JPH0397132A - Protective layer of optical recording medium - Google Patents

Protective layer of optical recording medium

Info

Publication number
JPH0397132A
JPH0397132A JP1232759A JP23275989A JPH0397132A JP H0397132 A JPH0397132 A JP H0397132A JP 1232759 A JP1232759 A JP 1232759A JP 23275989 A JP23275989 A JP 23275989A JP H0397132 A JPH0397132 A JP H0397132A
Authority
JP
Japan
Prior art keywords
protective layer
refractive index
silicon
substrate
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1232759A
Other languages
Japanese (ja)
Inventor
Ichiro Doi
一郎 土井
Sadaji Miyazaki
宮崎 貞二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1232759A priority Critical patent/JPH0397132A/en
Publication of JPH0397132A publication Critical patent/JPH0397132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a protective layer excellent in adhesion property under severe conditions such as high temp. and high humidity and to prevent peeling of the layer by constituting the protective layer of oxide, nitride or nitroxide of silicon or aluminum and specifying the refractive index of the protective layer at 830 nm wavelength to >=2.5. CONSTITUTION:The protective layers 2,4 consist of oxide, nitride or nitroxide of silicon or aluminum and the refractive index thereof at 830 nm wavelength is specified to >=2.5. Oxides, nitrides or nitroxides of silicon or aluminum are chemically stable and have excellent barrier property against water and acid and high mechanical strength in such an environment of high temp. and high humidity, however, they show poor adhesion property to a plastic substrate 1 and easily cause peeling. The refractive index of oxide, nitride or nitroxide of silicon or aluminum is 1.5 - 2.0 for a stiochiometric composition, but the protective layers are made to have refractive index >=2.5. By this method, the layers have properties of metals or semimetals and have better adhesion to the substrate 1. Thereby, the obtd. protective layers hardly peel from the substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光記録媒体に用いられる新規な保護層に関する
ものである。さらに詳しくいえば、本発明は高温、高湿
の過酷な環境下での密着性に優れ、剥離の発生が抑制さ
れた光記録媒体の保護層に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel protective layer used in optical recording media. More specifically, the present invention relates to a protective layer for an optical recording medium that has excellent adhesion under harsh environments of high temperature and high humidity, and has suppressed peeling.

〔従来の技術〕[Conventional technology]

近年、レーザーなどの光ビームを利用した光記録媒体は
、記録密度が高く、高速アクセスが可能で、かつ信頼性
が高い、非接触型であるなどの理由により、高度情報社
会における記録媒体の中心的役割の担い手として期待さ
れ、積極的に研究が進められている。
In recent years, optical recording media that use light beams such as lasers have become the main recording media in the advanced information society due to their high recording density, high-speed access, high reliability, and non-contact nature. It is expected to play a key role in this field, and research is actively underway.

この記録媒体には、コンパクトディスクやCDROMな
どで代表される再生専用型、文書・画像フィルムなどと
しての情報の記録・再生が可能な追記型、フロッピーデ
ィスク代替が期待される情報の記録、消去、再生が可能
な書き換え型の3種類があり、すでに実用に供されてい
る。
These recording media include read-only types such as compact disks and CDROMs, write-once types that can record and play back information such as documents and image films, and floppy disks that can record and erase information that are expected to replace them. There are three types of rewritable types that can be played back, and they are already in practical use.

前記の追記型や書き換え型の光記録媒体においては、基
板上に記録層が設けられており、そしてこの記録層につ
いては、記録方法の原理や態様の異なった種々のものが
開発されている。例えば追記型の場合にはナフトキノン
などの有機色素や、Se, Teなどのカルコゲン元素
を主体とした合金や酸化物などを用いた開孔方式のもの
、あるいは、Ga, Ge. Se, In, Sn,
 Sb, Te, Pb, Biなどを主体とする合金
を用いた相変化方式のものなど、書き換え型の場合には
、希土類と遷移金属の合金を用いた光磁気方式などが知
られている。
In the above-mentioned write-once type and rewritable type optical recording media, a recording layer is provided on the substrate, and various types of recording layers have been developed with different principles and aspects of recording methods. For example, in the case of a write-once type, there are those using an open-hole type using organic dyes such as naphthoquinone, alloys or oxides mainly composed of chalcogen elements such as Se and Te, or those using Ga, Ge. Se, In, Sn,
In the case of the rewritable type, there are known phase-change types using alloys mainly composed of Sb, Te, Pb, Bi, etc., and magneto-optical types using alloys of rare earths and transition metals.

