JPH0396348A - Manufacture of extrathin film laminate - Google Patents

Manufacture of extrathin film laminate

Info

Publication number
JPH0396348A
JPH0396348A JP2085119A JP8511990A JPH0396348A JP H0396348 A JPH0396348 A JP H0396348A JP 2085119 A JP2085119 A JP 2085119A JP 8511990 A JP8511990 A JP 8511990A JP H0396348 A JPH0396348 A JP H0396348A
Authority
JP
Japan
Prior art keywords
ultra
thin film
film
base material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2085119A
Other languages
Japanese (ja)
Other versions
JP2881014B2 (en
Inventor
Kie Ishitani
石谷 貴恵
Noboru Masutani
増谷 昇
Yasuo Fujimura
保夫 藤村
Isoji Sakai
酒井 五十治
Tsunetaka Matsumoto
松本 恒隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2085119A priority Critical patent/JP2881014B2/en
Publication of JPH0396348A publication Critical patent/JPH0396348A/en
Application granted granted Critical
Publication of JP2881014B2 publication Critical patent/JP2881014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To continuously manufacture an extrathin film laminate of a homogeneous state on a solid substrate even if a supporting base material is the substrate by temporarily laminating an extrathin film formed on water surface once in contact with the surface of a temporarily supporting base material, then transferring the film to the substrate, and integrally adhering it. CONSTITUTION:Polymer solution is discharged from a nozzle 2 of a quantitative pump 1 on water surface 4 in a water tank 3, and an extrathin film 5 formed on the surface 4 is adhered to the surface of a sheetlike temporarily supporting base material 9 continuously fed by rollers 6, 7, 8 in a direction of an arrow A. Then, the material 9 temporarily laminated with the film 4 is brought into contact with the surface of a solid substrate 10 adhered to the lower surface of a sheetlike bass material 11 fed between the roller 8 and a retaining roller 12 in a direction of arrow B to transfer the film 5 to the surface of the substrate 10. When the material 9 is once introduced into water and removed from the water through the roller 7, the film 5 is temporarily laminated on the surface of the material 9. Accordingly, a water layer is formed therebetween, and not brought into close contact therewith. Accordingly, the film 5 can be easily transferred to the substrate 10.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、固体基板に均一な超薄膜が形成されている
超薄膜積層体の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an ultra-thin film laminate in which a uniform ultra-thin film is formed on a solid substrate.

〔従来の技術] 超薄膜の製法としては、すでにいくつかの製法が提案さ
れ実施されている。特に、最も薄い超薄膜の製法として
は、支持液面上に薄膜を析出させる製法で、液面を仕切
る2本の仕切り棒を有するラングミュアーブロジェット
法による単分子薄膜の製法に準じた非連続製法があげら
れる(特開昭50−41958号公報,特開昭51−8
9564号公報記載)。また、上記非連続製法を連続製
法に進歩させたものが、米国特許第3767737号お
よび特開昭56−92926号公報に記載されている。
[Prior Art] Several methods for producing ultra-thin films have already been proposed and put into practice. In particular, the method for manufacturing the thinnest ultra-thin film is to deposit a thin film on the surface of a supporting liquid, using a discontinuous method similar to the Langmuir-Blodgett method for manufacturing monomolecular thin films using two partition rods that separate the liquid surface. The manufacturing method is mentioned (JP-A-50-41958, JP-A-51-8).
(described in Publication No. 9564). Further, the above-mentioned discontinuous manufacturing method has been improved to a continuous manufacturing method as described in US Pat.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記非連続製法については、究極的にはラングミュアー
ブ口ジェット膜のように単分子状態の超薄膜まで製造す
ることはできるが、生産面等の工業的見地からすれば上
記連続製膜法が有用であり、特に長尺の超薄膜を得るに
は連続製膜法は必須である。しかしながら、現在提案さ
れている連続製膜法は均一な超薄膜を容易に製造するこ
とはできるが、水面上に生或した超薄膜を支持基材面上
に積層する工程に問題を有している。そして、上記問題
を解決するために様々な試みが検討されている。
Although the discontinuous manufacturing method described above can ultimately produce ultra-thin monomolecular films such as the Langmuirb jet film, from an industrial standpoint such as production, the continuous film manufacturing method described above is The continuous film forming method is useful, and especially in order to obtain long ultra-thin films. However, although the currently proposed continuous film forming method can easily produce a uniform ultra-thin film, there are problems in the process of laminating the ultra-thin film grown on the water surface onto the supporting substrate surface. There is. Various attempts are being considered to solve the above problems.

