JPH0397219A - Manufacture and equipment of semiconductor device - Google Patents

Manufacture and equipment of semiconductor device

Info

Publication number
JPH0397219A
JPH0397219A JP23282189A JP23282189A JPH0397219A JP H0397219 A JPH0397219 A JP H0397219A JP 23282189 A JP23282189 A JP 23282189A JP 23282189 A JP23282189 A JP 23282189A JP H0397219 A JPH0397219 A JP H0397219A
Authority
JP
Japan
Prior art keywords
intensity
reflected
light
substrate
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23282189A
Other languages
Japanese (ja)
Inventor
Yoshihiko Koike
義彦 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23282189A priority Critical patent/JPH0397219A/en
Publication of JPH0397219A publication Critical patent/JPH0397219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To uniformize crystallizability by a method wherein the intensity of reflected laser light or transmitted laser light is measured, crystallizing process is ended when the above intensity becomes constant, and the condition for crystallization is optimized according to the change of transmitted light intensity. CONSTITUTION:In the case of heat annealing, an SiO2 film in the amorphous state is deposited on a glass substrate by, e.g. normal pressure CVD method. In order to crystallize an Si film deposited on the SiO2 film, the substrate is introduced into an annealing furnace. By adjusting mirrors 23, 24 for incident light and reflected light, laser light is reflected on a specimen 21, and received by a sensor 25. When the detected light intensity becomes lower than or equal to 30% of the incident light intensity, annealing process is ended. In the case of laser annealing, the reflected laser light is made to vertically enter the substrate, the transmitted light is received by a sensor 47, and the intensity is measured by a detector 48. Said light intensity is inputted to a host computer 49, and the laser light intensity is changed with a laser light output adjusting apparatus 50, thereby obtaining uniform crystallizability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法及び製造装置に係り、特
に多結晶シリコン膜を用いて薄膜トランジスタを製造す
る際の結晶化アニールの方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for manufacturing a semiconductor device, and particularly to a method of crystallization annealing when manufacturing a thin film transistor using a polycrystalline silicon film.

〔従来の技術〕[Conventional technology]

酸化シリコン膜(SiOz膜)などのアモルファス状態
の膜上あるいはガラス基板上などに、例えば減圧化学気
相成長法(LPGVD).,プラズマCVD,スパツタ
,蒸着等でシリコン(Si)膜を堆積した後、該Si膜
の結晶性を向上させるため熱、レーザ,赤外線ランプな
どを用いて結晶化するプロセスは半導体装置製造の工程
では多く使われている。現在それらの結晶化処理の工程
は,熱アニールの場合、処理温度及び処理時間,レーザ
アニールの場合,その波長,照射強度及びパルス幅,ラ
ンプアニールの場合、照射強度及び処理時間によって条
件を設定している。その条件設定方法としては、検討用
試料により条件を決定し、それから同一条件で処理を行
なう方法を取っている。また、レーザアニールなどの場
合は、特開昭58−112327号に示すように処理に
用いたレーザ光の反射あるいは透過光強度を用いてレー
ザ光の強度を変化させる方法や、特開昭61− 287
234号に示すように、レーザ光によって処理される部
分の反射光強度を測定することでレーザ処理を行なう場
所や強度を設定する方法が取られていた。
For example, low pressure chemical vapor deposition (LPGVD) is applied to an amorphous film such as a silicon oxide film (SiOz film) or a glass substrate. The process of depositing a silicon (Si) film by , plasma CVD, sputtering, evaporation, etc. and then crystallizing it using heat, laser, infrared lamp, etc. to improve the crystallinity of the Si film is a process used in semiconductor device manufacturing. It is used a lot. Currently, the conditions for these crystallization processes are set by the processing temperature and processing time in the case of thermal annealing, the wavelength, irradiation intensity and pulse width in the case of laser annealing, and the irradiation intensity and processing time in the case of lamp annealing. ing. The method for setting the conditions is to determine the conditions using the sample for investigation, and then perform the treatment under the same conditions. In addition, in the case of laser annealing, there is a method of changing the intensity of the laser beam using the reflected or transmitted light intensity of the laser beam used for processing, as shown in JP-A-58-112327, and JP-A-61-1999. 287
As shown in No. 234, a method has been adopted in which the location and intensity of laser processing are determined by measuring the intensity of reflected light at the portion to be processed by laser light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術ではSi膜の堆積方法や条件によ
って堆積後のSi膜の状態が異なった場合、その度にア
ニール条件を検討する必要があった。また、同一条件で
堆積した場合でも堆積時の基板温度等の誤差により同一
の結晶化処理後の結品性がばらついてしまうことがある
。また、同一条件では結晶性がそれ以上向上しないにも
かかわらず長時間アニール処理することによって、例え
ば基板がガラスなどの場合は歪を増加させてしまうこと
があった。レーザアニールの場合でも結晶化処理をして
いる部分の反射、あるいは透過光を測定するため、処理
条件を事前に決定することができていなかった。更に、
製造した半導体装置は、半導体膜上に他の膜が堆積され
ているため,そのままの状態では全工程終了後に結晶性
を検査することができなかった。
However, in the above-mentioned conventional technology, when the state of the Si film after deposition differs depending on the method and conditions for depositing the Si film, it is necessary to examine the annealing conditions each time. Further, even when deposited under the same conditions, the crystallinity after the same crystallization process may vary due to errors in the substrate temperature during deposition, etc. Furthermore, even though the crystallinity does not improve any further under the same conditions, long-term annealing treatment may increase strain, for example, when the substrate is made of glass. Even in the case of laser annealing, it was not possible to determine the processing conditions in advance because the reflected or transmitted light from the area being crystallized was measured. Furthermore,
In the manufactured semiconductor device, since other films are deposited on top of the semiconductor film, it is not possible to inspect the crystallinity after all the steps are completed in that state.

