JPH0397130A - Noise reducing circuit for semiconductor laser - Google Patents
Noise reducing circuit for semiconductor laserInfo
- Publication number
- JPH0397130A JPH0397130A JP1235092A JP23509289A JPH0397130A JP H0397130 A JPH0397130 A JP H0397130A JP 1235092 A JP1235092 A JP 1235092A JP 23509289 A JP23509289 A JP 23509289A JP H0397130 A JPH0397130 A JP H0397130A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- current
- circuit
- high frequency
- quantum efficiency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 56
- 230000010355 oscillation Effects 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 4
- 230000010365 information processing Effects 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Optical Head (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、光情報処理装置用の半導体レーザのノイズ低
減回路に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser noise reduction circuit for an optical information processing device.
従来の技術
一般に、半導体レーザは光ディスクドライブ装置等に用
いた場合、光情報記録媒体からの反射光(戻り光)によ
りノイズが著しく増加する場合がある(戻り光によって
常にノイズが増大するとは限らず、例えば、ディスク反
射率、周囲温度、発光パワー、半導体レーザのバラッキ
等の条件によっては、ノイズが増大しないこともある)
。何れにしても、半導体レーザのノイズが増大すると、
光情報記録媒体に記録された信号情報を正しく読出せな
くなるといった不都合を生ずる。Conventional technology Generally, when a semiconductor laser is used in an optical disk drive device, etc., noise may increase significantly due to reflected light (return light) from an optical information recording medium (return light does not always increase noise. (For example, noise may not increase depending on conditions such as disk reflectance, ambient temperature, emission power, and semiconductor laser variation.)
. In any case, as the noise of the semiconductor laser increases,
This results in the inconvenience that the signal information recorded on the optical information recording medium cannot be read correctly.
このようなことから、半導体レーザのノイズ低減方法と
して、文献「光学(第14巻第5号 1985年10月
)」中の「高周波電流重畳法による半導体レーザー搭載
ビデオディスクプレーヤのレーザーノイズ低減化』や、
特開昭60−192377号公報等に示されるものがあ
る。例えば、特開昭60−192377号公報において
は、半導体レーザの駆動電流を、直流電流と高周波電流
とにより構成し、高周波電流の重畳量を常に一定とし、
半導体レーザの出力強度の制御を出力光の低周波成分の
検出に基づき直流電流を制御することで行うようにして
いる。For this reason, as a noise reduction method for semiconductor lasers, "Laser Noise Reduction in Video Disk Players Equipped with Semiconductor Lasers Using High-Frequency Current Superimposition Method" in the document "Optics (Vol. 14, No. 5, October 1985)" or,
There is one disclosed in Japanese Patent Laid-Open No. 60-192377. For example, in Japanese Patent Application Laid-Open No. 60-192377, the driving current of a semiconductor laser is composed of a direct current and a high frequency current, and the amount of superimposition of the high frequency current is always constant.
The output intensity of the semiconductor laser is controlled by controlling the direct current based on the detection of low frequency components of the output light.