ところで、このように、現在提案されている連続製膜法
は、全て超薄膜の支持基材が柔軟なフィルム状基材の場
合のみに適用できる製法であり、固体基板,特に大面積
の固体基板に超薄膜を連続的に均一積層することはでき
ない。
By the way, all of the currently proposed continuous film forming methods are methods that can be applied only when the supporting substrate of the ultra-thin film is a flexible film-like substrate, and cannot be applied to solid substrates, especially large-area solid substrates. It is not possible to continuously and uniformly laminate ultra-thin films.

この発明は、このような事情に鑑みなされたもので、固
体基板に超薄膜が均質に積層された超薄膜積層体を連続
的に製造する方法の提供をその目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for continuously manufacturing an ultra-thin film laminate in which ultra-thin films are uniformly laminated on a solid substrate.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達戒するため、この発明の超薄膜積層体の
製法は、高分子溶液を水面上に展開して超薄膜を生成さ
せ、この超薄膜を一旦仮支持基材の表面に接触させて仮
積層させたのち、固体基板面に転写するという構成をと
る。
In order to achieve the above object, the method for producing an ultra-thin film laminate of the present invention involves spreading a polymer solution on a water surface to generate an ultra-thin film, and once bringing this ultra-thin film into contact with the surface of a temporary support substrate. The structure is such that the layers are temporarily laminated and then transferred onto the surface of a solid substrate.

〔作用〕[Effect]

すなわち、本発明者らは、固体基板に均一に超薄膜が積
層された超薄膜積層体を得るために、一連の研究を重ね
た。その結果、まず、水面上に形威された超薄膜を一旦
仮支持基材表面に接触させ仮積層したのち、この仮積層
された超薄膜を固体基板面に転写すると、支持基材が固
体基板である超薄膜積層体が容易に得られることを見出
しこの発明に到達した。特に、上記仮支持基材を水中か
ら取り出す際に超薄膜を積層すると、仮支持基材と超薄
膜との間に水の層が形威されるため、超薄膜の固体基板
上への転写が非常に容易になる。
That is, the present inventors have conducted a series of studies in order to obtain an ultra-thin film laminate in which ultra-thin films are uniformly stacked on a solid substrate. As a result, firstly, the ultra-thin film formed on the water surface is brought into contact with the surface of the temporary support substrate and temporarily laminated, and then when this temporarily laminated ultra-thin film is transferred to the solid substrate surface, the support substrate is transferred to the solid substrate. The present invention was achieved by discovering that an ultra-thin film laminate can be easily obtained. In particular, when an ultra-thin film is laminated when the temporary support substrate is taken out of water, a layer of water is formed between the temporary support substrate and the ultra-thin film, which prevents the transfer of the ultra-thin film onto the solid substrate. becomes very easy.

この発明に用いられる高分子溶液は、ボリマーと展開溶
剤とを用いて得られる。
The polymer solution used in this invention is obtained using a polymer and a developing solvent.

上記ポリマーとしては、水面展開法で薄膜を形或するこ
とができる全てのものがあげられる。例えば、ボリプテ
ン,ポリベンテン,ポリメチルペンテン,ボリヘキセン
等のポリオレフイン系ポリマー、酢酸セルロース,ニト
ロセルロース等のセルロース誘導体、ボリフツ化ビニル
.ボリフツ化ビニリデン,ポリ塩化ビニル,ポリ塩化ビ
ニリデン等のハロゲン化ビニルポリマー、ポリメチルメ
タクリレート,ポリエチルメタクリレート等のアクリル
系ポリマー、芳香族および脂肪族ボリアミド、各種ポリ
イミドおよびその前駆体であるポリアミド酸、ボリスチ
レン、ポリカーボネート、ポリオルガノシロキサンおよ
びその誘導体、液晶ポリマー等があげられる。
The above-mentioned polymers include all those that can be formed into a thin film by a water surface spreading method. For example, polyolefin polymers such as polyptene, polybentene, polymethylpentene, and polyhexene, cellulose derivatives such as cellulose acetate and nitrocellulose, and vinyl polyfluoride. Vinyl halide polymers such as polyvinylidene difluoride, polyvinyl chloride, and polyvinylidene chloride, acrylic polymers such as polymethyl methacrylate and polyethyl methacrylate, aromatic and aliphatic polyamides, various polyimides and their precursor polyamic acids, and polystyrene. , polycarbonate, polyorganosiloxane and its derivatives, liquid crystal polymer, etc.

