JPH039634A - Priority transmission system in remote supervisory and controlling equipment - Google Patents

Priority transmission system in remote supervisory and controlling equipment

Info

Publication number
JPH039634A
JPH039634A JP14330389A JP14330389A JPH039634A JP H039634 A JPH039634 A JP H039634A JP 14330389 A JP14330389 A JP 14330389A JP 14330389 A JP14330389 A JP 14330389A JP H039634 A JPH039634 A JP H039634A
Authority
JP
Japan
Prior art keywords
data
transmission
register
priority
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14330389A
Other languages
Japanese (ja)
Other versions
JPH0810871B2 (en
Inventor
Kiyoshi Murata
潔 村田
Katsutoshi Akita
秋田 勝俊
Katsumi Takayama
克美 高山
Nariyuki Fukada
深田 成之
Kouichi Tsuchikura
土蔵 光一
Koichi Kawabe
河辺 公一
Matsuo Tomita
冨田 松夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TETSUDO KENSETSU KODAN
Meidensha Corp
Railway Technical Research Institute
Meidensha Electric Manufacturing Co Ltd
Original Assignee
NIPPON TETSUDO KENSETSU KODAN
Meidensha Corp
Railway Technical Research Institute
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TETSUDO KENSETSU KODAN, Meidensha Corp, Railway Technical Research Institute, Meidensha Electric Manufacturing Co Ltd filed Critical NIPPON TETSUDO KENSETSU KODAN
Priority to JP1143303A priority Critical patent/JPH0810871B2/en
Publication of JPH039634A publication Critical patent/JPH039634A/en
Publication of JPH0810871B2 publication Critical patent/JPH0810871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Selective Calling Equipment (AREA)
  • Small-Scale Networks (AREA)

Abstract

PURPOSE:To prevent unrequired data from being transmitted by setting a receiving state when priority is delivered, and cancelling transmission data when data desired to transmit first is not required to transmit based on the content of reception data. CONSTITUTION:A local side control part 44 resets the data in a buffer 35 in the case of receiving the data from another station at a state where the data to be transferred exists in the buffer 35, and performs transmission when no data is received from another station and a signal whose transmission right is delivered is received and also, when the possibility of simultaneous outgoing does not exist, transmission is executed to another station, and performs the transmission successively if the data to be transmitted next has the one of priority transmission. And the transmission is interrupted by resetting the buffer 35 when the reception data exists even when the data exists in the buffer 35, and also, the next data registration from a host side is awaited, and the preservation and the change of the data in a register 32 can be performed.

Description

【発明の詳細な説明】[Detailed description of the invention]