発明が解決しようとする課題
しかし、このような方式では、半導体レーザの電流一光
特性の変動により、十分な変調度(140%以上)が常
に得られるとは限らないものである。今、仮に半導体レ
ーザが25℃条件下で第4図中に実線Aで示すような電
流一光特性(I−L特性)を持っていたとする。この時
、平均必要パワーPoを得るために、直流電流IDCと
高周波電流INFを半導体レーザに流し、第4図中に実
線Cで示すように発光量波形を得ていたとする。また、
この時の変調度Mは、直流電流■ocのみによる発光パ
ワーをPDCとすると、M= (Po /poc) x
l00〔%〕となり、M≧140%であったとする。と
ころが、環境温度の上昇によりI−L特性が第4図中に
破線Bで示すように特性に変動した場合を考えると、平
均必要バワーPOを得るために直流電流をI。C′に変
化させると、この直流電流I DC’のみによる発光パ
ワーPl)c′が平均必要パワーPoと等しくなってし
まい、十分な変調度が得られなくなってしまう。Problems to be Solved by the Invention However, with such a method, it is not always possible to obtain a sufficient modulation degree (140% or more) due to fluctuations in the current-optical characteristics of the semiconductor laser. Now, suppose that the semiconductor laser has a current-light characteristic (IL characteristic) as shown by a solid line A in FIG. 4 under a 25 DEG C. condition. At this time, in order to obtain the average required power Po, it is assumed that a direct current IDC and a high frequency current INF are passed through the semiconductor laser, and a light emission amount waveform as shown by a solid line C in FIG. 4 is obtained. Also,
The modulation degree M at this time is M= (Po /poc) x, where PDC is the light emission power due to only the DC current ■oc
It is assumed that M is 100 [%] and M≧140%. However, if we consider a case where the I-L characteristic changes as shown by the broken line B in FIG. 4 due to an increase in the environmental temperature, the DC current is changed to I in order to obtain the average required power PO. If it is changed to C', the light emission power Pl)c' due only to this DC current IDC' becomes equal to the average required power Po, and a sufficient degree of modulation cannot be obtained.
課題を解決するための手段
半導体レーザから射出されたレーザ光束を対物レンズに
より光情報記録媒体に集光照射し、情報の再生、記録又
は消去を行う光情報処理装置における高周波電流重畳方
式の半導体レーザのノイズ低減回路において、前記半導
体レーザに直流電流を流す直流駆動回路と、前記半導体
レーザに高周波電流を流すための発振回路と、この発振
回路と前記半導体レーザとに接続されたゲイン可変増幅
器と、前記半導体レーザを2段階以上のパワーで発光さ
せる発光パワー制御手段と、前記半導体レーザに流れる
直流電流を検出する検出回路とを設け、各発光パワーで
の半導体レーザ騙動時に検出される直流電流から微分量
子効率を求め、求められた微分量子効率に応じて前記ゲ
イン可変増幅器のゲインを可変させて直流電流に重畳す
る高周波電流の重畳量を制御するようにした。Means for Solving the Problems A high-frequency current superimposition type semiconductor laser used in an optical information processing device that reproduces, records, or erases information by condensing and irradiating a laser beam emitted from a semiconductor laser onto an optical information recording medium using an objective lens. The noise reduction circuit comprises: a direct current drive circuit for passing a direct current through the semiconductor laser; an oscillation circuit for passing a high frequency current through the semiconductor laser; and a variable gain amplifier connected to the oscillation circuit and the semiconductor laser; A light emitting power control means for causing the semiconductor laser to emit light at two or more levels of power, and a detection circuit for detecting a direct current flowing through the semiconductor laser, are provided, and a detection circuit is provided to detect the direct current detected when the semiconductor laser is deceived at each light emitting power. The differential quantum efficiency is determined, and the gain of the variable gain amplifier is varied in accordance with the determined differential quantum efficiency to control the amount of high frequency current to be superimposed on the direct current.
作用
半導体レーザの電流一光特性の変動につき、第3図に示
すようにレーザ発振開始電流Ithの変動は直流電流に
より半導体レーザの平均発光パワーを制御している場合
には変調度の変動に無関係であり、ΔL/Δ■により定
義される微分量子効率ηのみが変調度に影響する。即ち
、微分量子効率ηの変動によって、高周波電流により発
光するパワーも変動する。ここに、本解決手段では、半
導体レーザに流れている直流電流から微分量子効率を求
め、その変動に応じて高周波電流の重畳量が可変される
ので、温度等による半導体レーザの■一L特性の変動が
あっても常に十分な変調度を確保できる。Regarding the fluctuations in the current-optical characteristics of the semiconductor laser, as shown in Figure 3, the fluctuations in the laser oscillation starting current Ith are unrelated to the fluctuations in the degree of modulation when the average emission power of the semiconductor laser is controlled by DC current. , and only the differential quantum efficiency η defined by ΔL/Δ■ affects the modulation degree. That is, as the differential quantum efficiency η changes, the power emitted by the high-frequency current also changes. Here, in this solution, the differential quantum efficiency is determined from the DC current flowing through the semiconductor laser, and the amount of superimposition of the high-frequency current is varied according to the variation, so that the ■-L characteristics of the semiconductor laser due to temperature etc. Even if there are fluctuations, a sufficient degree of modulation can always be ensured.