上記展開溶剤としては、上記ポリマーを溶解する有a溶
剤であれば特に限定するものではない。
The developing solvent is not particularly limited as long as it is an aqueous solvent that dissolves the polymer.

ただし、一種類の溶剤で充分な水面展開性が得られない
場合には展開助剤として第二の有機溶剤を添加すること
も有効である。このような展開助剤としては、脂肪族,
脂環族または芳香族のケトンエステル,アルコール,ア
ミン,アルデヒド、バーオキサイドならびにこれらの混
合物等があげられる。
However, if sufficient water surface developability cannot be obtained with one type of solvent, it is also effective to add a second organic solvent as a development aid. Such developing aids include aliphatic,
Examples include alicyclic or aromatic ketone esters, alcohols, amines, aldehydes, peroxides, and mixtures thereof.

上記ボリマー(A)と展開溶剤(展開助剤を含む)(B
)の混合比率は、重量比でA/B=0.5/ 9 9.
 5〜3 0/7 0に設定するのが好ましい。
The above polymer (A) and developing solvent (including developing aid) (B)
The mixing ratio of ) is A/B=0.5/9 by weight.
It is preferable to set it to 5 to 30/70.

この発明の超薄膜積層体の製法は、例えば1ぎのように
して行われる。すなわち、上記高分子溶液を水面上に展
開して超薄膜を生成させ、その生或超薄膜を仮支持基材
表面に付着させたのち、固体基板表面に超薄膜を転写さ
せることにより行われる。上記超薄膜の生戒ないし仮支
持基材面への付着および固体基板表面への転写は、図面
に示すように、高分子溶液を充填した定量ボンプlのノ
ズル2から高分子溶液を水槽3内の水面4上に放出し、
水面4上に生或された超薄膜5を、第■,第2,第3の
ローラ6,7.8により、矢印A方向に連続的に移行す
るシート状仮支持基材9の支持基材表面に付着させる。
The method for manufacturing the ultra-thin film laminate of the present invention is carried out, for example, as described in the following. That is, the above-mentioned polymer solution is spread on a water surface to form an ultra-thin film, the resulting ultra-thin film is attached to the surface of a temporary support base material, and then the ultra-thin film is transferred onto the surface of a solid substrate. Attachment of the ultra-thin film to the surface of the temporary support substrate and transfer to the surface of the solid substrate are carried out by pouring the polymer solution into the water tank 3 from the nozzle 2 of the metering pump 1 filled with the polymer solution, as shown in the drawing. released onto the water surface 4,
The support base material of the sheet-like temporary support base material 9 is transferred continuously in the direction of the arrow A by the first, second, and third rollers 6, 7.8. Adhere to the surface.

つぎに、ローラ8および押さえローラ12間を矢印B方
向に移行するシート状基材1lの下面に接着された固体
基板IO表面に、上記超薄膜5が仮積層された仮支持基
材9を接触させて上記固体基板10表面に超薄膜5を転
写するという方法により行われる。このような連続製膜
方式において、仮支持基材9を、図示のように、一旦水
中に導入しローラ7を経て水中から取り出される際に仮
支持基材9表面に超薄膜5を仮積層する。このような工
程を経ると、仮支持基材9と超薄膜5との間に水の層が
形戊されるため、超薄膜5は直接には仮支持基材9とは
密着してない。したがって、つぎの工程の超薄膜5の固
体基FilOへの転写が容易に行われる。
Next, the temporary support base material 9 on which the ultra-thin film 5 is temporarily laminated is brought into contact with the surface of the solid substrate IO adhered to the lower surface of the sheet-like base material 1l, which moves between the rollers 8 and the press rollers 12 in the direction of arrow B. The ultra-thin film 5 is then transferred onto the surface of the solid substrate 10. In such a continuous film forming method, as shown in the figure, the temporary support base material 9 is once introduced into water and when taken out from the water via the rollers 7, the ultra-thin film 5 is temporarily laminated on the surface of the temporary support base material 9. . After such a step, a layer of water is formed between the temporary support base material 9 and the ultra-thin film 5, so the ultra-thin film 5 is not directly in close contact with the temporary support base material 9. Therefore, the next step of transferring the ultra-thin film 5 onto the solid base FilO is easily performed.

このように、上記製法では、固体基板10に超薄膜5を
積層する際に、まず、仮支持基材9表面に超薄膜5を仮
積層し、つぎに固体基板IO表面に超薄膜5を積層する
ため、支持基材が固体基板10の均質な超薄膜積層体を
連続的に製造することができる。
In this way, in the above manufacturing method, when laminating the ultra-thin film 5 on the solid substrate 10, the ultra-thin film 5 is first temporarily laminated on the surface of the temporary support base material 9, and then the ultra-thin film 5 is laminated on the surface of the solid substrate IO. Therefore, a homogeneous ultra-thin film laminate whose supporting base material is the solid substrate 10 can be continuously manufactured.