ところで、これらの記録層に用いられる材料は、化学的
に不安定なものが多い上、薄膜で使用されるため、空気
中の酸素や水による酸化を受けやすく、記録や再生の経
時的な信頼性の低下を免れない。このような欠点を解決
するために、通常光記録媒体における記録層の上又は下
もしくはその両方に保護層を設けることが行なわれてい
る。この保護層には、一般に、酸素や水の侵入を効果的
に防止しつるバリア性に優れ、かつ自身も化学的に安定
な誘電体薄膜を用いることが有利であることが知られて
おり、その材料としては例えばマグネシウム、ケイ素、
アルミニウムなどの酸化物、窒化物、酸窒化物、フッ化
物や、これらの複合体、亜鉛などの金属の硫化物やセレ
ン化物、さらにはこれらの混合物などの使用が試みられ
ている。
By the way, the materials used for these recording layers are often chemically unstable, and because they are used in thin films, they are easily oxidized by oxygen and water in the air, making recording and playback less reliable over time. There is no escape from a decline in sexuality. In order to solve these drawbacks, it is common practice to provide a protective layer above or below the recording layer or both in an optical recording medium. It is generally known that it is advantageous to use a dielectric thin film for this protective layer, which effectively prevents the intrusion of oxygen and water, has excellent barrier properties, and is also chemically stable. Examples of such materials include magnesium, silicon,
Attempts have been made to use oxides such as aluminum, nitrides, oxynitrides, fluorides, composites thereof, sulfides and selenides of metals such as zinc, and mixtures thereof.

しかしながら、これらの材料からなる保護膜においては
、基板との密着性が低く、剥離を生じやすいという欠点
がある。このような剥離を生じると、その部分の反射率
が低下してエラーを引き起こすばかりか、酸素や水が記
録層に侵入して腐食の原因となる。特に、光記録媒体を
高温、高湿環境下で使用する場合、該媒体の構成要素で
ある基板、保護層、記録層などの熱膨脹率の差や、残留
応力による歪みが保護層と基板との間の剥離を誘発しや
すいなどの問題を生じ、光記録媒体の利用範囲が制限さ
れる。
However, protective films made of these materials have a drawback in that they have low adhesion to the substrate and are susceptible to peeling. When such peeling occurs, not only does the reflectance of the area decrease, causing errors, but also oxygen and water enter the recording layer, causing corrosion. In particular, when an optical recording medium is used in a high-temperature, high-humidity environment, differences in thermal expansion coefficients of the medium's constituent elements such as the substrate, protective layer, and recording layer, as well as distortion due to residual stress, may occur between the protective layer and the substrate. This causes problems such as the possibility of peeling between the layers, which limits the scope of use of the optical recording medium.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、このような光記録媒体に用いられる従来の保
護膜が有する一矢点を克服し、高い機械的強度を有し、
かつ剥離が発生しに<<、高温、高湿の過酷な環境下で
の使用が可能な光記録媒体を与えうる光記録媒体の保護
膜を提供することを目的としてなされたものである。
The present invention overcomes the drawbacks of conventional protective films used for such optical recording media, has high mechanical strength,
The purpose of this invention is to provide a protective film for an optical recording medium that can be used in harsh environments of high temperature and high humidity without causing peeling.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは前記の好ましい性質を有する光記録媒体の
保護膜を開発すべく鋭意研究を重ねた結果、光記録媒体
において基板上に設けられる保護層であって、該保護層
はケイ素またはアルミニウムの酸化物、窒化物、ないし
酸窒化物からなり、かつ波長8 3 0 nmにおける
該保護層の屈折率が2.5以上であるものを使用するこ
とによりその目的を達成しうることを見出した。
The present inventors have conducted extensive research to develop a protective film for optical recording media having the above-mentioned preferable properties. It has been found that the purpose can be achieved by using a protective layer consisting of an oxide, nitride, or oxynitride, and having a refractive index of 2.5 or more at a wavelength of 830 nm. .