実施例
本発明の一実施例を第l図ないし第3図に基づいて説明
する。まず、射出レーザ光束が対物レンズ(図示せず)
を経て光情報記録媒体(図示せず)集光照射され情報の
再生(又は記録、消去)に用いられる半導体レーザ1が
設けられている。この半導体レーザlから射出されたレ
ーザ光束の一部を受光し射出光量に比例した電圧を得る
光電変換器2が設けられている。この先電変換器2は増
幅器3を経て制御回路4に接続されている。この制御回
路4は増幅器3から入力される電圧が基準電圧Vref
に等しくなるように前記半導体レーザ1に接続された定
電流回路5を制御するものである。Embodiment An embodiment of the present invention will be described with reference to FIGS. 1 to 3. First, the emitted laser beam is passed through an objective lens (not shown).
A semiconductor laser 1 is provided which is used for reproducing (or recording or erasing) information by condensing and irradiating an optical information recording medium (not shown) through an optical information recording medium (not shown). A photoelectric converter 2 is provided that receives a portion of the laser beam emitted from the semiconductor laser l and obtains a voltage proportional to the amount of emitted light. The power converter 2 is connected to a control circuit 4 via an amplifier 3. This control circuit 4 uses a voltage input from the amplifier 3 as a reference voltage Vref.
The constant current circuit 5 connected to the semiconductor laser 1 is controlled so that the current is equal to .
ここに、異なる基準電圧発生器6,7が用意されており
、スイッチ回路8を経て前記制御回路4に与えられる基
準電圧V refはVref,とVref,との2段階
に切換えられる。前記定電流回路5は前記半導体レーザ
1に直流電流IDCを流す直流駆動回路となるものであ
る。この定電流回路5を経て前記半導体レーザlに流れ
る直流電流■Dcを検出するA/D変換器(検出手段)
9が設けられ、全体を制御するCPU構成のコントロー
ラ(発光パワー制御手段)10に入力されている。この
コントローラ10は前記スイッチ回路8の切換え制御も
受け持つ。Here, different reference voltage generators 6 and 7 are prepared, and the reference voltage V ref applied to the control circuit 4 via the switch circuit 8 is switched between two stages: Vref and Vref. The constant current circuit 5 serves as a DC drive circuit that causes a DC current IDC to flow through the semiconductor laser 1. An A/D converter (detection means) that detects the direct current ■Dc flowing through the constant current circuit 5 to the semiconductor laser l
9 is provided, and input to a controller (light emission power control means) 10 having a CPU configuration that controls the entire system. This controller 10 also takes charge of switching control of the switch circuit 8.
一方、前記半導体レーザlに対して高周波電流を重畳さ
せるための高周波電流重畳回路1lが定電流回路5と並
列的に設けられている。この高周波電流重畳回路11は
高周波電流を発生させるための発振回路12とこの発振
回路l2に接続されてゲインが可変され得るゲイン可変
増幅器13とよりなる。発振回路12の駆動はコントロ
ーラIOによりコントロールされ、また、ゲイン可変増
幅器l3のゲインは前記コントローラlOによりD/A
変換器14を経て制御される。On the other hand, a high frequency current superimposing circuit 1l for superimposing a high frequency current on the semiconductor laser l is provided in parallel with the constant current circuit 5. The high-frequency current superimposition circuit 11 includes an oscillation circuit 12 for generating a high-frequency current and a variable gain amplifier 13 connected to the oscillation circuit 12 and whose gain can be varied. The driving of the oscillation circuit 12 is controlled by the controller IO, and the gain of the variable gain amplifier l3 is controlled by the controller IO.
It is controlled via a converter 14.