なお、上記固体基板10の移動速度は、仮支持基材9の
移動速度と同じであることが好ましい。
Note that the moving speed of the solid substrate 10 is preferably the same as the moving speed of the temporary support base material 9.

すなわち、上記両者の移動速度が互いに異なると、固体
基板10上に転写された超薄膜5に皺,亀裂等が生じる
からである。
That is, if the moving speeds of the two are different from each other, wrinkles, cracks, etc. will occur in the ultra-thin film 5 transferred onto the solid substrate 10.

また、上記固体基板10の移行方法としては、図示のよ
うに、固体基板10をシート状基板11表面に粘着ある
いは吸引等の方法により貼付し、上記シート状基材1■
を移行させる方法があげられるが、特にこれに限るもの
ではない。
Further, as a method of transferring the solid substrate 10, as shown in the figure, the solid substrate 10 is attached to the surface of the sheet-like substrate 11 by a method such as adhesive or suction, and the above-mentioned sheet-like substrate 1
An example of this method is to migrate the data, but the method is not particularly limited to this method.

そして、上記のような超FjIH!5を仮積層する仮支
持基材9としては、フィルム状物等があげられる。
And super FjIH like above! Examples of the temporary support base material 9 on which the materials 5 are temporarily laminated include a film-like material.

さらに、上記仮支持基材9に仮接着された超薄膜5を付
着一体化する固体基板10としては、プラスチック板,
金属板,無機結晶板,セラミック板,ガラス板等があげ
られる。
Further, as the solid substrate 10 on which the ultra-thin film 5 temporarily adhered to the temporary support base material 9 is attached and integrated, a plastic plate,
Examples include metal plates, inorganic crystal plates, ceramic plates, and glass plates.

また、上記仮支持基材9上に仮積層された超薄B’J5
を固体基板10上に転写する際に用いられるローラ8の
ローラ形戒材料としては、特に限定するものではないが
、金属,樹脂組戒物等の弾性体等が用いられる。特に、
上記仮支持基材9上に仮積層された超薄膜5を付着一体
化する固体基板IO表面に凹凸が存在する場合、ローラ
8の形或材料として弾性体を用いることが好ましい。す
なわち、ローラ8として金属等の高硬度のローラを用い
ると、固体基板IO表面に凹凸が存在する場合、超薄膜
5がその凹凸に追随積層されないため、転写積層が良好
になされなくなるからである。
In addition, the ultra-thin B'J5 temporarily laminated on the temporary support base material 9
The roller-shaped material of the roller 8 used to transfer the image onto the solid substrate 10 is not particularly limited, but an elastic material such as metal or resin material can be used. especially,
If there are irregularities on the surface of the solid substrate IO to which the ultra-thin film 5 temporarily laminated on the temporary support base material 9 is attached and integrated, it is preferable to use an elastic body as the shape or material of the roller 8. That is, if a high-hardness roller made of metal or the like is used as the roller 8, if there are irregularities on the surface of the solid substrate IO, the ultra-thin film 5 will not be laminated following the irregularities, and the transfer lamination will not be performed properly.

そして、上記弾性体としては、凹凸が存在する固体基板
10表面に超薄膜5が追随するものであればよく、J 
IS−K−6 3 0 1により測定した硬度がJrS
.50゜以下、好ましくはJIS,30’以下のゴムを
用いるのが望ましい。例えば、ジエン系ゴム,オレフイ
ン系ゴム,アクリル系ゴム,ウレタン系ゴム.多硫化系
ゴム,シリコン系ゴム,フッ素系ゴム,天然ゴム等が用
いられる。または、上記弾性体の硬度は適度に低いほう
が固体基板10上への転写積層性が良好であり、弾性率
100kg/mm”以下、好ましくは50kg/mn”
以下の発泡体を用いるのが望ましい。例えば、ポリエチ
レン系フォーム,ボリスチレン系フォームポリウレタン
系フォーム.塩化ビニル系フォーム,ポリビニルアルコ
ール系フォーム,ユリア樹脂フォーム,エポキシ樹脂フ
ォーム,フェノール樹脂フォーム,合或ゴムフォーム等
のプラスチックフォーム等が用いられる。
The elastic body may be one that allows the ultra-thin film 5 to follow the surface of the solid substrate 10 where there are irregularities, and J
Hardness measured by IS-K-6 301 is JrS
.. It is desirable to use rubber with an angle of 50° or less, preferably JIS, 30' or less. For example, diene rubber, olefin rubber, acrylic rubber, urethane rubber. Polysulfide rubber, silicone rubber, fluorine rubber, natural rubber, etc. are used. Alternatively, if the hardness of the elastic body is moderately low, the transfer and lamination properties on the solid substrate 10 are better, and the elastic modulus is 100 kg/mm" or less, preferably 50 kg/mn".
It is desirable to use the following foams: For example, polyethylene foam, polystyrene foam, polyurethane foam. Plastic foams such as vinyl chloride foam, polyvinyl alcohol foam, urea resin foam, epoxy resin foam, phenol resin foam, and rubber foam are used.