以下、本発明をより詳細に説明する。ケイ素やアルミニ
ウムの酸化物、窒化物、あるいは酸窒化物は水や酸素に
対するバリア性に優れ、化学的に安定である、高温、高
湿環境下に放置しても機械的強度が高いなどの長所を有
しているが、一般にプラスチック基板との密着性は悪く
、剥離を生じやすい。一方、プラスチック基板との密着
性という点で優れた物質としては金属があるが、金属は
透明性がないため基板上に直接設ける保護層としては不
適当である。本発明者らはこの点に注目した結果、金属
、半金属とそれらの酸化物、窒化物、酸窒化物の長所を
組み合わせることにより、光記録媒体の基板上に直接設
ける保護層として優れた特性を持つ材料を見出した。
The present invention will be explained in more detail below. Silicon and aluminum oxides, nitrides, and oxynitrides have excellent barrier properties against water and oxygen, are chemically stable, and have high mechanical strength even when left in high temperature and high humidity environments. However, it generally has poor adhesion to plastic substrates and is prone to peeling. On the other hand, metals are excellent materials in terms of adhesion to plastic substrates, but metals are not transparent and are therefore unsuitable for use as a protective layer directly on the substrate. The inventors of the present invention focused on this point, and found that by combining the advantages of metals, semimetals, and their oxides, nitrides, and oxynitrides, we achieved excellent properties as a protective layer that can be provided directly on the substrate of an optical recording medium. We have found a material that has

このような材料は該保護層の波長830nmにおける屈
折率を2.5以上とすることにより得られる。ケイ素や
アルミニウムの酸化物、窒化物、酸窒化物は、それらの
化学量論的な組成においては1. 5ないし2、0程度
の屈折率であるが、これを2.5以上とすると金属や半
金属の特性を併せ持つようになり、基板との密着性が向
上する。ただし屈折率があまりに高いと光記録媒体の反
射率が低下する、保護層自体の透明性が悪くなるなどの
問題が発生する。この意味で屈折率は3.0以下、より
好ましくは2.7以下であることが望ましい。
Such a material can be obtained by setting the refractive index of the protective layer to 2.5 or more at a wavelength of 830 nm. Oxides, nitrides, and oxynitrides of silicon and aluminum have a stoichiometric composition of 1. It has a refractive index of about 5 to 2.0, but if it is set to 2.5 or more, it will have the characteristics of a metal or a metalloid, and its adhesion to the substrate will improve. However, if the refractive index is too high, problems such as a decrease in the reflectance of the optical recording medium and poor transparency of the protective layer itself will occur. In this sense, it is desirable that the refractive index be 3.0 or less, more preferably 2.7 or less.

第l図は、本発明を適用した光記録媒体の例を示す断面
図であって、これらは、再生専用型、追記型、あるいは
書き換え型のいずれであってもよい。前記構成における
記録層については特に制限はなく、例えば追記型の場合
は開孔方式や相変化方式のものであってもよいし、有機
色素を用いたものであってもよく、また書き換え型の場
合は光磁気方式のものであってもよいし、相変化方式の
ものであってもよい。さらに、基板材料としては、アク
リル樹脂、エポキシ樹脂、ポリカーボネート樹脂などの
プラスチックを用いた場合に本発明の効果が最も有効に
発揮されるが、これら以外にガラスなども用いることが
できる。
FIG. 1 is a sectional view showing an example of an optical recording medium to which the present invention is applied, and these may be of a read-only type, a write-once type, or a rewritable type. There are no particular restrictions on the recording layer in the above configuration; for example, in the case of a write-once type, it may be of an aperture type or a phase change type, or it may be one using an organic dye, or it may be of a rewritable type. In this case, it may be a magneto-optical type or a phase change type. Further, the effects of the present invention are most effectively exhibited when plastics such as acrylic resin, epoxy resin, and polycarbonate resin are used as the substrate material, but glass and the like can also be used in addition to these.