このような構威において、まず、コントローラ10によ
り発振回路l2をオフさせて高周波電流IHF二〇とし
た状態で、増幅器3の出力が基準電圧発生器6の基準電
圧Vref,と等しくなるように制御回路4により定電
流回路5を制御して、半導体レーザ1の発光パワーを例
えば再生発光パワーP1 に保つ。この時に半導体レー
ザlに流れる直流電流I DCI をA/D変換器9に
よりコントローラ10に取り込む。次に、高周波電流■
。=0としたまま、コントローラ10によりスイッチ回
路8を基準電圧発生器7側に切換え、異なる基準電圧V
ref,を制御回路4に入力させる。これにより、増幅
器3の出力が基準電圧Vref.に等しくなるように定
電流回路5が制御され、半導体レーザlの発光パワーが
発光パワーP.に保たれる。この時に半導体レーザlに
流れる直流電流■。。.もA/D変換器9によりコント
ローラ10に取り込む。In such a configuration, first, the controller 10 turns off the oscillation circuit l2 and sets the high frequency current IHF to 20, and then controls the output of the amplifier 3 to be equal to the reference voltage Vref of the reference voltage generator 6. The constant current circuit 5 is controlled by the circuit 4 to maintain the emission power of the semiconductor laser 1 at, for example, the reproduction emission power P1. At this time, the DC current I DCI flowing through the semiconductor laser l is taken into the controller 10 by the A/D converter 9. Next, high frequency current ■
. = 0, the switch circuit 8 is switched to the reference voltage generator 7 side by the controller 10, and a different reference voltage V is set.
ref, is input to the control circuit 4. As a result, the output of the amplifier 3 becomes the reference voltage Vref. The constant current circuit 5 is controlled so that the emission power of the semiconductor laser l becomes equal to the emission power P. is maintained. At this time, a direct current ■ flows through the semiconductor laser l. . .. is also input to the controller 10 by the A/D converter 9.
コントローラ10は予め定められた発光パワーP,,
P,と、各々のパワーでの駆動時の直流電流I Dct
e I ocsから、その時の半導体レーザ1の微
分量子効率η.を算出する。即ち、
’7−= l P− ’1l/ l Ioc− T
DC1であり、算出された微分量子効率η.の値に従い
、コントローラ10はD/A変換器l4を介してゲイン
可変増幅器l3のゲインを可変制御する。よって、実際
の変調駆動時に発振回路l2をオンさせた時に直流電流
IDCに重畳される高周波電流IHFの値(重畳量)が
変化することになる。The controller 10 has a predetermined luminous power P,,
P, and the DC current I Dct when driving at each power
From e I ocs, the differential quantum efficiency η. of the semiconductor laser 1 at that time is determined. Calculate. That is, '7-= l P- '1l/ l Ioc- T
DC1, and the calculated differential quantum efficiency η. According to the value of , the controller 10 variably controls the gain of the variable gain amplifier l3 via the D/A converter l4. Therefore, when the oscillation circuit 12 is turned on during actual modulation driving, the value (superimposition amount) of the high frequency current IHF superimposed on the DC current IDC changes.
その後、コントローラ10はスイッチ回路8を切換え制
御し、基準電圧Vref,を制御回路4に入力させると
ともに発振回路12をオンさせ、半導体レーザlに定電
流回路5による直流電流IDCに高周波電流ropを重
畳する。よって、平均発光パワーをP1 に保ちつつ、
微分量子効率η.に応じた高周波電流が重畳され、適正
な変調度が得られる。Thereafter, the controller 10 switches and controls the switch circuit 8, inputs the reference voltage Vref, to the control circuit 4, turns on the oscillation circuit 12, and superimposes the high-frequency current rop on the direct current IDC from the constant current circuit 5 in the semiconductor laser l. do. Therefore, while keeping the average emission power at P1,
Differential quantum efficiency η. A high frequency current corresponding to the current is superimposed, and an appropriate degree of modulation is obtained.
