride-based composition for plastic molding
JP2018103176A (en) * 2016-12-27 2018-07-05 株式会社神鋼環境ソリューション Dispersant, and composition containing dispersant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248712A (en) * 1990-12-21 1993-09-28 Takeda Chemical Industries, Ltd. Binders for forming a ceramics sheet and applications thereof
WO1994002429A1 (en) * 1992-07-28 1994-02-03 Gauckler Ludwig J Process for producing ceramic green bodies
JPH08259331A (en) * 1995-03-22 1996-10-08 Agency Of Ind Science & Technol Preparation of aqueous boron nitride-based composition for plastic molding
JP2018103176A (en) * 2016-12-27 2018-07-05 株式会社神鋼環境ソリューション Dispersant, and composition containing dispersant

Similar Documents

Publication Publication Date Title
AU723409B2 (en) Supplementation of cellulose nanofibrils with carboxycellulose which has a low degree of substitution
EP0038126B1 (en) Cementitious composition and cement product produced therefrom
JP2007331978A (en) Composition for extrusion molding or injection molding and method for manufacturing molded product
CN1065846C (en) Process for non-toxic gel moulding of precise ceramic component
JP2753615B2 (en) Clay composition for inorganic powder molding and fired product obtained by firing this
WO2004022601A2 (en) Compositions for industrial applications
JPH02227433A (en) Preparation of aqueous suspension of carboxymethyl cellulose
US5667548A (en) Process for producing ceramic green compacts by double layer compression
JPH0397649A (en) Inorganic powder suspension and inorganic powder sintered material produced from the suspension
JPH03114526A (en) Aqueous suspension of hydroxyethyl cellulose
JPS6345104A (en) Boron nitride powder for slip casting and production thereof
Schilling et al. The rheology of alumina suspensions: influence of polysaccharides
JPS6140721B2 (en)
WO1999054265A1 (en) Gypsum plaster
CN1278998C (en) Production method of porous filtering ceramic applied to water treatment
KR20010049245A (en) Magnesium hydroxide slurry and preparation thereof
EP0773913B1 (en) Manufacture of ceramic articles
CN107663070A (en) A kind of antibacterial aerating brick block
JP2986732B2 (en) Method for producing surface-treated calcium-based powder
CN110745865A (en) Water-based dispersion suspension method for fine particles
JP3989250B2 (en) Manufacturing method of molding material, manufacturing method of molded body, manufacturing method of sintered body, molding material and molded body
JP2823050B2 (en) Method for producing fiber-reinforced hydraulic inorganic molded article
Prabhakaran et al. Heterocoagulation moulding of alumina powder suspensions prepared using citrate dispersant
CN113800814B (en) Concrete waste slurry concentrated solution suspension stabilizer and preparation method thereof
JPH0559215A (en) Chitosan-vegetable fiber composite and preparation thereof