上記弾性体であるローラ形或社料は、これをそのまま用
いてローラ8を形成してもよいし、またローラ8表面に
巻き付けてもよい。そして、上記弾性体の厚みは、薄膜
5を転写積層する固体基板10上の凹凸の高さおよび弾
性体の材質等により異なるが、IM以上、好ましくは1
0mm以上である。
The roller-shaped elastic material or material may be used as it is to form the roller 8, or may be wound around the surface of the roller 8. The thickness of the elastic body varies depending on the height of the unevenness on the solid substrate 10 on which the thin film 5 is transferred and laminated, the material of the elastic body, etc., but is more than IM, preferably 1
It is 0 mm or more.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の超薄膜積層体の製法では、水
面上に形戒された超薄膜を一旦仮支持基材表面に接触さ
せて仮積層させたのち、固体基板面に超薄膜を転写させ
て付着一体化させるため、支持基材が固体W+fflで
あっても、その固体基板上に均質な状態の超薄膜積層体
を連続的に製造することができる。
As described above, in the method for producing an ultra-thin film laminate of the present invention, the ultra-thin film formed on the water surface is temporarily laminated by contacting the surface of the temporary support substrate, and then the ultra-thin film is transferred to the surface of the solid substrate. Because of this, even if the supporting base material is solid W+ffl, a homogeneous ultra-thin film laminate can be continuously manufactured on the solid substrate.

つぎに、実施例について比較例と併せて説明する。Next, examples will be described together with comparative examples.

〔実施例1] 第1図に示すような幅60cm,長さloocmのステ
ンレス製の水槽3を準備し、これに支持液体としてイオ
ン交換水を充満させた。また、高分子溶液として、3.
3’,4.4’ −ビフエニルテトラカルボン酸二無水
物O.lモルと、2.2−(4.4′−ビス(p−アミ
ノフエノキシ)ジフエニル〕へキサフルオ口プロパン0
. 1モルとヲ用いて、ジメチルアセトアミF中で濃度
10重量%のポリアミド酸を合或した。このようにして
得られたボリアミド酸をボリマー濃度5重景%のジメチ
ルアセトアミド/アセトフエノン−1/1 (重量比)
となるように調整し、このポリアミド酸溶液を定量ボン
ブ1に供給しノズル2から水面4上に1.0ml/mi
nの流速で放出して、膜厚100人のポリアミド酸超薄
膜5を生成した。つぎに、仮支持基材として厚み25μ
mのポリブロビレン製フィルム9を、第1,第2,第3
のローラ6,7.8により12m/minの速度で連続
的に移行させながら、これに上記生戒ポリアミド酸超薄
膜5を接触させ仮接着した。つぎに、ベルト状支持基材
1lに貼付された酸化インジウム・スズ(IT○)蒸着
ガラス板(30順X40mm,厚み3閣.電極幅200
μm,間隔50μm)10を矢印B方向に上記仮支持基
材9と等速で移行させ、ローラ8と押さえローラl2と
の間でボリアミド酸超薄膜5を仮支持基材9から固体基
板10へ転写し付着一体化させてポリアミド酸超薄膜積
層体を製造した。得られた超薄膜積層体はポリアミド酸
超薄膜5が固体基板10全面に均一に積層されたもので
あった。
[Example 1] A stainless steel water tank 3 having a width of 60 cm and a length of loo cm as shown in FIG. 1 was prepared, and was filled with ion-exchanged water as a supporting liquid. Also, as a polymer solution, 3.
3',4.4'-biphenyltetracarboxylic dianhydride O. 1 mole and 0
.. 1 mol of polyamic acid was used to synthesize polyamic acid at a concentration of 10% by weight in dimethylacetamide F. The thus obtained polyamic acid was converted into dimethylacetamide/acetophenone-1/1 (weight ratio) with a polymer concentration of 5%.
This polyamic acid solution is supplied to the metering bomb 1 and applied from the nozzle 2 onto the water surface 4 at a rate of 1.0 ml/mi.
The polyamic acid was discharged at a flow rate of n to produce an ultra-thin polyamic acid film 5 with a thickness of 100 ml. Next, as a temporary support base material, a thickness of 25μ
The polypropylene film 9 of
While continuously moving the film at a speed of 12 m/min using the rollers 6, 7.8, the ultra-thin polyamic acid film 5 was brought into contact with it and temporarily bonded. Next, an indium tin oxide (IT○) vapor-deposited glass plate (30 mm x 40 mm, thickness 3 mm, electrode width 200 mm) was attached to 1 liter of belt-shaped support base material.
μm, interval 50 μm) 10 in the direction of arrow B at a constant speed with the temporary support base material 9, and between the roller 8 and the pressing roller l2, the polyamic acid ultra-thin film 5 is transferred from the temporary support base material 9 to the solid substrate 10. An ultra-thin polyamic acid film laminate was manufactured by transferring and adhering the mixture. The obtained ultra-thin film laminate was one in which the polyamic acid ultra-thin film 5 was uniformly laminated over the entire surface of the solid substrate 10.