本発明の目的は、試料に応じて一定の結晶性が得られた
時点で結晶化処理を終了させる方広及び装置を提供する
ことで基板内及び基板間の結晶性を均一化することにあ
る。
An object of the present invention is to make the crystallinity within and between substrates uniform by providing a square and a device that terminates the crystallization process when a certain level of crystallinity is obtained depending on the sample. .

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は熱及びランプアニールの場合、結晶化処理を
行なっている試料の反射、あるいは透過光強度を連続的
に測定することによって達或される。また、レーザアニ
ールの様に瞬時に結晶性を変化させてしまう処理の場合
には,処理前の反射あるいは透過光強度を測定し、その
強度に応じて照射光強度を設定することが達成される。
In the case of thermal and lamp annealing, the above object is achieved by continuously measuring the reflected or transmitted light intensity of the sample undergoing the crystallization process. Additionally, in the case of a process that instantly changes crystallinity, such as laser annealing, it is possible to measure the reflected or transmitted light intensity before the process and set the irradiation light intensity accordingly. .

また,結晶化処理後の半導体薄膜の反射あるいは透過光
強度を検出することで基板内及び基板間での結晶性の均
一状態を検査することができるようにしたものである。
Furthermore, by detecting the intensity of reflected or transmitted light from the semiconductor thin film after crystallization processing, it is possible to inspect the uniform state of crystallinity within the substrate and between substrates.

さらに、結晶化処理後に半導体薄膜にパターニングし、
素子を形成する際、反射あるいは透過光強度を測定でき
るパターンを形或しておくことで、工程終了後にも検査
することができるようにしたものである。
Furthermore, after the crystallization process, the semiconductor thin film is patterned,
By forming a pattern in which the intensity of reflected or transmitted light can be measured when forming the element, inspection can be performed even after the process is completed.

〔作用〕[Effect]

レーザ光に対するSi膜の反射及び透過光強度は膜の結
晶性、あるいは堆積条件によって大きく変化する。例え
ば熱アニールの場合、堆積時の半導体薄膜の結晶性,膜
厚によって結晶化の速度が変化する.また.600℃程
度の低温でのアニルの場合一担結晶化が起った膜では結
品性の向上が起らない。これらの状況を反射あるいは透
過光強度を連続して測定し、その変化に応じて処理温度
を上げたり結晶化処理の終了を決めたりすることによっ
て、堆積された半導体薄膜に応じて最適の結晶条件でア
ニールする。
The intensity of light reflected and transmitted by a Si film with respect to laser light varies greatly depending on the crystallinity of the film or the deposition conditions. For example, in the case of thermal annealing, the crystallization rate changes depending on the crystallinity and thickness of the semiconductor thin film during deposition. Also. In the case of anil at a low temperature of about 600° C., no improvement in crystallinity occurs in a film in which single-stage crystallization occurs. By continuously measuring the intensity of reflected or transmitted light under these conditions, and increasing the processing temperature or deciding whether to terminate the crystallization process depending on the changes, the optimal crystallization conditions can be determined depending on the semiconductor thin film deposited. Anneal with