A、産業上の利用分野 本発明は、親局と多数の子局間がループ回線で結合され
、送信権巡回法でデータ送受を行う遠方監視制御装置に
係り、特に優先伝送多重時における複数回送信権確保方
式と不要データ送信防止方式に関する。 B1発明の概要 本発明は、送信権譲渡の信号の受信によって送信データ
を送信し、優先伝送多重時には引き続き送信権を確保し
て複数回連続送信する遠方監視制御装置において、 送信開始待レジスタに送信データを登録し、このデータ
の送信に際して先に他局からの送信データ受信開始や他
局の送信と自局の送信時の同時発信において、優先権を
譲渡したときに受信状態となり、受信データの内容によ
っては先に送信しようとしたデータが送信不要となった
場合に確実に送信データをキャンセルし得るようなデー
タ管理ができるようにしたものである。 C1従来の技術 親局と多数の子局がループ回線で結合される遠方監視制
御システムの回線構成例を流動群構成のシステムとして
第7図に示す。同図(A)は回線の正常状聾を示す。3
つの親局11〜13に対して8つの子局21〜2.が3
つのループ回線31〜33で夫々1つの親局11〜l、
に属して結合される。ループ回線3.〜3.には送受信
データが一方向(矢印で示す)で巡回され、子局23,
2.は両方のループ回線に所属する端末モードの動作に
され、これら子局を除く子局2..2..2..25.
l。 28は中継モードの動作にされる。 こうした構成において、回線断等の回線異常には各ルー
プ回線3.〜33に対する子局の所属を変えることで全
子局に対する通信機能を回復する。 第3図(B)はこれら回復後の回線構成状態を示し、同
図(B)では子局2.と27間の回線異常と判定した場
合の回復回線構成を示し、子局2、はループ回線3、で
親局へ所属し、子局2.と23はループ回線3.で親局
l、へ所属される。 ここで、親局と子局間の通信方式は、送信権巡回法が採
られ、通常時には1つのフリート−クン信号をループ回
線に巡回させておき、送信データの有る親局又は子局は
フリート−クン信号を受信したときに該フリート−クン
信号をビジートークン信号に切り換えると共にビジート
ークン信号に続けた送信データを送出し、ビジートーク
ン信号の巡回で他の親局又は子局の送信をロックする。 そして、データ送信に対する送信先相手局からの受信確
認が得られたときに送信局は回線にフリート−クンを巡
回させ、他の局に送信権を譲る。 上述のシステムにおける親局と子局の構成は、送受信デ
ータに関連する構成として第8図に示す。 親局lは子局2との間にループ回線3を介して結合され
る。親局lではオペレータ等からの制御人力を制御入力
結合部4を介して制御人力記憶部5に一時記憶し、送信
データ選別部6によって優先度等から選別し、送信部7
によって送信信号を作成し、回線結合部8からループ回
線3に送出する。 また子局からの表示入力は回線結合部8から受信部9に
取り込み、受信データ復号部10で復号し、表示出力部
IIで表示器等に表示する。 子局2では、ループ回線3からの受信入力を回線結合部
21によってループ回線のA/B両方面(第7図参照)
から夫々受信部22A、22Bに取り込み、受信部22
A、22Bの受信入力の一方を選択部23で選択して受
信データ復号部24で復号し、出力結合部25から制御
出力を得る。また、監視対象の状態信号は人力結合部2
6から取り込み、その状態変化を変化検出部27で検出
し、起動記憶部28で状態変化有りの記憶をし、送信デ
ータ選別部29で優先度等から選別して選択部23から
送信部30A又は30Bの一方を経て送信信号を作成し
て回線結合部21から送出する。 ここで、親局又は子局が送信しようとするデータに重要
なデータが複数あるときには、引き続き送信権を確保し
たまま優先データとして所定回数(例えば4回)を限度
として複数回連続送信を行う優先伝送処理が行われる。 この優先伝送には、送信部(例えば第8図の3OA)に
持つ送信データメモリに優先データを登録し、このデー
タを送信部が1回目の送信をし、この送信完了後に更に
別の優先データがあればメモリに2回目の当該データを
登録し、この登録で当該データの2回目の送信を行うと
いう制御を所定回数を限度に繰り返す。 D1発明が解決しようとする問題点 従来の送信権巡回法でかつ優先伝送機能を持たせるシス
テムにおいて、送信終了時に送信権を速やかに他の局に
譲るようフリート−クンを注入することが要求されるが
、優先伝送を行うときにはフリート−クンを注入せず送
信権を確保したまま複数回(例えば4回)の連続送信に
なるため送信権譲渡が遅れる問題があった。これを詳細
に説明すると、送信局は送信終了後に次に送信すべきデ
ータを登録し、そのデータが優先データであるか否か判
定し、これに従ってフリート−クンを注入するか又は引
き続きデータ送信を行うかの制御を行うと、フリート−
クンの注入が遅れてしまう。このとき、複数局に送信待
ちがあるとき、複数局のデータ発信の間隔が長引き、全
てのデータの送信終了までに長時間を要してしまう。 この問題点を解消するために、送信部では送信データメ
モリについてその送信終了前に次の送信データを予め登
録できるようにする処理方式が考えられる。この処理方
式は第9図に示すブロック図構成になる。同図は第8図
中の子局2の送信部30A又は30Bに相当する部分を
示し、送信データ選別部29からの送信データをホスト
側制御部31の制御のもとに送信開始時レジスタ32に
登録すると共にフラグ33をセットし、このフラグ33
のセットによってローカル側制御部34がレジスタ32
の登録データを送信バッファ35に転送し、この後に制
御部34がフリート−クンFTの受信を判定したときに
送信バッファ35のデータを並列−直列変換部36に与
えてその直列データ化を行わせ、この直列データが変調
器37を通してループ回線側に送出される。 このような構成により送信処理は第10図に示す処理態
様になる。非優先送信(通常送信)ではホスト側はデー
タを送信開始時レジスタ32に書き込み、書き込みフラ
グ33をセットする。ローカル側は書き込みフラグ33
がセットされていることを知り、送信開始時レジスタ3
2の内容をバッファ35へ転送し、書き込みフラグ33
をリセットする。ホスト側は書き込みフラグ33がリセ
ットされたことを知り、次に送信すべきデータB(この
例では非優先送信データ)をレジスタ32に登録し、書
き込みフラグ33をセットする。ローカル側はフリート
−クンFTを受信すると変換器36での変換、変調器3
7による変調送信を行う。 このデータAの送信完了時、次に送信すべきデータBを
バッファ35へ転送し、その内容を見て優先送信の有無
を判定し、非優先のときにはフリート−クンFTを送出
して送信権を他局に譲り、次回のフリート−クンFT受
信でデータBの送信を行う。データBの送信完了時、図
示では次に送信すべきデータが登録されていないので、
フリート−クンを送出して送信権を他局に譲る。 次に、優先伝送では、データCの送信後、次の送信デー
タDの優先送信の有無判定で優先送信を判定すると、フ
リート−クンFTの送信をすることなくデータDの送信
を行う。次に、データEが優先送信データであれば引き
続きデータEの送信を行う。 このように、ホスト側からのレジスタ32への登録デー
タを一旦バッファ35へ転送しておくことで該データの
送信終了前にホスト側からの次のデータをレジスタ32
に登録させておくことができ、従来のように送信終了時
に次のデータをホスト側からレジスタ32に登録と優先
送信の有無判定とフリート−クンの注入可否を決めるも
のに比べて、フリート−クンの注入が遅れることがなく
なる。 しかしながら、上述の処理方式では、不要データ送信と
いう問題がある。これを以下に説明する。 第1O図において、ローカル側がデータAをバッファ3
5に取り込んだ後、該データAの送信不要又は不能とな
ることがある。この状態は、(1)フリート−クンFT
を受信して、データAの送信を行う前に他局からのデー
タを受信して受信局となったとき、該受信データの内容
が該データAを送信すべきでない内容であるとき。 (2)フリート−クンFTを受信してデータAの送信開
始後、他局からの送信があっていわゆる同時発信におい
て優先権を譲渡した場合、すなわち同時発信負けで受信
局となったとき、前述の(+)と同様に受信データの内
容がデータAを送信すべきでない内容であるとき。 (3)送信先相手局か前述の回線障害から回線構成変化
して他のループ回線に結合され、送信すべき相手局が送
信局の所属する回線から消滅したとき。 これら状態では送信局のレジスタ32に登録されたデー
タAをホスト側がリセットさせるが、ローカル側もバッ
ファ35等に存在するデータAの消去を必要とし、この
リセットが無いと前述の(1)及び(2)項では受信デ
ータによって送信不要となったデータを送信することに
なる。また、前述の(3)項では送信相手がない連絡を
行うことになり、好ましくない。 また、上述のデータAの消去について、ローカル側に取
り込まれたデータAについてホスト側からのリセットは
困難である。また、データ八に次ぐデータBがレジスタ
32に登録された後のリセットはデータAの存在の有無
判定がホスト側からは難しくなる。 E1問題点を解決するための手段と作用本発明は上述ま
での問題点に鑑みてなされたもので、送信データが登録
されるレジスタと、このレジスタのデータが転送されて
送信データを出力する送信バッファと、前記レジスタの
データ登録と読出しを指示する書き込みフラグと、前記
レジスタへのデータ登録とフラグのオン・オフを制御で
きるホスト側制御部と、前記レジスタのデータを送信バ
ッファに転送しこのデータを送信できるローカル側制御
部とを備え、前記ローカル側制御部は送信バッファに転
送すべきデータが有るときに他局からデータ受信すると
該バッファのデータをリセットし、他局からデータ受信
がなく送信権が譲られた信号を受信しかつ他局とは同時
発信の負けが無いときに送信を行い、次に送信するデー
タが優先伝送であれば引き続き送信する伝送方式とし、
送信バッファにデータ有りの場合にも受信データの有り
で該バッファのリセットを行うことで送信を中止すると
共にホスト側からの次のデータ登録を待機させ、レジス
タのデータ保存及びその変更を可能にする。 また、本発明は、送信データが登録されるレジスタと、
このレジスタのデータ登録と続出しを指示する書き込み
フラグと、前記レジスタに次に登録するデータの優先送
信を指示する優先送信待フラグと、前記レジスタへのデ
ータ登録とフラグのオン・オフを制御できるホスト側制
御部と、前記レジスタのデータを送信できるローカル側
制御部とを備え、前記ホスト側制御部は前記レジスタに
次に登録するデータが優先伝送か否かに応じて前記優先
伝送待フラグをオン・オフ設定し、前記ローカル側制御
部は前記書き込みフラグのオン状態で他局からデータ受
信がなく送信権が譲られた信号を受信しかつ他局とは同
時発信の負けが無いときに送信を行い、送信完了時前記
書き込みフラグをオフし、次いで前記優先伝送待フラグ
がオフであればフリート−クンを注入して送信権を他局
に譲り、オンであれば次に送信するデータを引き続き送
信する伝送方式とし、両フラグのオン・オフをホスト側
とローカル側の制御部で管理、処理して送信中止の処理
とレジスタのデータ保存、変更を可能にする。 また、本発明は、送信データが登録される一対のレジス
タと、このレジスタのデータ登録と読出しを夫々指示す
る一対の書き込みフラグと、送信データを前記一対のレ
ジスタに切り換えて登録するデマルチプレクサと、前記
一対のレジスタの登録データを切り換えて取り出すマル
チプレクサと、前記デマルチプレクサの制御で送信デー
タを前記一対のレジスタに交互に登録し対応する前記一
対の書き込みフラグをオン・オフ制御できるホスト側制
御部と、前記マルチプレクサの制御で前記−対のレジス
タのデータを交互に取り出して送信できるローカル側制
御部とを備え、前記ローカル側制御部は前記書き込みフ
ラグのオン状態に応じて前記一対のレジスタのデータを
交互に送信データとして取り出し、他局からのデータ受
信がなく送信権が譲られた信号を受信しかつ他局とは同
時発信の負けが無いときに送信を行い、送信完了時に送
信したレジスタの書き込みフラグをオフし、次いで前記
対レジスタの切り換えを行い、次の送信データが優先伝
送であれば送信権を確保したまま次のデータを送信し、
優先伝送でなければフリート−クンを注入して送信権を
他局に譲る伝送方式とし、一対のレジスタへの交互のデ
ータ登録と送信を行うことでデータ送信中止のときの保
存、管理を可能にする。 F、実施例 第1図は本発明の一実施例を示す送信処理ブロック図で
あり、第8図及び第9図に示すものと同じものは同一符
号で示す。第1図において、ループ回線からの受信デー
タは復調器41と直列−並列変換器42を経て受信完了
レジスタ43に登録し、このレジスタ43のデータから
制御部31が受信データの完全な取り込みを判定し、該
データを受信データ復号部24に転送する。 一方、データの送信にはローカル側制御部44が送信バ
ッファ35のデータを変換器36に変調器37を経由し
てループ回線へ送信する。lの送信を完了すると送信完
了レジスタ45に登録し、この登録によってホスト側制
御部3
A. Field of Industrial Application The present invention relates to a remote monitoring and control device in which a master station and a large number of slave stations are connected via a loop line, and transmit and receive data using a transmission right cyclic method, and in particular, transmit data multiple times during priority transmission multiplexing. Regarding a method for securing rights and a method for preventing transmission of unnecessary data. B1 Overview of the Invention The present invention is a remote monitoring and control device that transmits transmission data by receiving a transmission right transfer signal, continues to secure the transmission right during priority transmission multiplexing, and transmits data multiple times in succession. When data is registered and data is transmitted, priority is transferred when the reception of data from another station is started first or when the other station is transmitting and the own station is transmitting simultaneously, and the receiving state is entered. Depending on the content, data management can be performed in such a way that the data to be transmitted can be reliably canceled if the data that was previously intended to be transmitted no longer needs to be transmitted. C1 Conventional technology An example of a line configuration of a remote monitoring and control system in which a master station and a large number of slave stations are connected via a loop line is shown in FIG. 7 as a system with a floating group configuration. (A) of the same figure shows a normal state of deafness on the line. 3
There are eight slave stations 21-2.8 for each master station 11-13. is 3
one master station 11-l for each loop line 31-33,
Belongs to and is combined with. Loop line 3. ~3. The transmitted and received data is circulated in one direction (indicated by the arrow), and the slave stations 23,
2. is operated in the terminal mode belonging to both loop lines, and the slave stations 2. .. 2. .. 2. .. 25.