〔実施例2〕 高分子溶液であるポリアミド酸溶液をポリマー濃度5重
量%のボリ塩化ビニルのシクロヘキサノン溶液に、IT
O蒸着ガラス仮をシリコンウエハー(直径3インチ(7
.62cm>)に代えた。また、高分子溶液の水面上へ
の供給量を1.5rd/minに、製膜速度を5m/m
inに変えた。それ以外は実施例lと同様にして厚み7
00人のポリ塩化ビニル超薄膜がシリコンウエハーに積
層された積層体を得た。得られた積層体は、ポリ塩化ビ
ニル超薄膜がシリコンウエハー全面に均一に積層された
ものであった。
[Example 2] A polyamic acid solution, which is a polymer solution, was added to a cyclohexanone solution of polyvinyl chloride with a polymer concentration of 5% by weight.
A silicon wafer (3 inches in diameter (7
.. 62cm>). In addition, the supply rate of the polymer solution onto the water surface was set to 1.5rd/min, and the film forming speed was set to 5m/m.
Changed to in. Other than that, the thickness was 7 as in Example 1.
A laminate in which an ultra-thin polyvinyl chloride film of 0.000% was laminated on a silicon wafer was obtained. The obtained laminate was one in which an ultra-thin polyvinyl chloride film was uniformly laminated over the entire surface of the silicon wafer.

(実施例3) 高分子溶液であるポリアミド酸溶液を濃度5重量%のポ
リメチノレベンテンのシクロヘキセン?容液に、ITO
蒸着ガラス板を通常のガラス板(150+n+nX15
0n+m,厚み2mm)に代えた。また、高分子溶液の
水面上への供給量を1.3ml/minに、製膜速度を
8m/minに変えた。それ以外は実施例1と同様にし
て厚み300人のポリメチルベンテン超薄膜がガラス板
に積層された積層体を得た。得られた積層体は、ポリメ
チルペンテン超薄膜かガラス仮全面に均一に積層された
ものであった。
(Example 3) Polyamic acid solution, which is a polymer solution, is cyclohexene of polymethynolebenthene with a concentration of 5% by weight. Add ITO to the liquid
The vapor-deposited glass plate was replaced with a normal glass plate (150+n+nX15
0n+m, thickness 2mm). Further, the amount of the polymer solution supplied onto the water surface was changed to 1.3 ml/min, and the film forming speed was changed to 8 m/min. Other than that, a laminate was obtained in the same manner as in Example 1, in which an ultra-thin polymethylbentene film having a thickness of 300 mm was laminated on a glass plate. The obtained laminate was a polymethylpentene ultra-thin film uniformly laminated on the entire temporary surface of the glass.

[実施例4] ■TO蒸着ガラス板を厚みは同じで積層面積30rrm
×40m[llを200mn+X200mmに変えた。
[Example 4] ■ TO vapor-deposited glass plates with the same thickness and laminated area of 30 rrm
×40m [ll was changed to 200mn+X200mm.