また,レーザ及びランプアニールの場合,堆積後のSi
膜の状態によって照射する光の反射、吸収状態が変化す
るため同一条件では結晶化後の結晶性は一定とならない
。第1図にはその1例としてガラス基板上にLPCVD
法により基板温度を変えて堆積したSi膜の結晶性及び
波長308nmの紫外光の反射率,透過光強度の変化を
示す。
In addition, in the case of laser and lamp annealing, the Si
Since the state of reflection and absorption of irradiated light changes depending on the state of the film, the crystallinity after crystallization is not constant under the same conditions. Figure 1 shows an example of LPCVD on a glass substrate.
This figure shows changes in crystallinity, reflectance of ultraviolet light at a wavelength of 308 nm, and intensity of transmitted light of a Si film deposited by changing the substrate temperature using the method.

堆積時に結晶性の測定される試料では反射率及び透過光
強度が大きく変化している。また、アモルファス状態の
試料でも堆積条件によって透過光強度は変化を示してい
る。この変化量を測定することで照射するレーザあるい
は光の強度を結晶化に使われる実効エネルギが一定とな
るよう設定する。
In samples whose crystallinity is measured during deposition, the reflectance and transmitted light intensity vary greatly. Furthermore, even in an amorphous sample, the intensity of transmitted light changes depending on the deposition conditions. By measuring this amount of change, the intensity of the irradiated laser or light can be set so that the effective energy used for crystallization is constant.

さらにこれらの強度をal’l定することで結晶性を評
価することができる。
Furthermore, crystallinity can be evaluated by determining these intensities as al'l.

〔実施例〕〔Example〕

1.熱アニールの場合 ガラス基板上に例えば常圧CVD法によりアモルファス
状態のSiOz膜を堆積し、該Si○2膜上に例えばL
PCVD法によりアモルファス状態のSi膜を堆積する
。堆積したSi膜を結晶化するため該基板を″P2図に
示すような構造のアニール炉に導入する。測定するレー
ザ光29の波長を例えば紫外光領域の308nmとし、
入射及び反射光路には例えば炉28にN2ガス逆げ用の
φ5m程度の穴を開けておき、入射光及び反射光用のミ
ラー23.24を調整することで試料21上でレーザ光
を反射させセンサ25に受光させる。
1. In the case of thermal annealing, an amorphous SiOz film is deposited on a glass substrate by, for example, atmospheric pressure CVD, and on the SiO2 film, for example, L is deposited.
An amorphous Si film is deposited by the PCVD method. In order to crystallize the deposited Si film, the substrate is introduced into an annealing furnace having a structure as shown in Figure P2.The wavelength of the laser beam 29 to be measured is, for example, 308 nm in the ultraviolet light region.
For example, a hole of about 5 m in diameter for turning the N2 gas is opened in the furnace 28 in the incident and reflected light paths, and the laser beam is reflected on the sample 21 by adjusting the mirrors 23 and 24 for the incident light and reflected light. The sensor 25 receives the light.

この時,検出された光強度が例えば入射光強度の30%
以下となった所で検出器26より炉のコントロールユニ
ットに信号を送リアニール処理を終了させる。また、熱
処理中に反射率が30%以上で一定となった場合、炉の
温度を上げることにより結晶性を向上させる。ただし、
基板がガラスの場合には、ガラスの軟化点以下の領域で
温度を上げる。レーザ光の入射方法としては、炉28に
穴を開ける方法の他に光ファイバを用いることで炉自体
を密閉することができる。また、炉の材質を石英とし,
レーザ光の石英を透過する紫外領域とすることで、炉の
一部を第3図に示す様に平滑にし炉38を透過させてそ
のままレーザ光を測定する。
At this time, the detected light intensity is, for example, 30% of the incident light intensity.
When the following occurs, the detector 26 sends a signal to the furnace control unit to terminate the reannealing process. Further, if the reflectance becomes constant at 30% or more during heat treatment, the crystallinity is improved by increasing the furnace temperature. however,
If the substrate is glass, the temperature is raised in a region below the softening point of the glass. In addition to making a hole in the furnace 28 as a method for entering the laser beam, the furnace itself can be hermetically sealed by using an optical fiber. In addition, the material of the furnace is quartz,
By setting the laser beam in the ultraviolet region that passes through quartz, a part of the furnace is made smooth as shown in FIG. 3, and the laser beam is transmitted through the furnace 38 and the laser beam is measured as it is.