l. 28 is operated in relay mode. In such a configuration, each loop line 3. By changing the affiliation of the slave stations to ~33, the communication function for all slave stations is restored. FIG. 3(B) shows the line configuration state after these restorations, and in FIG. 3(B), slave station 2. The recovery line configuration is shown when it is determined that there is an abnormality in the line between 2 and 27, in which slave station 2 belongs to the master station via loop line 3, and slave station 2. and 23 are loop lines 3. Belongs to the master station L. Here, the communication method between the master station and the slave stations uses the transmission right circulation method, and normally one fleet signal is circulated on the loop line, and the master station or slave station with transmission data is sent to the fleet. - When a free token signal is received, the free token signal is switched to a busy token signal, and the transmission data following the busy token signal is sent, and the transmission of other master stations or slave stations is locked by the circulation of the busy token signal. . Then, when a reception confirmation for data transmission is obtained from the destination station, the transmitting station circulates free tokens on the line and yields the transmission right to another station. The configuration of the master station and slave station in the above system is shown in FIG. 8 as a configuration related to transmitted and received data. A master station 1 is connected to a slave station 2 via a loop line 3. At the master station 1, control human power from an operator etc. is temporarily stored in a control human power storage section 5 via a control input coupling section 4, and is sorted based on priority etc. by a transmission data sorting section 6.
A transmission signal is created by the above, and sent from the line coupling section 8 to the loop line 3. Display input from the slave station is taken in from the line coupling section 8 to the receiving section 9, decoded by the received data decoding section 10, and displayed on a display or the like by the display output section II. In the slave station 2, the received input from the loop line 3 is connected to both the A and B sides of the loop line by the line coupling section 21 (see Fig. 7).
are taken into the receiving sections 22A and 22B, respectively, and the receiving section 22
One of the reception inputs A and 22B is selected by the selection section 23 and decoded by the reception data decoding section 24, and a control output is obtained from the output coupling section 25. In addition, the status signal to be monitored is transmitted to the human power coupling unit 2.
6, the change detection section 27 detects the state change, the startup storage section 28 stores the presence of a state change, the transmission data selection section 29 selects based on the priority, etc., and the selection section 23 selects the transmission section 30A or 30B, a transmission signal is created and sent out from the line coupling section 21. Here, if there is multiple important data in the data that the master station or slave station is trying to transmit, priority is given to continuously transmitting it multiple times up to a predetermined number of times (for example, 4 times) as priority data while continuing to secure the transmission right. Transmission processing is performed. In this priority transmission, priority data is registered in the transmission data memory of the transmitting unit (for example, 3OA in Fig. 8), the transmitting unit transmits this data for the first time, and after this transmission is completed, another prioritized data is registered. If there is, the data is registered a second time in the memory, and this registration causes the data to be transmitted a second time. Control is repeated up to a predetermined number of times. D1 Problems to be Solved by the Invention In a system that uses the conventional transmission right circulation method and has a priority transmission function, it is required to inject fleet tokens so that the transmission right can be promptly handed over to another station when transmission is completed. However, when priority transmission is performed, free tokens are not injected and transmission rights are secured and multiple (for example, four) consecutive transmissions are performed, resulting in a delay in the transfer of transmission rights. To explain this in detail, the transmitting station registers the data to be transmitted next after the transmission is completed, determines whether that data is priority data, and injects fleet tokens accordingly or continues data transmission. Control what you do and how your fleet
Kun's injection will be delayed. At this time, when multiple stations are waiting for transmission, the interval between data transmissions of the multiple stations becomes long, and it takes a long time to complete the transmission of all data. In order to solve this problem, a processing method may be considered in which the transmitter can register the next transmission data in the transmission data memory in advance before the end of the transmission. This processing method has a block diagram configuration shown in FIG. This figure shows a part corresponding to the transmitter 30A or 30B of the slave station 2 in FIG. At the same time as registering the flag 33, this flag 33
The local control unit 34 sets the register 32 by setting
The registered data is transferred to the transmission buffer 35, and thereafter, when the control section 34 determines that the free token FT has been received, the data in the transmission buffer 35 is given to the parallel-to-serial conversion section 36 to convert it into serial data. , this serial data is sent to the loop line side through the modulator 37. With such a configuration, the transmission process takes the form shown in FIG. 10. In non-priority transmission (normal transmission), the host side writes data to the register 32 at the start of transmission and sets the write flag 33. Write flag 33 on local side
Knowing that is set, register 3 at the start of transmission
Transfer the contents of 2 to the buffer 35 and write the write flag 33.
Reset. The host side learns that the write flag 33 has been reset, registers data B to be transmitted next (non-priority transmission data in this example) in the register 32, and sets the write flag 33. When the local side receives the free token FT, it converts it in the converter 36 and modulates it in the modulator 3.
7 modulation transmission is performed. When the transmission of data A is completed, data B to be transmitted next is transferred to the buffer 35, and its contents are checked to determine whether or not there is priority transmission, and if it is non-priority, a free token FT is sent to grant the transmission right. Transfer to another station and transmit data B at the next free token FT reception. When the transmission of data B is completed, the data to be transmitted next is not registered in the illustration, so
Transfers the transmission right to another station by transmitting a free token. Next, in priority transmission, after transmitting data C, if priority transmission is determined by determining the presence or absence of priority transmission of the next transmission data D, data D is transmitted without transmitting a free token FT. Next, if the data E is priority transmission data, the data E is continuously transmitted. In this way, by temporarily transferring the registration data from the host side to the register 32 to the buffer 35, the next data from the host side can be transferred to the register 32 before the transmission of the data is finished.