それ以外は実施例1と同様にして厚み100入のボリア
ミド酸超薄膜がITO蒸着ガラス板に積層された積層体
を得た。得られた積層体は、ボリアミド酸超薄膜がIT
O蒸着ガラス板全面に均一に積層されたものであった。
Other than that, a laminate was obtained in the same manner as in Example 1, in which an ultra-thin polyamic acid film having a thickness of 100 mm was laminated on an ITO vapor-deposited glass plate. In the obtained laminate, the polyamic acid ultrathin film is IT
The O vapor-deposited glass plate was uniformly laminated over the entire surface.

〔比較例〕[Comparative example]

ITO基板(30amX40mm,厚み3mm)をロー
ラ6とローラ7との間で仮支持基材であるボリプロビレ
ン製フィルム9表面に貼付し、転写による積層を行わず
に直接水面上に生成した超薄膜をITO基板に積層した
。そして、製膜条件等は実施例lと同様にして超薄膜積
層体を得た。このような方法ではITO基板がロール7
を良好に通過せず、装置およびフィルムの振動により超
薄膜の均一性が低下した。さらに、得られた積層体にお
いて超薄膜に多数の皺が確認され、均質な積層体が得ら
れなかった。
An ITO substrate (30 am x 40 mm, thickness 3 mm) is attached to the surface of polypropylene film 9, which is a temporary support base material, between rollers 6 and 7, and the ultra-thin film that is formed directly on the water surface without being laminated by transfer is coated with ITO. Laminated on the substrate. Then, an ultra-thin film laminate was obtained using the same film forming conditions as in Example 1. In this method, the ITO substrate is rolled 7
The uniformity of the ultra-thin film decreased due to vibration of the device and film. Furthermore, many wrinkles were observed in the ultra-thin film in the obtained laminate, and a homogeneous laminate could not be obtained.

〔実施例5〕 仮支持基材9上の超薄膜5を固体基板lO上に転写する
ローラ8の表面形戒材料として、ボリブロビレンフォー
ム(弾性率3kg/+nm”,厚み工Omm)を用い、
また超薄膜5を積層する固体基板lOとして積層表面に
lttmの凹凸が存在するITO基板を用いた。それ以
外は実施例1と同様にして厚み100人のポリアミド酸
超薄膜が凹凸の存在する■TO基板上に積層された積層
体が得られた。得られた積層体はボリアミド酸超薄膜が
ITO基仮全面に均一に積層されたものであった。
[Example 5] Polypropylene foam (elastic modulus 3 kg/+nm", thickness 0 mm) was used as the surface shape material of the roller 8 that transferred the ultra-thin film 5 on the temporary support base material 9 onto the solid substrate 10. ,
Further, as the solid substrate 10 on which the ultra-thin film 5 is laminated, an ITO substrate having lttm irregularities on the laminated surface was used. Other than that, a laminate was obtained in the same manner as in Example 1, in which an ultra-thin polyamic acid film having a thickness of 100 was laminated on a TO substrate having irregularities. The obtained laminate was one in which an ultra-thin polyamic acid film was uniformly laminated over the entire temporary surface of the ITO base.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示す説明図である。 1・・・定量ポンプ 2・・・ノズル 3・・・水槽 
4・・・水面 5・・・超薄膜 9・・・仮支持基材 
10・・・固体基板
The drawings are explanatory diagrams showing one embodiment of the present invention. 1... Metering pump 2... Nozzle 3... Water tank
4...Water surface 5...Ultra-thin film 9...Temporary support base material
10...solid substrate

Claims (7)