第2図はこのような動作制御を示すフローチャートであ
る。ここでは、簡単のため、算出される微分量子効率η
.を3つの領域に分け、ゲイン可変増幅器13のゲイン
を3段階に可変制御する例を示す。例えば、η.くηr
ef,の時には微分量子効率η.が小さいので重畳する
高周波電流を大きくしないと十分な変調度が得られない
。そこで、D/A変換器l4にデータD0を与え、ゲイ
ン可変増幅器l3のゲインを最大にする。ηref,(
77 $ < 77 ref,の時はD/A変換器14
にデータD,を与え、ゲイン可変増幅器l3のゲインを
中位にする。η。〉ηref,の時はD/A変換器14
にデータD.を与え、ゲイン可変増幅器l3のゲインを
最小にする。このように微分量子効率η.の値によって
、高周波電流INFの重畳量は可変となり、適正な変調
度(例えば、140−180%)となる。FIG. 2 is a flowchart showing such operation control. Here, for simplicity, the calculated differential quantum efficiency η
.. An example will be shown in which the variable gain amplifier 13 is divided into three regions and the gain of the variable gain amplifier 13 is variably controlled in three stages. For example, η. kuηr
When ef, the differential quantum efficiency η. is small, so a sufficient degree of modulation cannot be obtained unless the superimposed high-frequency current is increased. Therefore, data D0 is given to the D/A converter l4, and the gain of the variable gain amplifier l3 is maximized. ηref, (
When 77 $ < 77 ref, D/A converter 14
is given data D, and the gain of the variable gain amplifier l3 is set to an intermediate level. η. 〉ηref, the D/A converter 14
Data D. is given, and the gain of variable gain amplifier l3 is minimized. In this way, the differential quantum efficiency η. Depending on the value of , the amount of superimposition of the high frequency current INF becomes variable, resulting in an appropriate degree of modulation (for example, 140-180%).
このように微分量子効率を測定し、高周波電流の重畳量
を可変させる制御動作を、電源オン時、或いは一定時間
間隔又はアイドル時間において行なわせることにより,
適正な変調度を得ることができる。また、温度センサを
コントローラに接続して設け、所定の温度変化が検出さ
れた時に重畳する高周波電流をコントロールするように
してもよい。By measuring the differential quantum efficiency in this way and performing a control operation to vary the amount of superimposition of high-frequency current when the power is turned on, or at fixed time intervals or during idle time,
An appropriate degree of modulation can be obtained. Furthermore, a temperature sensor may be connected to the controller to control the high frequency current that is superimposed when a predetermined temperature change is detected.
また、上述した説明は再生発光パワーのみを出カする半
導体レーザ駆動回路の例であるが、再生発光パワーとと
もに記録発光パワー(又は、消去発光パワー)をも出力
し得る機能を持つ駆動回路にも応用できる。例えば、特
開昭62−42339号公報中の第1図中に示される再
生パワー設定回路内に基準電圧Vref, , Vre
f,を発生させ、第1の駆動回路にA/D変換器を接続
して直流電流値を検出することにより、同様に微分量子
効率の検出が可能である。この場合、同公報の第1図中
の第1の切換え回路はf−h間が接続され、第2の切換
え回路はb−c間が接続され、第3の切換え回路のd−
e間はオープンとする。Furthermore, although the above explanation is an example of a semiconductor laser drive circuit that outputs only reproduction light emission power, it is also possible to use a drive circuit that has the function of outputting recording light emission power (or erasing light emission power) as well as reproduction light emission power. Can be applied. For example, reference voltages Vref, , Vre are included in the reproduction power setting circuit shown in FIG.
The differential quantum efficiency can be similarly detected by generating f, and detecting the DC current value by connecting an A/D converter to the first drive circuit. In this case, the first switching circuit in Figure 1 of the publication is connected between f and h, the second switching circuit is connected between b and c, and the third switching circuit is connected between d and h.
Leave space between e open.