Compared to the conventional system where the next data is registered in the register 32 from the host side at the end of transmission, it is determined whether or not priority transmission is to be performed, and whether or not Fleet Tokens can be injected. injection will no longer be delayed. However, the above processing method has the problem of unnecessary data transmission. This will be explained below. In Figure 1O, the local side transfers data A to buffer 3.
5, the transmission of the data A may become unnecessary or impossible. This state is (1) Free Token FT
When a station receives data from another station and becomes a receiving station before transmitting data A, and the content of the received data is such that data A should not be transmitted. (2) After receiving the Free Token FT and starting the transmission of data A, if there is a transmission from another station and the priority is transferred in so-called simultaneous transmission, that is, if the station loses the simultaneous transmission and becomes the receiving station, Similarly to (+), when the content of the received data is such that data A should not be transmitted. (3) When the transmission destination partner station changes line configuration due to the above-mentioned line failure and is coupled to another loop line, and the transmission destination station disappears from the line to which the transmitting station belongs. In these states, the host side resets the data A registered in the register 32 of the transmitting station, but the local side also needs to erase the data A existing in the buffer 35, etc., and without this reset, the above (1) and ( In item 2), data that is no longer necessary to be transmitted due to received data is transmitted. Furthermore, the above-mentioned item (3) results in a communication to which there is no recipient, which is not desirable. Furthermore, regarding the above-mentioned deletion of data A, it is difficult to reset data A that has been imported locally from the host side. Further, in a reset after data B, which follows data 8, is registered in the register 32, it becomes difficult for the host side to determine whether or not data A exists. Means and operation for solving the E1 problem The present invention has been made in view of the above-mentioned problems, and includes a register in which transmission data is registered, and a transmitter to which the data in this register is transferred and outputs the transmission data. A buffer, a write flag that instructs data registration and reading in the register, a host-side control unit that can control data registration in the register and on/off of the flag, and a host-side control unit that transfers the data in the register to the transmission buffer and writes this data. and a local side control unit that can transmit data, and when the local side control unit receives data from another station when there is data to be transferred to the transmission buffer, it resets the data in the buffer, and when there is no data received from the other station and the data is transmitted, the local side control unit resets the data in the buffer. The transmission method is to transmit when the signal to which the rights have been transferred is received and there is no loss of simultaneous transmission with other stations, and to continue transmitting if the next data to be transmitted is priority transmission,
Even if there is data in the transmit buffer, the buffer is reset when there is received data to stop the transmission and wait for the next data registration from the host side, making it possible to save and change the data in the register. . The present invention also provides a register in which transmission data is registered;
A write flag that instructs data registration and successive output in this register, a priority transmission wait flag that instructs priority transmission of the next data to be registered in the register, and data registration in the register and on/off of the flag can be controlled. The host-side control unit includes a host-side control unit and a local-side control unit capable of transmitting the data in the register, and the host-side control unit sets the priority transmission waiting flag depending on whether or not the next data to be registered in the register is for priority transmission. On/Off setting, and the local control unit transmits when the write flag is in the on state, when there is no data reception from another station and the transmission right is handed over, and when there is no loss in simultaneous transmission with other stations. When the transmission is completed, the write flag is turned off. Then, if the priority transmission waiting flag is off, a free token is injected and the transmission right is transferred to another station, and if it is on, the next data to be transmitted is continued. This is a transmission method in which both flags are turned on and off by the control units on the host side and the local side, which enables the process of canceling transmission and saving and changing data in registers. The present invention also provides a pair of registers in which transmission data is registered, a pair of write flags that respectively instruct data registration and readout of the registers, and a demultiplexer that switches and registers the transmission data in the pair of registers. a multiplexer that switches and retrieves registered data in the pair of registers; and a host-side control unit that can alternately register transmission data in the pair of registers and control on/off the corresponding pair of write flags under the control of the demultiplexer. , a local-side control unit that can alternately retrieve and transmit the data in the pair of registers under the control of the multiplexer, and the local-side control unit reads the data in the pair of registers in accordance with the ON state of the write flag. Take out data alternately, transmit when no data is received from another station, the signal to which the right to transmit has been transferred is received, and there is no loss of simultaneous transmission with another station, and write the transmitted register when transmission is completed. Turn off the flag, then switch the paired registers, and if the next transmission data is priority transmission, transmit the next data while securing the transmission right,
If it is not a priority transmission, the transmission method injects free tokens and transfers the transmission right to another station, and by alternately registering and transmitting data to a pair of registers, it is possible to save and manage data when transmission is stopped. do. F. Embodiment FIG. 1 is a transmission processing block diagram showing an embodiment of the present invention, and the same parts as those shown in FIGS. 8 and 9 are designated by the same reference numerals. In FIG. 1, received data from a loop line passes through a demodulator 41 and a serial-to-parallel converter 42 and is registered in a reception completion register 43, and from the data in this register 43, a control unit 31 determines whether the received data has been completely captured. Then, the data is transferred to the received data decoding section 24. On the other hand, for data transmission, the local side control section 44 transmits the data in the transmission buffer 35 to the converter 36 via the modulator 37 to the loop line. When the transmission of 1 is completed, it is registered in the transmission completion register 45, and by this registration, the host side control unit 3