該保護層の形成方法については特に制限はなく、従来薄
膜の形成に慣用されている方法、例えば蒸着法やスパッ
タリング法を用いることができる。
There are no particular restrictions on the method of forming the protective layer, and methods conventionally used for forming thin films, such as vapor deposition and sputtering, can be used.

保護層の膜厚は、通常10〜2 0 0 nmの範囲で
選ばれる。さらに、本発明の光記録媒体においては、所
望に応じ、記録層の酸化及び腐食を防止するため、該記
録層上に保護層を設けてもよい。この保護層を構成する
材料としてはたとえば酸化ケイ素、窒化ケイ素、窒化ア
ルミニウム、硫化亜鉛、あるいはこれらの複合物などの
誘電体がよい。記録層上に用いる保護層の場合は基板上
に設ける本発明の保護層と異なり、密着性の制約が少な
いため、必ずしも屈折率2.5以上である必要はなく、
所望により化学量論組成を採用してもよい。
The thickness of the protective layer is usually selected in the range of 10 to 200 nm. Furthermore, in the optical recording medium of the present invention, a protective layer may be provided on the recording layer to prevent oxidation and corrosion of the recording layer, if desired. The protective layer may be made of a dielectric material such as silicon oxide, silicon nitride, aluminum nitride, zinc sulfide, or a composite thereof. In the case of the protective layer used on the recording layer, unlike the protective layer of the present invention provided on the substrate, there are fewer restrictions on adhesion, so it does not necessarily have to have a refractive index of 2.5 or more.
A stoichiometric composition may be employed if desired.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、水や酸素に対するバリア性に優れ、化
学的、機械的に安定なだけでなく、密着性に優れ、基板
との剥離を生じにくい光記録媒体の保護膜を得ることが
できる。
According to the present invention, it is possible to obtain a protective film for an optical recording medium that has excellent barrier properties against water and oxygen, is not only chemically and mechanically stable, but also has excellent adhesion and is resistant to peeling from the substrate. .

〔実施例〕〔Example〕

次に実施例により本発明をさらに詳細に説明するが、本
発明はこれらの例によって何ら限定されるものではない
EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way.

実施例1 第1図(a)に示すように、直径130nmの案内溝付
きポリカーボネート基板l上に、膜厚80nmの窒化ケ
イ素からなる保護層2、膜厚80nmのTb2。Fet
oCO+aからなる記録層3、および膜厚80nmの窒
化ケイ素からなる保護層4を順次設けてなる光磁気ディ
スクを作成した。保護層2及び4はSiターゲットによ
る反応性RFマグネトロンスバッタ、記録層3は合金タ
ーゲットによるDCマグネトロンスパッタにより作威し
、保護層2の波長830nmにおける屈折率は2.60
となるように反応ガスの流量を設定した。保護層4の屈
折率は1. 9以下であり、ほぼ化学量論組成と推定さ
れる。また比較例として、保護層2の屈折率を2.3と
した以外はすべて同一条件で作成した光磁気ディスクも
作成した。これら2つの光磁気ディスクをホットメルト
系接着剤により2枚貼り合わせ、80℃、90%RHの
加速寿命試験環境下に400時間放置した。
Example 1 As shown in FIG. 1(a), a protective layer 2 made of silicon nitride with a film thickness of 80 nm and a Tb2 film with a film thickness of 80 nm were formed on a polycarbonate substrate l with a guide groove having a diameter of 130 nm. Fet
A magneto-optical disk was prepared in which a recording layer 3 made of oCO+a and a protective layer 4 made of silicon nitride with a film thickness of 80 nm were sequentially provided. Protective layers 2 and 4 are formed by reactive RF magnetron sputtering using a Si target, and recording layer 3 is formed by DC magnetron sputtering using an alloy target, and the refractive index of protective layer 2 at a wavelength of 830 nm is 2.60.
The flow rate of the reaction gas was set so that The refractive index of the protective layer 4 is 1. 9 or less, and is estimated to have a nearly stoichiometric composition. As a comparative example, a magneto-optical disk was also prepared under the same conditions except that the refractive index of the protective layer 2 was 2.3. These two magneto-optical disks were bonded together using a hot melt adhesive and left in an accelerated life test environment of 80° C. and 90% RH for 400 hours.