さらに、第1図において、増幅器3の出力電圧を第2の
A/D変換器(図示せず)によりA/D変換し、直流電
流I。C.の測定時における発光パワーP1′ と直
流電流I。c.の測定時における発光バワーP1 とを
コントローラ10に入力し、微分量子効率η.の算出を
、
77−= I P−’ P,’ I / I I
oc. Ioc1により行い、より正確な微分量子効
率を求めることにより、さらに正確な変調度を出すこと
も可能である。Furthermore, in FIG. 1, the output voltage of the amplifier 3 is A/D converted by a second A/D converter (not shown), and a direct current I is generated. C. Luminous power P1' and DC current I when measuring. c. is inputted into the controller 10, and the differential quantum efficiency η. The calculation of 77-=I P-'P,'I/II
oc. It is also possible to obtain a more accurate degree of modulation by calculating a more accurate differential quantum efficiency using Ioc1.
また、本実施例では微分量子効率ηを求めることにより
高周波電流の重畳量を可変させて変調度を変化させるよ
うにしたが、求められた微分量子効率ηを、記録又は消
去パワーを安定に出力させたり、半導体レーザlの劣化
を検出するためにも活用し得る。In addition, in this example, the degree of modulation is changed by varying the amount of superimposition of high-frequency current by determining the differential quantum efficiency η, but the obtained differential quantum efficiency η is used to stably output recording or erasing power. It can also be used to detect deterioration of the semiconductor laser l.
発明の効果
本発明は、半導体レーザの電流〜光特性における微分量
子効率に着目して上述したように構成し、各発光パワー
での半導体レーザ駆動時に検出される直流電流から微分
量子効率を求め、求められた微分量子効率に応じて前記
ゲイン可変増幅器のゲインを可変させて直流電流に重畳
する高周波電流の重畳量を制御するようにしたので、環
境温度の変化等があっても、常に適正なる変調度を得る
ことができ、ノイズの少ない半導体レーザ光源とし、エ
ラーの少ない再生動作等を行わせることができる。Effects of the Invention The present invention is configured as described above by focusing on the differential quantum efficiency in the current-optical characteristics of a semiconductor laser, and calculates the differential quantum efficiency from the DC current detected when driving the semiconductor laser at each emission power, The gain of the variable gain amplifier is varied according to the obtained differential quantum efficiency to control the amount of high-frequency current superimposed on the DC current, so even if there are changes in the environmental temperature, etc., it will always be appropriate. A semiconductor laser light source with a high degree of modulation and low noise can be used, and reproduction operations with low errors can be performed.
第1図ないし第3図は本発明の一実施例を示すもので、
第1図はブロック回路図、第2図はフローチャート、第
3図は微分量子効率の算出を示す電流一光特性図、第4
図は従来例を示す電流一光特性図である。
■・・・半導体レーザ、5・・・直流駆動回路、9・・
・検出手段、10・・・発光パワー制御手段、l2・・
・発振回路、l3・・・ゲイン可変増幅器
出 願 人 株式会社 リ コ1
3
逸
3
LI−芭1 to 3 show an embodiment of the present invention,
Fig. 1 is a block circuit diagram, Fig. 2 is a flowchart, Fig. 3 is a current-light characteristic diagram showing calculation of differential quantum efficiency, and Fig. 4 is a block circuit diagram.
The figure is a current-light characteristic diagram showing a conventional example. ■... Semiconductor laser, 5... DC drive circuit, 9...
・Detection means, 10... Light emission power control means, l2...