【が送信完了を判定する。ローカル側には優先伝
送有無の検出部46が設けられ、送信バッファ35のデ
ータ出力から優先伝送の有無を検出し、この検出結果を
制御部44が取り込む。 こうした構成における送信局移行時のフローチャートを
第2図に示す。同図中の各ステップ#l〜#31に対応
する信号路を第111ffl中に同一符号で示す。ホス
ト側では、制御部31は送信データ選別部29のデータ
選別動作から送信データの有無を判定しくステップ#l
)、送信データ有りのときにはフラグ33のフラグオフ
(レジスタ32のデータをバッファ35に転送済み)の
判定(ステップ#2)から遭別部29のデータをレジス
タ32に登録すると共にフラグ33をオンにさせる(ス
テップ#3)。 次に、ローカル側の処理を説明する。制御部44は送信
バッファ35のデータ有無を判定しくステップ#1)、
データ無しではフラグ33がオンされているか否か判定
しくステップ#2)、フラグ33のオン状態で変換器3
6のアイドル中(ステップ#3)ではレジスタ32のデ
ータを送信バッファ35へ転送してからフラグ33をオ
フにする(ステップ#4)。 ここで、ステップ#lでバッファ32にデータ有りとさ
れたとき、制御部44は変換器42の状態から受信中か
否か判定しくステップ#11)、受信中であれば送信バ
ッファ35をリセットしくステップ#12)、受信動作
を行う。一方、受信中でないとき、直接にステップ#2
1に進む。従って、送信バッファ35に送信しようとす
るデータが存在した状態で他局からの受信が開始される
ときには該送信バッファ35のデータをリセットする。 次に、ステップ#21において、フリート−クン受信が
あると、制御0部44が変換器36の変換動作を開始さ
せる送信開始を行い(ステップ#22)、この送信開始
において他局の送信との同時発信負けがあるか否かを変
換器42の受信信号から制御部44が判定しくステップ
#23)、同時発信負けが無ければ送信を継続してその
送信完了(ステップ#24)で送信バッファ35のリセ
ットと送信完了の信号をレジスタ45に登録しホスト側
へ連絡と送信局解除を行う(ステップ#25)。 この1回の送信で制御部44は優先伝送の4回送信終了
か否かの内部カウンタで判定しくステップ#26)、こ
の判定で終了していないときにはフラグ33のオンを判
別しくステップ#27)、オンであればレジスタ32の
データをバッファ35に転送及びフラグ33のオフを行
い(ステップ#28)、検出部46の信号から優先伝送
の有無判定(ステップ#29)を経て優先伝送であれば
優先伝送送信回数カウンタを+IL、(ステップ#30
)、ステップ#22で引き続き送信を行う。また、優先
伝送での4回送信終了では送信回数カウンタを零にし、
フリート−クン注入で他局に送信権を譲る(ステップ#
31)。また、送信先の局が消滅した場合はホスト側で
検出すると送信リセット信号を47経由でローカル部に
伝え、ローカル部で送信バッファ35をリセットする。 以上のように、本実施例では送信バッファ35へ取り込
んだデータを送信するに際して、フリート−クンの受信
前のデータ受信中であれば送信バッファ35をリセット
し、またフリート−クン受信後の送信で同時発信負けか
あるときにも送信バッファ35をリセットする。データ
受信時の送信データの取り消しは上述のようにローカル
側の送信バッファ35で行われホスト側の取り消し処理
を不要にし、不要データの送信を防止する。レジスタ3
2に残っているデータについて取り消すか否かのホスト
側の判定も可能となる。また、送信先の局が消滅したと
きには不要な連絡を行うことが無くなる。 第3図は本発明の他の実施例を示すブロック図であり、
そのフローチャートを第4図に示す。これらの各部で第
1図又は第2図と同じものは同一符号で示し、その詳細
な説明は省略する。第3図において、ローカル側に送信
バッファを持たない構成でローカルとホスト間に優先伝
送待フラグ51が設けられ、このフラグ51にはホスト
側制御部52から次に送信すべく待機しているデータの
優先送信の有無を設定し、ローカル側制御部53がフラ
グ51の状態から優先伝送待の有無から送信完了後に引
き続き送信権を確保すべきかどうか読み取るようにする
。 上述の構成における送信局移行フローチャートを示す第
4図に従って以下に動作説明をする。 ホスト側ではフラグ33のオン状態で次に送信すべきデ
ータが優先伝送か否か判定しくステップ#4)、この判
定によって優先伝送待フラグ51をオン又はオフにして
おく(ステップ#5.#6)。 ローカル側では、フラグ33の状態から送信データの有
無を判定しくステップ#2)、データ登録があればフリ
ート−クン受信(ステップL2+)を待って送信を行う
。この送信は第2図の場合と同様に同時発信負けの判定
処理後、優先伝送処理に入る。この優先処理には、ステ
ップ#26に続けて優先伝送待フラグ51のオンから優
先伝送待を判定しくステップ# 29 A)、フラグ3
3をオフ(ステップ# 28 A)した後にホスト側か
らの次のデータ登録(優先伝送にある)をフラグ33か
ら判定した待ちを行い(ステップ#27)、登録後、優
先伝送回数カウンタの+1を行う(ステップ#30)。 また、優先送信限度回数到達又はフラグ5】のオフすな
わち優先伝送待がないときフラグ33をオフさせ(ステ
ップ#28)、優先伝送カウンタ零設定とフリートニク
ン注入に入る(ステップ#31)。 従って、本実施例では、ローカル側に送信バッファを用
意せず、ホスト側からレジスタ32への登録データ後、
次に登録時のデータ優先伝送か否かのフラグ設定をし、
このフラグがオフならば1回の送信終了で直ちにフリー
ト−クン注入をし、フラグオンでは1回の送信終了でホ
スト側からの新データの登録を待って送信する。これに
より、第1の実施例と同様の作用効果を得ることができ
る。 第5図は本発明の他の実施例を示し、その送信局移行フ
ローチャートを第6図に示す。第5図が第1図と異なる
部分は、送信バッファを設けず、レジスタ32に代えて
2つのレジスタ32A、32Bを設け、またフラグ33
に代えてフラグ33A、33Bを設け、これらレノスタ
、フラグにはホスト側からデマルチプレクサ55を介し
てデータ登録とフラグオン・オフを切り換え、ローカル
側ではレジスタ32A  32Bの一方のデータをマル
チプレクサ56によって切り換えて取り出し及び送信を
行い、フラグ33A、33Bのオフと読出しを行う。こ
れら制御をホスト制御部57とローカル側制御部58が
実行する。 こうした処理でのフローチャートを示す第6図において
、ホスト側では送信データをレジスタ32A、32Bに
交互に登録して対応するフラグ33A、33Bをオンさ
せる(ステップ#2A、#2B、#3A、#3B)。 ローカル側では、フラグ33Aのオン・オフ(ステップ
#2A)とフラグ33Bのオン・オフ(ステップ#2B
、#2B’ )によってレジスタ32A、32Bの登録
データを交互に送信する(ステップ#3.#4.#5)
。その送信をフリート−クン受信(ステップ#21)に
より開始し、1回の送信完了毎に次回の送信データ側に
なる方のフラグを読取り(ステップ#27)、次回が優
先伝送ならば4回を限度に引き続き送信権を確保し、優
先伝送でなければフリート−クンを注入して送信権を他
局に譲る。書き込みフラグ33のオフも送信終了した側
のフラグに対して行う(ステップ#29A、929B)
。 こうした処理により、送信バッファを設けることなく、
送信不要になったデータの取り消し処理を確実、容易に
し、不要連絡も無くなる。 G3発明の効果 以上のとおり、本発明によれば、送信データの送信に際
して送信中止、データ変更にも対応できるようにしたた
め、不要データの送信を確実に防止して確実な監視制御
ができ、送信完了後の送信権の譲渡も遅れることなく、
しかも送信局の処理が困難になることはない。
[determines whether the transmission is complete. A detection unit 46 for detecting the presence or absence of priority transmission is provided on the local side, and detects the presence or absence of priority transmission from the data output of the transmission buffer 35, and the control unit 44 takes in this detection result. FIG. 2 shows a flowchart at the time of transmitting station transition in such a configuration. Signal paths corresponding to steps #1 to #31 in the figure are indicated by the same reference numerals in 111ffl. On the host side, the control unit 31 determines the presence or absence of transmission data from the data selection operation of the transmission data selection unit 29 in step #l.
), when there is data to be sent, the flag 33 is turned off (data in the register 32 has been transferred to the buffer 35), and the data of the encounter section 29 is registered in the register 32 and the flag 33 is turned on. (Step #3). Next, processing on the local side will be explained. The control unit 44 determines the presence or absence of data in the transmission buffer 35 (step #1);
If there is no data, it is difficult to determine whether the flag 33 is on or not (step #2), and when the flag 33 is on, the converter 3
6 during idle (step #3), the data in the register 32 is transferred to the transmission buffer 35, and then the flag 33 is turned off (step #4). Here, when it is determined in step #l that there is data in the buffer 32, the control unit 44 determines from the state of the converter 42 whether or not it is receiving data (step #11), and if it is receiving data, it resets the transmitting buffer 35. Step #12), perform a receiving operation. On the other hand, when not receiving, directly step #2
Go to 1. Therefore, when reception from another station is started while there is data to be transmitted in the transmission buffer 35, the data in the transmission buffer 35 is reset. Next, in step #21, when a free token is received, the control unit 44 starts transmission to start the conversion operation of the converter 36 (step #22), and in this start of transmission, there is no communication with the transmission from another station. The control unit 44 determines whether or not there is a simultaneous transmission loss from the received signal of the converter 42 (Step #23), and if there is no simultaneous transmission loss, the transmission is continued and the transmission is completed (Step #24). The reset and transmission completion signals are registered in the register 45, and the host side is notified and the transmitting station is canceled (step #25). With this one transmission, the control unit 44 determines whether or not the four priority transmissions have been transmitted using an internal counter (step #26); if the transmission has not been completed, the control unit 44 determines whether the flag 33 is turned on (step #27). If it is on, the data in the register 32 is transferred to the buffer 35 and the flag 33 is turned off (step #28), and the presence or absence of priority transmission is determined from the signal of the detection unit 46 (step #29). Set the priority transmission transmission count counter to +IL, (Step #30
), the transmission continues in step #22. Also, at the end of the 4th transmission in priority transmission, the transmission count counter is set to zero,
Transfer transmission rights to other stations by injecting free tokens (step #
31). Furthermore, if the destination station disappears, the host side detects this and transmits a transmission reset signal to the local unit via 47, and the local unit resets the transmission buffer 35. As described above, in this embodiment, when transmitting the data fetched into the transmission buffer 35, the transmission buffer 35 is reset if data is being received before receiving a fleet token, and when data is being transmitted after receiving a fleet token, the transmission buffer 35 is reset. The transmission buffer 35 is also reset when simultaneous transmission is lost. The cancellation of the transmitted data at the time of data reception is performed in the local transmission buffer 35 as described above, eliminating the need for cancellation processing on the host side and preventing the transmission of unnecessary data. register 3