実施例のディスクにおいては初期の状態から何ら変化が
見られなかったのに対し、比較例のディスクにおいては
基板と保護層2の間で剥離が発生し、記録・再生に支障
をきたした。本実施例より光磁気ディスクの高温、高湿
下での剥離の発生が、基板上に設けられた窒化ケイ素保
護層の屈折率を高めることにより防止できることが示唆
された。
In the disc of the example, no change was observed from the initial state, whereas in the disc of the comparative example, peeling occurred between the substrate and the protective layer 2, causing problems in recording and reproduction. This example suggests that the occurrence of peeling of the magneto-optical disk under high temperature and high humidity conditions can be prevented by increasing the refractive index of the silicon nitride protective layer provided on the substrate.

実施例2 第1図(b)に示すように、直径1 3 0 mmの案
内溝付きボリカーボネート基板1上に、膜厚80nmの
窒化ケイ素からなる保護層2、膜厚25nmのTbio
FetoCO+oからなる記録層3、及び膜厚40nm
の酸窒化ケイ素からなる保護層4、膜厚50nmのAI
からなる反射層5を順次設けてなる光磁気ディスクを作
成した。保護層2及び4はSiターゲットによる反応性
RFマグネトロンスパッタ、記録層3は合金ターゲット
によりDCマグネトロンスパッタ、反射層5はAIター
ゲットによるRFマグネトロンスバッタにより作成し、
保護層2の波長830nmにおける屈折率は2.30.
2, 40.2. 50,2.60となるように反応ガ
スの流量を4種類設定した。保護層4の屈折率は1. 
9以下であり、ほぼ化学量論組成と推定される。これら
の光磁気ディスクを80℃、90%RHの加速寿命試験
環境下に放置し、ピットエラーレート(BER)により
安定性を試験した。結果を第2図に示す。この図から明
らかなように、BERは保護層2の屈折率と相関があり
、屈折率2.50以上では800時間以上変化が認めら
れないのに対し、屈折率2.50未満では基板と保護層
2との間で剥離が発生し、急激なBERの増加が見られ
た。この結果より保護層2の屈折率を2.5以上とする
ことにより基板と保護層2との間の剥離が防止され、安
定性の高い光磁気ディスクが得られることが明らかにな
った。
Example 2 As shown in FIG. 1(b), a protective layer 2 made of silicon nitride with a film thickness of 80 nm and a Tbio film with a film thickness of 25 nm were placed on a polycarbonate substrate 1 with a guide groove having a diameter of 130 mm.
Recording layer 3 made of FetoCO+o and film thickness 40 nm
A protective layer 4 made of silicon oxynitride with a thickness of 50 nm
A magneto-optical disk was prepared in which a reflective layer 5 consisting of the following layers was sequentially provided. The protective layers 2 and 4 were created by reactive RF magnetron sputtering using a Si target, the recording layer 3 was created by DC magnetron sputtering using an alloy target, and the reflective layer 5 was created by RF magnetron sputtering using an AI target.
The refractive index of the protective layer 2 at a wavelength of 830 nm is 2.30.
2, 40.2. Four types of reaction gas flow rates were set so that the flow rates were 50 and 2.60. The refractive index of the protective layer 4 is 1.
9 or less, and is estimated to have a nearly stoichiometric composition. These magneto-optical disks were left under an accelerated life test environment of 80° C. and 90% RH, and their stability was tested by pit error rate (BER). The results are shown in Figure 2. As is clear from this figure, the BER is correlated with the refractive index of the protective layer 2, and when the refractive index is 2.50 or more, no change is observed for more than 800 hours, whereas when the refractive index is less than 2.50, the BER is correlated with the refractive index of the protective layer 2. Peeling occurred between layer 2 and a rapid increase in BER was observed. The results revealed that by setting the refractive index of the protective layer 2 to 2.5 or more, peeling between the substrate and the protective layer 2 can be prevented and a highly stable magneto-optical disk can be obtained.