2.レーザアニールの場合 ガラス基板上に例えば常圧CVD法によりアモルファス
状態のSiOz膜を堆積し、該SiOz膜上に例えばL
PCVD法によりアモルファス状態のSi膜を堆積する
。堆積したSi膜を結晶化するため該基板を第4図に示
す構造の装置にセットする。レーザ装置41から発振さ
れたレーザ光40は、まず約10%反射のミラー42に
よって分離され結晶化する前の試料位置に照射する。基
板がガラスであり、用いるレーザ光がガラス基板及びS
iC)z膜を透過する紫外領域(例えばXeCQをガス
源としたエキシマレーザ二波長3 0 8 n m)で
ある場合、反射したレーザ光を基板に対して垂直に入射
させ、透過光強度をセンサ47で受け検出器48で測定
する。この光強度をホストコンピュータ49に入力し、
その強度により結晶化のために照射するレーザ光強度を
レーザ光出力調整器50によって変化させ、基板内で均
一な結晶性が得られるようにする。ミラー42を透過し
たレーザ光は約10%透過ミラー43により照射強度の
約80%のエネルギで試料に魚射し、Si膜を結晶化す
る。さらに、約10%透過ミラー43を透過したレーザ
光はミラー44により反射し、結晶化処理が終了した試
料面に対して垂直に入射させ、透過光強度をセンサ47
で受け検出器48で測定することで結晶性を詳価する。
2. In the case of laser annealing, an amorphous SiOz film is deposited on a glass substrate by, for example, atmospheric pressure CVD, and on the SiOz film, for example, L is deposited.
An amorphous Si film is deposited by the PCVD method. In order to crystallize the deposited Si film, the substrate is set in an apparatus having the structure shown in FIG. 4. A laser beam 40 oscillated from a laser device 41 is first separated by a mirror 42 with a reflection of about 10% and irradiated onto a sample position before crystallization. The substrate is glass, and the laser beam used is
iC) If the laser beam is in the ultraviolet region (for example, excimer laser dual wavelength 308 nm using XeCQ as a gas source) that passes through the z film, the reflected laser beam is incident perpendicularly to the substrate, and the intensity of the transmitted light is measured by a sensor. At step 47, the receiver detector 48 measures it. This light intensity is input to the host computer 49,
Depending on the intensity, the intensity of the laser beam irradiated for crystallization is changed by the laser beam output adjuster 50, so that uniform crystallinity can be obtained within the substrate. The laser beam transmitted through the mirror 42 is irradiated onto the sample by the approximately 10% transmission mirror 43 with an energy of approximately 80% of the irradiation intensity, thereby crystallizing the Si film. Further, the laser beam that has passed through the approximately 10% transmission mirror 43 is reflected by the mirror 44 and is incident perpendicularly to the sample surface on which the crystallization process has been completed, and the intensity of the transmitted light is measured by the sensor 47.
The crystallinity is evaluated in detail by measuring with the receiver detector 48.

この時、各位置での光強度をホストコンピュータ49に
メモリしておけば結晶状態の試料面内マップを作ること
ができ、それにより再処理が必要な場所を再度アニール
して結晶性を均一化させる。この方法により試料全面の
Si膜を処理するため基板を走査させるが、その走査方
法によってミラー42.44で反射されるレーザ光の役
割(照射レーザ光強度を決めるか、結晶化後の結晶性を
詳価する)を入れ変える。
At this time, if the light intensity at each position is memorized in the host computer 49, an in-plane map of the crystalline state of the sample can be created, which allows areas that require reprocessing to be reannealed to make the crystallinity uniform. let In this method, the substrate is scanned to process the Si film on the entire surface of the sample. Depending on the scanning method, the role of the laser light reflected by the mirrors 42 and 44 (determining the intensity of the irradiated laser light or controlling the crystallinity after crystallization) (detailed price)).