It is also possible for the host side to determine whether or not to cancel the data remaining in 2. Further, when the destination station disappears, unnecessary communications are no longer made. FIG. 3 is a block diagram showing another embodiment of the present invention,
The flowchart is shown in FIG. The same parts as in FIG. 1 or 2 are indicated by the same reference numerals, and detailed explanation thereof will be omitted. In FIG. 3, in a configuration in which the local side does not have a transmission buffer, a priority transmission waiting flag 51 is provided between the local side and the host, and this flag 51 contains data waiting to be transmitted next from the host side control unit 52. The local control unit 53 reads from the state of the flag 51 whether there is priority transmission waiting or not, and whether or not the transmission right should be secured after the completion of transmission. The operation will be described below with reference to FIG. 4, which shows a transmitting station migration flowchart in the above-described configuration. On the host side, with the flag 33 on, it is determined whether the next data to be transmitted is priority transmission (step #4), and depending on this determination, the priority transmission waiting flag 51 is turned on or off (steps #5 and #6). ). On the local side, the presence or absence of transmission data is determined from the state of the flag 33 (step #2), and if data is registered, transmission is performed after waiting for free token reception (step L2+). In this transmission, as in the case of FIG. 2, priority transmission processing begins after simultaneous transmission failure determination processing. For this priority processing, following step #26, priority transmission waiting is determined from the ON of priority transmission waiting flag 51.Step #29A), flag 3
3 is turned off (step #28A), the next data registration from the host side (in priority transmission) is determined from the flag 33 and waits (step #27), and after registration, the priority transmission count counter is incremented by 1. (Step #30). Further, when the priority transmission limit number of times is reached or flag 5 is turned off, that is, there is no priority transmission waiting, the flag 33 is turned off (step #28), and the priority transmission counter is set to zero and fleet Nikon injection is started (step #31). Therefore, in this embodiment, a transmission buffer is not prepared on the local side, and after registering data from the host side to the register 32,
Next, set the flag for data priority transmission or not at the time of registration,
If this flag is off, free tokens are injected immediately upon completion of one transmission, and when the flag is on, upon completion of one transmission, new data is waited for registration from the host side before being transmitted. Thereby, the same effects as in the first embodiment can be obtained. FIG. 5 shows another embodiment of the present invention, and FIG. 6 shows a transmitting station migration flowchart thereof. The difference between FIG. 5 and FIG. 1 is that no transmission buffer is provided, two registers 32A and 32B are provided instead of register 32, and a flag 33 is provided.
Instead, flags 33A and 33B are provided, and the host side registers data and switches the flags on and off through a demultiplexer 55, and on the local side, the data in one of the registers 32A and 32B is switched through a multiplexer 56. Extraction and transmission are performed, and flags 33A and 33B are turned off and read. These controls are executed by the host control unit 57 and the local control unit 58. In FIG. 6, which shows a flowchart of such processing, the host side registers transmission data alternately in registers 32A and 32B and turns on the corresponding flags 33A and 33B (steps #2A, #2B, #3A, #3B). ). On the local side, the flag 33A is turned on and off (step #2A) and the flag 33B is turned on and off (step #2B).
, #2B') to alternately transmit the registered data of registers 32A and 32B (steps #3, #4, and #5).
. The transmission is started by free token reception (step #21), and each time one transmission is completed, the flag of the side that will be the next transmission data side is read (step #27), and if the next transmission is priority transmission, the flag is read four times. It continues to secure the transmission right after reaching the limit, and if it is not a priority transmission, it injects free tokens and transfers the transmission right to another station. The write flag 33 is also turned off for the flag on the side where transmission has ended (steps #29A and 929B).
. With this process, there is no need to set up a transmission buffer.
To ensure and easily cancel processing of data that no longer needs to be sent, and to eliminate unnecessary communications. Effects of the G3 Invention As described above, according to the present invention, since it is possible to stop transmission and change data when transmitting data, it is possible to reliably prevent the transmission of unnecessary data and perform reliable monitoring control. Transfer of transmission rights after completion is also possible without delay.
Moreover, the processing at the transmitting station will not become difficult.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示すブロック図、第2
図は第1図における送信局移行フローチャート、第3図
は本発明の第2の実施例を示すブロック図、第4図は第
3図におけるフローチャート、第5図は本発明の第3の
実施例を示すブロック図、第6図は第5図におけるフロ
ーチャート、第7図(A)は流動解方式の回路構成図、
第7図(B)は回線異常による構成変形図、第8図は親
局と子局のブロック図、第9図は従来の送信処理概要図
、第10図は従来の処理態様図である。 31・・・ホスト側制御部、32・・・送信開始待レジ
スタ、33・・・書き込みフラグ、35・・・送信バッ
ファ、43・・・受信完了レジスタ、44・・・ローカ
ル側制御部、45・・・送信完了レジスタ、46・・・
優先伝送検出部、47・・・送信リセット、51・・・
優先伝送待フラグ、52・・・ホスト側制御部、53・
・・ローカル側制御部、32A、32B・・・送信開始
待レジスタ、33A、33B・・・書き込みフラグ、5
5・・・デマルチプレクサ、56・・・マルチプレクサ
、57・・ホスト側制御部、 58 ・・ローカル側制御部。 外2名 第 9 図 従来の送信部y1既1に8図 第10図 従来の処理り橿囚
FIG. 1 is a block diagram showing a first embodiment of the present invention;
3 is a block diagram showing a second embodiment of the present invention, FIG. 4 is a flowchart of FIG. 3, and FIG. 5 is a flowchart of a third embodiment of the present invention. 6 is a flowchart in FIG. 5, FIG. 7(A) is a circuit configuration diagram of the fluid solution method,
FIG. 7(B) is a diagram of a configuration modified due to a line abnormality, FIG. 8 is a block diagram of a master station and a slave station, FIG. 9 is a schematic diagram of a conventional transmission process, and FIG. 10 is a diagram of a conventional process. 31... Host side control unit, 32... Transmission start waiting register, 33... Write flag, 35... Transmission buffer, 43... Reception completion register, 44... Local side control unit, 45 ...Transmission completion register, 46...
Priority transmission detection unit, 47... Transmission reset, 51...
Priority transmission waiting flag, 52... host side control unit, 53.
...Local side control unit, 32A, 32B... Transmission start wait register, 33A, 33B... Write flag, 5
5... Demultiplexer, 56... Multiplexer, 57... Host side control unit, 58... Local side control unit. Figure 10 Figure 10 Conventional processing