実施例3 第1図(b)に示すように、直径130mmの案内溝付
きポリカーボネート基板l上に、膜厚80nmの酸窒化
アルミニウムからなる保護層2、膜厚25nmのTb2
。FetoCO+oからなる記録層3、および膜厚40
nmの酸窒化ケイ素からなる保護層4、膜厚50nmの
AIからなる反射層5を順次設けてなる光磁気ディスク
を作成した。保護層2はAIターゲットによる反応性R
Fマグネトロンスパッタ、保護層4はSiターゲットに
よる反応性RFマグネトロンスパッタ、記録層3は合金
ターゲットによるDCマグネトロンスパッタ、反射層5
はAIターゲットによるRFマグネトロンスパッタによ
り作成し、保護層2の波長830nmにおける屈折率は
2. 30 ,2. 40, 2. 50 .2. 6
0となるように反応ガスの流量を4種類設定した。保護
層2中の酸素と窒素の原子数比はほぼ1:lとした。ま
た保護層4の屈折率は1. 9以下であり、ほぼ化学量
論組成と推定される。
Example 3 As shown in FIG. 1(b), a protective layer 2 made of aluminum oxynitride with a film thickness of 80 nm and a Tb2 film with a film thickness of 25 nm were placed on a polycarbonate substrate l with a guide groove having a diameter of 130 mm.
. Recording layer 3 made of FetoCO+o and film thickness 40
A magneto-optical disk was prepared in which a protective layer 4 made of silicon oxynitride with a thickness of 50 nm and a reflective layer 5 made of AI with a film thickness of 50 nm were sequentially provided. Protective layer 2 has reactivity R by AI target
F magnetron sputtering, protective layer 4 is reactive RF magnetron sputtering using a Si target, recording layer 3 is DC magnetron sputtering using an alloy target, reflective layer 5
was created by RF magnetron sputtering using an AI target, and the refractive index of the protective layer 2 at a wavelength of 830 nm was 2. 30, 2. 40, 2. 50. 2. 6
Four types of flow rates of the reaction gas were set so that the flow rate was 0. The atomic ratio of oxygen and nitrogen in the protective layer 2 was approximately 1:1. The refractive index of the protective layer 4 is 1. 9 or less, and is estimated to have a nearly stoichiometric composition.