基板が紫外光を通さない例えばSiの場合、あるいはガ
ラス基板であってもレーザ光が可視領域例えばルビーレ
ーザ(波長697nm)の場合、ミラー42.44の角
度を調整し、第5図に示す様に各位置での反射光をセン
サ57に入射させ、検出器58で測定する。この時,結
晶化させるレーザ光による試料からの反射の影響を無す
ためセンサ57の検出方向を該レーザ光の反射光が入射
しない方向(反射光は試料から半球状に広がりその接線
と垂直な方向以外)に設定する。さらに、センサ57の
直前に用いるレーザ光波長しか透過させないパンドパス
フィルタ59を設けることで照射レーザ光以外の波長を
カットする。
If the substrate is made of Si, for example, which does not transmit ultraviolet light, or if the laser beam is in the visible range, such as a ruby laser (wavelength 697 nm) even though the substrate is glass, the angles of the mirrors 42 and 44 are adjusted as shown in FIG. The reflected light at each position is incident on the sensor 57 and measured by the detector 58. At this time, in order to eliminate the influence of reflection from the sample by the laser beam for crystallization, the detection direction of the sensor 57 is set in a direction in which the reflected light of the laser beam does not enter (the reflected light spreads out from the sample in a hemispherical shape and is perpendicular to its tangent line). (other than direction). Further, by providing a band pass filter 59 that transmits only the wavelength of the laser beam used immediately before the sensor 57, wavelengths other than the irradiated laser beam are cut off.

この様に同一のレーザ光装置41によって照射光強度の
設定と結晶化処理、さらには結晶化後の結晶性の評価を
同時に行なう。
In this way, the same laser beam device 41 simultaneously performs the setting of the irradiation light intensity, the crystallization process, and the evaluation of the crystallinity after crystallization.

3.ランプアニールの場合 ガラス基板上に例えば常圧CVD法によりアモルファス
状態のSi○2膜を堆積し、該SiO2膜上に例えばL
PCVD法によりアモルファス状態のSi膜を堆積する
。堆積したS1膜を結晶化するため該基板を第6図に示
す構造の装置にセットする。この時加熱ランプ用の波長
と測定用波長は影響し合わないように波長の異なるもの
を選択する。例えば加熱用ランプに赤外線を用いれば、
測定用のレーザ光波長は可視領域のArレーザ(波長:
514nm)を用いる。この時ランプの光が基板から反
射し、検出器に入るのを防ぐためセンサ66の直前にレ
ーザ光60の波長だけを透過するバンドパスフィルタ6
5を設ける。センサ66により受けた反射率が例えば5
0%以下になった場合、赤外線ランプ69のランプ出力
コントローラ68に信号を送り処理を終了させることが
できる。また、測定用レーザ光の波長を紫外領域を用い
たとすると、試料63を透過した光強度をit+1定し
、その値が一定値以上になれば、反射光を測定していた
場合と同様に処理を終了させる。ランプアニールの場合
も熱アニールと同様に、目標に満ない一定の反射あるい
は透過光強度で変化しない時はランプの照射強度を強く
し処理するようにする。
3. In the case of lamp annealing, an amorphous Si○2 film is deposited on a glass substrate by, for example, atmospheric pressure CVD, and on the SiO2 film, for example, L is deposited.
An amorphous Si film is deposited by the PCVD method. In order to crystallize the deposited S1 film, the substrate is set in an apparatus having the structure shown in FIG. At this time, the wavelength for the heating lamp and the wavelength for measurement are selected to have different wavelengths so that they do not affect each other. For example, if infrared rays are used in a heating lamp,
The laser light wavelength for measurement is an Ar laser in the visible region (wavelength:
514 nm). At this time, in order to prevent the lamp light from being reflected from the substrate and entering the detector, there is a bandpass filter 6 just before the sensor 66 that transmits only the wavelength of the laser beam 60.
5 will be provided. If the reflectance received by the sensor 66 is, for example, 5
If it becomes 0% or less, a signal can be sent to the lamp output controller 68 of the infrared lamp 69 to terminate the process. Furthermore, assuming that the wavelength of the laser beam for measurement is in the ultraviolet region, the intensity of the light transmitted through the sample 63 is set as it+1, and if that value exceeds a certain value, the same processing as when measuring the reflected light is performed. terminate. In the case of lamp annealing, as in thermal annealing, when the reflected or transmitted light intensity remains constant and does not reach the target, the lamp irradiation intensity is increased for processing.