Claims (3)

【特許請求の範囲】[Claims] (1)親局と多数の子局間がループ回線で結合され、送
信権巡回法でデータ送受を行い、重要なデータは送信権
を確保したまた送信する優先伝送を行う遠方監視制御装
置において、送信データが登録されるレジスタと、この
レジスタのデータが転送されて送信データを出力する送
信バッファと、前記レジスタのデータ登録と読出しを指
示する書き込みフラグと、前記レジスタへのデータ登録
とフラグのオン・オフを制御できるホスト側制御部と、
前記レジスタのデータを送信バッファに転送しこのデー
タを送信できるローカル側制御部とを備え、前記ローカ
ル側制御部は送信バッファに転送すべきデータが有ると
きに他局からデータ受信すると該バッファのデータをリ
セットし、他局からデータ受信がなく送信権が譲られた
信号を受信しかつ他局とは同時発信の負けが無いときに
送信を行い、次の送信データが優先伝送であれば送信権
を確保したまま送信することを特徴とする遠方監視制御
装置の優先伝送方式。
(1) A master station and many slave stations are connected by a loop line, and data is sent and received using the transmission right circulation method, and important data is transmitted by a remote monitoring and control device that secures the transmission right and performs priority transmission. A register in which data is registered, a transmission buffer to which the data in this register is transferred and outputs transmission data, a write flag that instructs data registration and reading of the register, and a register that registers data in the register and turns on/off the flag. A host side control unit that can control off,
and a local side control unit that can transfer data in the register to a transmission buffer and transmit this data, and when the local side control unit receives data from another station when there is data to be transferred to the transmission buffer, the data in the buffer is transferred. Reset the , transmit when there is no data received from another station and a signal to which the transmission right has been transferred, and when there is no loss of simultaneous transmission with other stations, and if the next transmission data is priority transmission, the transmission right is transferred. A priority transmission method for remote monitoring and control equipment, which is characterized by transmitting while ensuring the following.
(2)親局と多数の子局間がループ回線で結合され、送
信権巡回法でデータ送受を行い、重要なデータは送信権
を確保したまま送信する優先伝送を行う遠方監視制御装
置において、送信データが登録されるレジスタと、この
レジスタのデータ登録と読出しを指示する書き込みフラ
グと、前記レジスタに次に登録するデータの優先送信を
指示する優先伝送待フラグと、前記レジスタへのデータ
登録とフラグのオン・オフを制御できるホスト側制御部
と、前記レジスタのデータを送信できるローカル側制御
部とを備え、前記ホスト側制御部は前記レジスタへの次
の登録データが優先伝送か否かに応じて前記優先伝送待
フラグをオン・オフ設定し、前記ローカル側制御部は前
記書き込みフラグのオン状態で他局からデータ受信がな
く送信権が譲られた信号を受信しかつ他局とは同時発信
の負けが無いときに送信を行い、前記優先伝送待フラグ
の指示が次の送信データの優先伝送であれば送信権を確
保したまま送信を行うことを特徴とする遠方監視制御装
置の優先伝送方式。
(2) In a remote monitoring and control device that connects a master station and a number of slave stations via a loop line, transmits and receives data using the transmission right circulation method, and performs priority transmission by transmitting important data while securing the transmission right. A register in which data is registered, a write flag that instructs data registration and reading of this register, a priority transmission wait flag that instructs priority transmission of the next data to be registered in the register, and data registration and flag in the register. a host-side control unit that can control on/off of the register, and a local-side control unit that can transmit the data in the register, and the host-side control unit can control whether the next registered data to the register is priority transmission or not. sets the priority transmission wait flag on/off, and the local side control unit receives a signal indicating that the transmission right has been handed over due to no data reception from another station while the write flag is on, and transmits simultaneously with the other station. A priority transmission method for a remote monitoring and control device, characterized in that transmission is performed when there is no loss, and if the priority transmission waiting flag indicates priority transmission of the next transmission data, transmission is performed while securing the transmission right. .
(3)親局と多数の子局間がループ回線で結合され、送
信権巡回法でデータ送受を行い、重要なデータは送信権
を確保したまま送信する優先伝送を行う遠方監視制御装
置において、送信データが登録される一対のレジスタと
、このレジスタのデータ登録と読出しを夫々指示する一
対の書き込みフラグと、送信データを前記一対のレジス
タに切り換えて登録するデマルチプレクサと、前記一対
のレジスタの登録データを切り換えて取り出すマルチプ
レクサと、前記デマルチプレクサの制御で送信データを
前記一対のレジスタに交互に登録し対応する前記一対の
書き込みフラグをオン・オフ制御できるホスト側制御部
と、前記マルチプレクサの制御で前記一対のレジスタの
データを交互に取り出して送信できるローカル側制御部
とを備え、前記ローカル側制御部は前記書き込みフラグ
のオン状態に応じて前記一対のレジスタのデータを交互
に送信データとして取り出し、他局からのデータ受信が
なく送信権が譲られた信号を受信しかつ他局とは同時発
信の負けが無いときに送信を行い、次の送信データが優
先伝送であれば送信権を確保したまま送信を行うことを
特徴とする遠方監視制御装置の優先伝送方式。
(3) In a remote monitoring and control device that connects a master station and a number of slave stations via a loop line, transmits and receives data using the transmission right circulation method, and performs priority transmission by transmitting important data while securing the transmission right. A pair of registers in which data is registered, a pair of write flags that respectively instruct data registration and readout of the registers, a demultiplexer that switches and registers transmission data to the pair of registers, and registration data of the pair of registers. a host-side control unit that can alternately register transmission data in the pair of registers under the control of the demultiplexer and control on/off the corresponding pair of write flags; a local-side control unit that can alternately take out and transmit data in the pair of registers, and the local-side control unit alternately takes out the data in the pair of registers as transmission data according to the ON state of the write flag, and Transmit when a signal is received with no data received from a station and the transmission right has been transferred, and there is no loss of simultaneous transmission with other stations, and if the next transmission data is priority transmission, the transmission right is secured. A priority transmission method for remote monitoring and control equipment that performs transmission.
JP1143303A 1989-06-06 1989-06-06 Priority transmission system for remote monitoring and control equipment Expired - Lifetime JPH0810871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143303A JPH0810871B2 (en) 1989-06-06 1989-06-06 Priority transmission system for remote monitoring and control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143303A JPH0810871B2 (en) 1989-06-06 1989-06-06 Priority transmission system for remote monitoring and control equipment