これらの光磁気ディスクを80℃、90%RHの加速寿
命試験環境下に放置し、BERにより安定性を試験した
。結果を第3図に示す。保護層2を酸窒化アルミニウム
とした場合もBERはその屈折率と相関があり、屈折率
2.50以上では800時間以上変化が認められないの
に対し、屈折率2.50未満では基板と保護層2との間
で剥離が発生し、急激なBERの増加が見られた。この
結果より保護層2の屈折率を2.5以上とすることによ
り基板と保護層2との間の剥離が防止され、安定性の高
い光磁気ディスクが得られることが明らかになった。
These magneto-optical disks were left under an accelerated life test environment of 80° C. and 90% RH, and their stability was tested by BER. The results are shown in Figure 3. Even when the protective layer 2 is made of aluminum oxynitride, the BER is correlated with its refractive index, and when the refractive index is 2.50 or more, no change is observed for more than 800 hours, whereas when the refractive index is less than 2.50, it is difficult to protect the substrate. Peeling occurred between layer 2 and a rapid increase in BER was observed. The results revealed that by setting the refractive index of the protective layer 2 to 2.5 or more, peeling between the substrate and the protective layer 2 can be prevented and a highly stable magneto-optical disk can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成例を示す図、第2図および第3図
は本発明を用いた光磁気ディスクの安定性試験結果を示
す図である。 図中1は基板、2、4は保護層、3は記録層、5は反射
層である。
FIG. 1 is a diagram showing a configuration example of the present invention, and FIGS. 2 and 3 are diagrams showing stability test results of a magneto-optical disk using the present invention. In the figure, 1 is a substrate, 2 and 4 are protective layers, 3 is a recording layer, and 5 is a reflective layer.

Claims (1)

【特許請求の範囲】[Claims] 1、光記録媒体において基板上に設けられる保護層であ
って、該保護層はケイ素またはアルミニウムの酸化物、
窒化物、ないし酸窒化物からなり、かつ波長830nm
における該保護層の屈折率が2.5以上であることを特
徴とする光記録媒体の保護層。
1. A protective layer provided on a substrate in an optical recording medium, the protective layer comprising silicon or aluminum oxide,
Made of nitride or oxynitride, and has a wavelength of 830 nm
A protective layer for an optical recording medium, characterized in that the protective layer has a refractive index of 2.5 or more.
JP1232759A 1989-09-11 1989-09-11 Protective layer of optical recording medium Pending JPH0397132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232759A JPH0397132A (en) 1989-09-11 1989-09-11 Protective layer of optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232759A JPH0397132A (en) 1989-09-11 1989-09-11 Protective layer of optical recording medium

Publications (1)

Publication Number Publication Date
JPH0397132A true JPH0397132A (en) 1991-04-23

Family

ID=16944307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232759A Pending JPH0397132A (en) 1989-09-11 1989-09-11 Protective layer of optical recording medium

Country Status (1)

Country Link
JP (1) JPH0397132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914711B2 (en) * 2002-01-24 2011-03-29 Dphi Acquisitions, Inc. Use of mother stamper for optical disk molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914711B2 (en) * 2002-01-24 2011-03-29 Dphi Acquisitions, Inc. Use of mother stamper for optical disk molding

Similar Documents

Publication Publication Date Title
US6190750B1 (en) Rewritable optical information medium
US5753413A (en) Rewritable medium for recording information in which the atomic arrangement is changed without the shape being changed and the optical constant is changed
JPH0765414A (en) Information recording medium
US6689445B2 (en) Information recording medium and method of manufacturing the same
JPH05217211A (en) Phase change optical recording medium
US5334433A (en) Optical recording medium
US5876822A (en) Reversible optical information medium
US5314734A (en) Information-recording medium
US6445675B1 (en) Phase change optical recording medium and process for manufacturing same
US6638594B1 (en) Rewritable optical information recording medium
JP2834131B2 (en) Thin film for information recording
JPH0397132A (en) Protective layer of optical recording medium
JP3908571B2 (en) Optical information recording medium, manufacturing method thereof, and recording / reproducing method thereof
JPH0373438A (en) Production of optical recording medium
JP3692776B2 (en) Optical information recording medium and method for manufacturing the same
WO1989006037A1 (en) Data recording medium
JP2967949B2 (en) Optical information recording medium
JP2967948B2 (en) Optical information recording medium
JPS62180538A (en) Optical disk
JP3028902B2 (en) Optical information recording medium
JPS6313785A (en) Information recording film
JP2647059B2 (en) Thin film for information recording
JPH01138637A (en) Information recording material
JPH0191337A (en) Optical recording material
JP2749414B2 (en) Optical recording medium and manufacturing method thereof