4.結晶性評価方法及び装置 各手法で結晶化処理を終えた試料をステージ上にセット
し、例えば基板内の数点、あるいは一直線上、あるいは
連続的に走査させながら反射あるいは透過光強度を測定
し、それにより基板内での結晶状態のMapを作成する
。また、基板間の該光強度を測定することで基板間及び
lot間の結晶性のばらつきを評価する。さらに、基板
内のチップ単位あるいは基板の1部に例えば10μmφ
程度の結晶性を評価するパターンを形威しておき、最終
工程終了後にもレーザ光を集光し、反射あるいは透過光
強度を測定することで半導体膜の結晶性を評価する。
4. Crystallinity Evaluation Method and Apparatus A sample that has been crystallized using each method is set on a stage, and the reflected or transmitted light intensity is measured, for example, at several points within the substrate, in a straight line, or while scanning continuously. As a result, a map of the crystal state within the substrate is created. Further, by measuring the light intensity between substrates, variations in crystallinity between substrates and between lots are evaluated. Furthermore, for example, 10 μmφ is applied to each chip within the substrate or to a part of the substrate.
A pattern for evaluating the degree of crystallinity is formed, and the crystallinity of the semiconductor film is evaluated by concentrating laser light and measuring the intensity of reflected or transmitted light even after the final process is completed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱及びランプアニールの場合結晶化処
理中に結晶性を評価して最適の結晶化処理を行なうこと
ができるので、半導体膜の堆積時のばらつきによる結晶
化処理後の結晶性の変化を無し、さらに最適な結晶性が
得られた時点で結晶化処理を終了させ基板間での結晶性
のばらつきを無すことができる。
According to the present invention, in the case of heat and lamp annealing, it is possible to evaluate the crystallinity during the crystallization process and perform the optimum crystallization process, so that the crystallinity after the crystallization process due to variations during the deposition of the semiconductor film can be avoided. There is no change in crystallinity between the substrates, and the crystallization process is terminated when optimum crystallinity is obtained, thereby eliminating variations in crystallinity between substrates.

また、レーザアニールの場合処理前にレーザ光の吸収状
態を測定し,それに応したレーザ光強度を設定する。さ
らに,結晶化処理後に結晶性を評価し、結晶化の不十分
な所は再処理を行なわせることで均一な結晶性が得られ
る。
Furthermore, in the case of laser annealing, the absorption state of the laser light is measured before processing, and the laser light intensity is set accordingly. Furthermore, uniform crystallinity can be obtained by evaluating the crystallinity after the crystallization treatment and reprocessing where the crystallization is insufficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガラス基板上にLPCVD法により基板温度を
変えて堆積したSi膜の結晶性及び波長308nmのレ
ーザ光の反射率,透過光強度をプロットした図、第2図
,第3図は本発明を用いた熱アニール方法の一実施例を
示す図、第4図は本発明を用い基板がレーザを透過する
場合のレーザアニール方法の一実施例を示す図、第5図
は基板がレーザ光を透過しない場合のレーザアニール方
法の一実施例を示す図、第6図は本発明を用いたランプ
アニール方法の一実旅例を示す図である。 21.,45,55.63・・・試r}、22.41・
・レーザ装置、23,24,44,54.62・・・ミ
ラ25,47,57.66・・・センサ、26.48,
58.64・・検出器、27・・炉のコントローラ、2
8.38・・・炉、29,39,40,51.60・・
・レーザ光、42・・ミラー、43・・約10%透過ミ
ラー、4.6,56.64・・・試料ステージ、49・
・・ホストコンピュータ、50・・・レーザ光出力調整
器、59.65・・・バントパスフィルタ、68第 1 図 第 4 図
Figure 1 is a diagram plotting the crystallinity, reflectance of a laser beam with a wavelength of 308 nm, and transmitted light intensity of a Si film deposited on a glass substrate by the LPCVD method while changing the substrate temperature. FIG. 4 is a diagram showing an embodiment of the thermal annealing method using the invention. FIG. 4 is a diagram showing an embodiment of the laser annealing method when the substrate transmits the laser beam using the invention. FIG. FIG. 6 is a diagram showing an example of a laser annealing method in which no light is transmitted through the lamp, and FIG. 6 is a diagram showing an example of a lamp annealing method using the present invention. 21. ,45,55.63... trial r},22.41・
・Laser device, 23, 24, 44, 54.62... Mira 25, 47, 57.66... Sensor, 26.48,
58.64...Detector, 27...Furnace controller, 2
8.38...Furnace, 29,39,40,51.60...
・Laser beam, 42... Mirror, 43... Approximately 10% transmission mirror, 4.6, 56.64... Sample stage, 49.
...Host computer, 50...Laser light output adjuster, 59.65...Bant pass filter, 68 Fig. 1 Fig. 4