Publications (2)

Publication Number Publication Date
JPH039634A true JPH039634A (en) 1991-01-17
JPH0810871B2 JPH0810871B2 (en) 1996-01-31

Family

ID=15335623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143303A Expired - Lifetime JPH0810871B2 (en) 1989-06-06 1989-06-06 Priority transmission system for remote monitoring and control equipment

Country Status (1)

Country Link
JP (1) JPH0810871B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204655A (en) * 1981-06-10 1982-12-15 Yaskawa Electric Mfg Co Ltd Data highway system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204655A (en) * 1981-06-10 1982-12-15 Yaskawa Electric Mfg Co Ltd Data highway system

Also Published As

Publication number Publication date
JPH0810871B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
KR0137089B1 (en) Inter lan connection equipment
CZ385391A3 (en) Communication system
JPH039634A (en) Priority transmission system in remote supervisory and controlling equipment
JPS60236340A (en) Communication system
JP2900364B2 (en) Communication control device
JP2614375B2 (en) Optical transmission system
JP2970213B2 (en) Transmission line switching method
JPH0537559Y2 (en)
JPS633538A (en) Double loop transmission system
JPS61246863A (en) Data transfer system
JPH06110831A (en) Data transfer device
JPH01211043A (en) Data transfer equipment
JPH05327743A (en) Transmission line control method for data communication system
JP2590773B2 (en) Facsimile communication system
JPH0525214B2 (en)
JPS61184022A (en) Exchange
JPH04256051A (en) Program loading system
JPS6021653A (en) System for changing address of transmitter
JPS59205848A (en) Priority control system
JPH04196842A (en) Abnormal information transmitting system
JPS60137A (en) Transfer system for transmission and reception data of transmitter
JPH0888598A (en) Dual system information transmission equipment
JPH0427252A (en) Managing system for transmission/reception data in data communication equipment
JPH0714160B2 (en) Remote monitoring controller
JPH0349446A (en) Inter-processor communication equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14