【特許請求の範囲】[Claims] (1)高分子溶液を水面上に展開して超薄膜を生成させ
、この超薄膜を一旦仮支持基材の表面に接触させて仮積
層させたのち、固体基板面に転写することを特徴とする
超薄膜積層体の製法。
(1) A polymer solution is spread on a water surface to form an ultra-thin film, and this ultra-thin film is temporarily laminated by contacting the surface of a temporary support base material, and then transferred to a solid substrate surface. A manufacturing method for ultra-thin film laminates.
(2)上記仮積層が、上記仮支持基材を水中に導入した
のち水面から取り出す際に、水面上に生成された超薄膜
を仮支持基材面に積層させることにより行われる請求項
(1)記載の超薄膜積層体の製法。
(2) Claim (1) wherein the temporary lamination is performed by laminating an ultra-thin film formed on the water surface on the surface of the temporary support base material when the temporary support base material is introduced into water and then taken out from the water surface. ) The method for manufacturing the ultra-thin film laminate described in
(3)仮支持基材が、フィルム状基材である請求項(1
)または(2)記載の超薄膜積層体の製法。
(3) Claim (1) wherein the temporary supporting base material is a film-like base material.
) or the method for producing an ultra-thin film laminate described in (2).
(4)固体基板が、プラスチック板、金属板、無機結晶
板、セラミック板、ガラス板である請求項(1)ないし
(3)のいずれか一項に記載の超薄膜積層体の製法。
(4) The method for producing an ultra-thin film laminate according to any one of claims (1) to (3), wherein the solid substrate is a plastic plate, a metal plate, an inorganic crystal plate, a ceramic plate, or a glass plate.
(5)仮支持基材上の超薄膜を固体基板面上に転写する
際に用いられる治具が弾性体である請求項(1)ないし
(4)のいずれか一項に記載の超薄膜積層体の製法。
(5) The ultra-thin film laminate according to any one of claims (1) to (4), wherein the jig used when transferring the ultra-thin film on the temporary support base material onto the solid substrate surface is an elastic body. How the body is made.
(6)上記弾性体がゴムによつて構成され、上記ゴムが
JIS−K−6301の測定により硬度50゜以下であ
る請求項(5)記載の超薄膜積層体の製法。
(6) The method for producing an ultra-thin film laminate according to (5), wherein the elastic body is made of rubber, and the rubber has a hardness of 50° or less as measured according to JIS-K-6301.
(7)上記弾性体が発泡体によつて構成され、上記発泡
体が弾性率100kg/mm^2以下である請求項(5
)記載の超薄膜積層体の製法。
(7) Claim (5) wherein the elastic body is made of a foam, and the foam has an elastic modulus of 100 kg/mm^2 or less.
) The method for manufacturing the ultra-thin film laminate described in
JP2085119A 1989-06-12 1990-03-31 Manufacturing method of ultra-thin laminate Expired - Lifetime JP2881014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085119A JP2881014B2 (en) 1989-06-12 1990-03-31 Manufacturing method of ultra-thin laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-149928 1989-06-12
JP14992889 1989-06-12
JP2085119A JP2881014B2 (en) 1989-06-12 1990-03-31 Manufacturing method of ultra-thin laminate

Publications (2)

Publication Number Publication Date
JPH0396348A true JPH0396348A (en) 1991-04-22
JP2881014B2 JP2881014B2 (en) 1999-04-12

Family

ID=26426149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085119A Expired - Lifetime JP2881014B2 (en) 1989-06-12 1990-03-31 Manufacturing method of ultra-thin laminate

Country Status (1)

Country Link
JP (1) JP2881014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878245A2 (en) * 1997-05-15 1998-11-18 Catalysts & Chemicals Industries Co., Ltd. Thin film-forming method and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878245A2 (en) * 1997-05-15 1998-11-18 Catalysts & Chemicals Industries Co., Ltd. Thin film-forming method and apparatus therefor
EP0878245A3 (en) * 1997-05-15 2000-11-02 Catalysts & Chemicals Industries Co., Ltd. Thin film-forming method and apparatus therefor

Also Published As

Publication number Publication date
JP2881014B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
EP1726613B1 (en) Honeycomb composite film, and method for producing the same
CN100513502C (en) Laminating method for adhesive layer
KR960029835A (en) Method for manufacturing liquid crystal cell and apparatus for manufacturing the same
JP2004533654A5 (en)
JP2007004155A (en) Anti-reflection film and method for manufacturing the same
TW201100202A (en) Holding pad
JP2014193989A (en) Film, composite, film laminate, method for producing film, and etching method
JPH0396348A (en) Manufacture of extrathin film laminate
EP2191960A1 (en) Multilayered film and process for producing the same
JPS6141122A (en) Electrode substrate for liquid crystal display panel
JPH11333866A (en) Epoxy optical sheet and its production
JPH02207870A (en) Production of ultra thin film laminated body
JPH0618898A (en) Liquid crystal element
JPH0338278A (en) Preparation of ultrathin film laminate
JP2001215302A (en) Optical resin substrate
JPH09120069A (en) Oriented-film formation of liquid crystal display device
JPS6340285B2 (en)
JPH02245234A (en) Device for continuously forming ultrathin film
JP3681162B2 (en) Powder monolayer continuous production equipment
HK1047342A1 (en) Method for producing optical storage media
KR100212024B1 (en) Preparation of disc roll for transdermal patch and apparatus thereof
JPS5984516A (en) Continuous thin film pattern forming apparatus
JPH01245031A (en) Oriented high polymer thin film and production thereof
TWI273925B (en) Silt nozzle apparatus
JP2002220570A (en) Pressure-sensitive adhesive double coated tape for fixing rubbing cloth