・Oscillation circuit, l3...variable gain amplifier Applicant Lico Co., Ltd. 1 3 It 3 LI-Ba
Claims (1)
により光情報記録媒体に集光照射し、情報の再生、記録
又は消去を行う光情報処理装置における高周波電流重畳
方式の半導体レーザのノイズ低減回路において、前記半
導体レーザに直流電流を流す直流駆動回路と、前記半導
体レーザに高周波電流を流すための発振回路と、この発
振回路と前記半導体レーザとに接続されたゲイン可変増
幅器と、前記半導体レーザを2段階以上のパワーで発光
させる発光パワー制御手段と、前記半導体レーザに流れ
る直流電流を検出する検出回路とを設け、各発光パワー
での半導体レーザ駆動時に検出される直流電流から微分
量子効率を求め、求められた微分量子効率に応じて前記
ゲイン可変増幅器のゲインを可変させて直流電流に重畳
する高周波電流の重畳量を制御するようにしたことを特
徴とする半導体レーザのノイズ低減回路。In a semiconductor laser noise reduction circuit using a high frequency current superimposition method in an optical information processing device that performs reproduction, recording, or erasing of information by condensing and irradiating a laser beam emitted from a semiconductor laser onto an optical information recording medium using an objective lens, a direct current drive circuit for passing a direct current through the semiconductor laser; an oscillation circuit for passing a high frequency current through the semiconductor laser; a variable gain amplifier connected to the oscillation circuit and the semiconductor laser; A light emitting power control means for emitting light with a power of A noise reduction circuit for a semiconductor laser, characterized in that the gain of the variable gain amplifier is varied according to the differential quantum efficiency obtained to control the amount of high frequency current superimposed on the direct current.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1235092A JPH0397130A (en) | 1989-09-11 | 1989-09-11 | Noise reducing circuit for semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1235092A JPH0397130A (en) | 1989-09-11 | 1989-09-11 | Noise reducing circuit for semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0397130A true JPH0397130A (en) | 1991-04-23 |
Family
ID=16980948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1235092A Pending JPH0397130A (en) | 1989-09-11 | 1989-09-11 | Noise reducing circuit for semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0397130A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6421314B1 (en) * | 1998-09-10 | 2002-07-16 | Sony Corporation | Semiconductor laser drive device, optical head, optical disk device and optical disk recording and reproducing method |
-
1989
- 1989-09-11 JP JP1235092A patent/JPH0397130A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6421314B1 (en) * | 1998-09-10 | 2002-07-16 | Sony Corporation | Semiconductor laser drive device, optical head, optical disk device and optical disk recording and reproducing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3477770B2 (en) | Laser power control device and control method | |
US7154825B2 (en) | Optical recording/reproducing apparatus with APC and ACC processes | |
JPH0451893B2 (en) | ||
JPH1064069A (en) | Optical recording/reproducing device | |
US20050286392A1 (en) | Semiconductor laser driver, optical head device, optical information processor, and optical record medium | |
US6339579B1 (en) | Semiconductor laser diode driving device and driving method | |
US5018155A (en) | Semiconductor laser driving apparatus to be used for optical information recording and reproducing apparatus | |
US20030099178A1 (en) | Optical disc drive and laser beam drive power supply voltage control method | |
JPH0397130A (en) | Noise reducing circuit for semiconductor laser | |
JPH0227571Y2 (en) | ||
JP3001016B2 (en) | Semiconductor laser driver | |
JP2910350B2 (en) | Optical memory device and servo offset correction method therefor | |
JP2795483B2 (en) | Optical power control circuit for semiconductor light emitting device | |
JPH0810777B2 (en) | Laser life judgment method | |
JP3825545B2 (en) | Semiconductor laser driving device and optical disk device using the same | |
JP4356004B2 (en) | LASER DRIVE DEVICE, LASER DRIVE METHOD, OPTICAL PICKUP AND OPTICAL DISC DRIVE | |
JP3905734B2 (en) | Light emitting element drive circuit | |
JPH0689453A (en) | Optical disk recording device | |
US20040258112A1 (en) | Laser power controlling method and laser power controller | |
JP2003086888A (en) | Semiconductor laser control device | |
JPH11354893A (en) | Semiconductor laser driver and driving method | |
JP2643575B2 (en) | Laser light amount control circuit in optical recording / reproducing device | |
JP2935268B2 (en) | Optical power control circuit for semiconductor light emitting device | |
JPH0451580A (en) | Control circuit of semiconductor laser | |
JPS63255840A (en) | Light quantity controller in optical recording and reproducing device |