Claims (1)

【特許請求の範囲】 1、基板上に形成された半導体薄膜を結晶化する工程に
おいて、結晶化処理と同時に特定の波長領域のレーザ光
の反射、あるいは透過光強度を測定し、その値により半
導体薄膜の結晶性が一定の状態となつた所で結晶化処理
を終了させ、また該反射、あるいは透過光強度の変化に
応じて結晶化処理条件を最適化させることを特徴とした
半導体装置の製造方法。 2、結晶化した半導体薄膜において請求範囲第1項記載
と同様に反射、あるいは透過光強度を測定することで、
基板、あるいは基板間での結晶性のばらつきを詳価する
ことを特徴とした半導体装置の詳価方法。 3、請求範囲第1項または第2項記載の半導体装置の製
造方法において、レーザ光が基板を透過するかどうかに
よつて反射光、透過光のどちらを測定するかを選択する
ことを特徴とする半導体装置の製造方法。 4、基板内にレーザ光の反射、あるいは透過光を測定す
るパターンを形成し、半導体装置製造工程終了後でも結
晶性の検査を可能とすることを特徴とした半導体装置。
[Claims] 1. In the process of crystallizing a semiconductor thin film formed on a substrate, simultaneously with the crystallization process, the reflected or transmitted light intensity of a laser beam in a specific wavelength range is measured, and based on that value, the semiconductor thin film is crystallized. Manufacture of a semiconductor device, characterized in that the crystallization process is terminated when the crystallinity of the thin film reaches a constant state, and the crystallization process conditions are optimized according to changes in the reflected or transmitted light intensity. Method. 2. By measuring the intensity of reflected or transmitted light in the crystallized semiconductor thin film in the same manner as described in claim 1,
A detailed evaluation method for semiconductor devices characterized by detailed evaluation of variations in crystallinity between substrates or between substrates. 3. The method for manufacturing a semiconductor device according to claim 1 or 2, characterized in that whether to measure reflected light or transmitted light is selected depending on whether the laser light passes through the substrate. A method for manufacturing a semiconductor device. 4. A semiconductor device characterized in that a pattern for measuring reflected or transmitted laser light is formed in the substrate, making it possible to inspect crystallinity even after the semiconductor device manufacturing process is completed.
JP23282189A 1989-09-11 1989-09-11 Manufacture and equipment of semiconductor device Pending JPH0397219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23282189A JPH0397219A (en) 1989-09-11 1989-09-11 Manufacture and equipment of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23282189A JPH0397219A (en) 1989-09-11 1989-09-11 Manufacture and equipment of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0397219A true JPH0397219A (en) 1991-04-23

Family

ID=16945309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23282189A Pending JPH0397219A (en) 1989-09-11 1989-09-11 Manufacture and equipment of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0397219A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275524A (en) * 1993-03-24 1994-09-30 G T C:Kk Manufacturing method of thin film transistor
KR100278977B1 (en) * 1997-08-30 2001-02-01 구본준 Laser equipment
WO2001059823A1 (en) * 2000-02-08 2001-08-16 Matsushita Electric Industrial Co., Ltd. Lamp anneal device and substrate of display device
JP2002305146A (en) * 2001-04-06 2002-10-18 Seiko Epson Corp Method and apparatus for manufacturing thin-film semiconductor device
KR20020092231A (en) * 2001-06-01 2002-12-11 가부시끼가이샤 도시바 Method and apparatus for testing the quality of film
JP2005277062A (en) * 2004-03-24 2005-10-06 Hitachi Ltd Method for manufacturing semiconductor thin film
JP2005311327A (en) * 2004-03-25 2005-11-04 Semiconductor Energy Lab Co Ltd Laser irradiating equipment and forming method of semiconductor device using the same
JP2007158372A (en) * 2007-02-06 2007-06-21 Advanced Display Inc Method and apparatus for manufacturing semiconductor device
JP2007288710A (en) * 2006-04-20 2007-11-01 Cosel Co Ltd Noise filter and manufacturing method
JP2008288363A (en) * 2007-05-17 2008-11-27 Sony Corp Method of adjusting laser beam output, method of manufacturing semiconductor device, method of manufacturing display device, and apparatus for manufacturing semiconductor device
WO2018037756A1 (en) * 2016-08-24 2018-03-01 株式会社日本製鋼所 Laser anneal device, method for inspecting substrate with attached crystallized film, and semiconductor device manufacturing method
US11114300B2 (en) 2016-08-24 2021-09-07 The Japan Steel Works, Ltd. Laser annealing apparatus, inspection method of substrate with crystallized film, and manufacturing method of semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275524A (en) * 1993-03-24 1994-09-30 G T C:Kk Manufacturing method of thin film transistor
KR100278977B1 (en) * 1997-08-30 2001-02-01 구본준 Laser equipment
WO2001059823A1 (en) * 2000-02-08 2001-08-16 Matsushita Electric Industrial Co., Ltd. Lamp anneal device and substrate of display device
JP2002305146A (en) * 2001-04-06 2002-10-18 Seiko Epson Corp Method and apparatus for manufacturing thin-film semiconductor device
KR20020092231A (en) * 2001-06-01 2002-12-11 가부시끼가이샤 도시바 Method and apparatus for testing the quality of film
US6975386B2 (en) 2001-06-01 2005-12-13 Kabushiki Kaisha Toshiba Film quality inspecting method and film quality inspecting apparatus
JP4568000B2 (en) * 2004-03-24 2010-10-27 株式会社 日立ディスプレイズ Manufacturing method of semiconductor thin film
JP2005277062A (en) * 2004-03-24 2005-10-06 Hitachi Ltd Method for manufacturing semiconductor thin film
JP2005311327A (en) * 2004-03-25 2005-11-04 Semiconductor Energy Lab Co Ltd Laser irradiating equipment and forming method of semiconductor device using the same
JP2007288710A (en) * 2006-04-20 2007-11-01 Cosel Co Ltd Noise filter and manufacturing method
JP2007158372A (en) * 2007-02-06 2007-06-21 Advanced Display Inc Method and apparatus for manufacturing semiconductor device
JP2008288363A (en) * 2007-05-17 2008-11-27 Sony Corp Method of adjusting laser beam output, method of manufacturing semiconductor device, method of manufacturing display device, and apparatus for manufacturing semiconductor device
WO2018037756A1 (en) * 2016-08-24 2018-03-01 株式会社日本製鋼所 Laser anneal device, method for inspecting substrate with attached crystallized film, and semiconductor device manufacturing method
US11114300B2 (en) 2016-08-24 2021-09-07 The Japan Steel Works, Ltd. Laser annealing apparatus, inspection method of substrate with crystallized film, and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JPH0397219A (en) Manufacture and equipment of semiconductor device
USRE36371E (en) Method of forming polycrystalline silicon film in process of manufacturing LCD
EP0451329B1 (en) Controlling method of the thickness of a thin film when forming that film
US5350236A (en) Method for repeatable temperature measurement using surface reflectivity
US5783804A (en) Reflectance method for accurate process calibration in semiconductor substrate heat treatment
US8786841B2 (en) Thin film temperature measurement using optical absorption edge wavelength
KR100477569B1 (en) Laser annealing method and apparatus for determining condition of laser anneal
US6975386B2 (en) Film quality inspecting method and film quality inspecting apparatus
US20060279744A1 (en) Method for measuring thickness of thin film, method for forming polycrystal semiconductor thin film, method for manufacturing semiconductor device, apparatus for manufacturing the same, and method for manufacturing image display device
JP2003509667A (en) Method and apparatus for optical measurement of layer and surface properties
US5364187A (en) System for repeatable temperature measurement using surface reflectivity
JP2916452B1 (en) Evaluation method of crystalline semiconductor thin film and laser annealing apparatus
TW577135B (en) Die size control for polysilicon film and the inspection method thereof
US7169717B2 (en) Method of producing a calibration wafer
JP2002009012A (en) Method of manufacturing liquid crystal display device and laser annealer
Bruynooghe et al. Infrared spectroscopic ellipsometry for residual water detection in annealed sol–gel thin layers
JP3866933B2 (en) Film thickness measuring device
JP3580079B2 (en) Laser annealing apparatus and laser annealing method
JPH09213652A (en) Laser annealing device
JPH11265859A (en) Device and method for forming semiconductor film
US7283218B2 (en) Method and apparatus for the determination of characteristic layer parameters at high temperatures
JP3733022B2 (en) Crystallinity evaluation method and evaluation apparatus for silicon thin film, and laser annealing method and apparatus
JPS63166241A (en) Equipment for annealing semiconductor substrate
JPH0687478B2 (en) Wiring layer inspection method
JPH10214869A (en) Method for evaluating crystallized thin film