JPH01245031A - Oriented high polymer thin film and production thereof - Google Patents

Oriented high polymer thin film and production thereof

Info

Publication number
JPH01245031A
JPH01245031A JP7300788A JP7300788A JPH01245031A JP H01245031 A JPH01245031 A JP H01245031A JP 7300788 A JP7300788 A JP 7300788A JP 7300788 A JP7300788 A JP 7300788A JP H01245031 A JPH01245031 A JP H01245031A
Authority
JP
Japan
Prior art keywords
thin film
film
water surface
aromatic
high polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7300788A
Other languages
Japanese (ja)
Inventor
Yasuo Fujimura
保夫 藤村
Noboru Masutani
増谷 昇
Isoji Sakai
酒井 五十治
Tsunetaka Matsumoto
松本 恒隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP7300788A priority Critical patent/JPH01245031A/en
Publication of JPH01245031A publication Critical patent/JPH01245031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE:To obtain a thin film in which molecular orientation properties are readily and homogeneously imparted to a film having a thickness of submicrons or less, by taking off a thin film at a high speed and orienting molecules in developing a high polymer solution on the surface of water. CONSTITUTION:A thin film in which a high polymer material is molecularly oriented and dichroic ratio at a specific infrared wavelength is >=1.05 in a thin film of 0.003-0.1mum thickness thereof obtained by a water surface developing method. A polyamic acid expressed by formula I or polyamide expressed by formula II [R1 is aromatic tetracarboxylic acid residue; R2 is H, 1-30C aliphatic, alicyclic or aromatic monofunctional group or Si(R4)3; R4 is 1-6C aliphatic, alicyclic or aromatic group; R3 is aromatic diamine residue] is used as the high polymer material. In the water surface developing, a high polymer solution is continuously fed to the water surface and formed into a film at a spontaneous developing speed or more.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分子配向性を有する高分子薄膜に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polymer thin film having molecular orientation.

〔従来の技術〕[Conventional technology]

高分子フィルムの配向処理は、機械的強度の増加、電気
的、光学的異方性付与のための重要な手段である。ポリ
エステルなどの熱可塑性樹脂においては、フィルムを加
熱下で一軸あるいは二輪方向に延伸することによって目
的の配向処理が行なえ、また、ポリビニルアルコールの
ような親水性高分子では、フィルムを吸水、膨潤させた
状態で延伸することによっても分子配向したフィルムを
得ることができる。しかし、これら延伸法による配向処
理は、厚み1μm以上のフィルムにおいて利用できる手
法であり、サブミクロン以下の厚さのフィルム、コーテ
イング物に対しては利用することができない。一方、プ
ラスチックフィルムの表面だけを効率よく配向させる方
法としてラビング処理がある。これは、フィルム表面を
レーヨン等の布で一方向にこするという簡便な方法であ
り、例えば液晶表示セルにおいて、液晶分子を所定の方
向に配列させるためには、基板上に設けられたポリイミ
ドなどの薄層コーティング表面をラビング処理すること
によって目的が達せられている。このように、ラビング
処理は、平滑基板上のフィルムに対しては、その厚みに
関係なく利用できる配向処理である。しかし、このラビ
ング処理に関しては、定量的な評価が困難で表面からど
の程度の深さまでが配向しているのか、あるいはどの程
度配向しているかという点については全く不明である。
Orientation treatment of polymer films is an important means for increasing mechanical strength and imparting electrical and optical anisotropy. For thermoplastic resins such as polyester, the desired orientation process can be performed by stretching the film uniaxially or biaxially under heating, and for hydrophilic polymers such as polyvinyl alcohol, the film can be swollen by absorbing water. A molecularly oriented film can also be obtained by stretching the film in the same state. However, the orientation treatment by these stretching methods is a method that can be used for films with a thickness of 1 μm or more, but cannot be used for films or coated products with a thickness of submicron or less. On the other hand, rubbing treatment is a method for efficiently orienting only the surface of a plastic film. This is a simple method of rubbing the film surface in one direction with a cloth such as rayon. For example, in a liquid crystal display cell, in order to align liquid crystal molecules in a predetermined direction, polyimide etc. The objective is achieved by rubbing the surface with a thin layer of coating. In this way, rubbing treatment is an alignment treatment that can be used for films on smooth substrates, regardless of their thickness. However, it is difficult to quantitatively evaluate this rubbing treatment, and it is completely unclear how deep from the surface the orientation is, or how much the orientation is occurring.

また、表面近傍のみの処理であるため、フィルム全体に
配向性、異方性を与えることはできない。
Furthermore, since the treatment is performed only in the vicinity of the surface, it is not possible to impart orientation and anisotropy to the entire film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、従来の延伸法、ラビング処理では、サブミ
クロン以下の厚みのフィルムに均一に分子配向性を付与
することは困難であった。
As described above, it is difficult to uniformly impart molecular orientation to a film having a thickness of submicron or less using conventional stretching methods and rubbing treatments.

ところで、ポリマーの超薄膜を形成する方法としては、
ポリマー溶液を水面上に展開させて脱溶媒させた後、こ
れを基材に付着させる水面展開法が知られている。この
方法は、従来、酸素富化膜のスキン層薄膜を得るために
、ポリメチルペンテン(特開昭55−41808号公報
)、シリコーン系ポリマー(特開昭57−107204
号公報)等のポリマーで利用されている。一方、薄膜の
分子配向という観点からは、従来の水面展開法では、水
の表面に高分子溶液が自発的に拡がり、脱溶媒してフィ
ルム化するだけであり、分子配向性を付与することはで
きなかった。
By the way, as a method for forming an ultra-thin film of polymer,
A water surface spreading method is known in which a polymer solution is spread on a water surface, the solvent is removed, and then the polymer solution is attached to a substrate. Conventionally, this method uses polymethylpentene (Japanese Unexamined Patent Publication No. 55-41808), silicone polymer (Japanese Unexamined Patent Publication No. 57-107204) to obtain a thin skin layer of an oxygen-enriched membrane.
It is used in polymers such as On the other hand, from the viewpoint of molecular orientation in thin films, in the conventional water surface development method, the polymer solution only spreads spontaneously on the water surface, removes the solvent, and forms a film, and does not impart molecular orientation. could not.

本発明は、このような事情に鑑みなされたもので、水面
展開法を応用し、均一な膜厚であって分子配向した高分
子薄膜およびこれを容易に製造する方法の提供をその目
的とするものである。
The present invention was made in view of the above circumstances, and an object of the present invention is to apply a water surface spreading method to provide a polymer thin film with uniform thickness and molecular orientation, and a method for easily manufacturing the same. It is something.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、高分子溶液を水面上に展開して薄膜を形成す
る際、その溶液が水面上で自発的に拡がる速度よりも速
い速度で、上記薄膜を連続的に引き取り、それによって
上記薄膜に分子配向性を付与するものである。
In the present invention, when a polymer solution is spread on a water surface to form a thin film, the thin film is continuously drawn off at a faster rate than the solution spontaneously spreads on the water surface, thereby forming a thin film. It imparts molecular orientation.

〔作用〕[Effect]

これまで、水面展開法によって連続的に薄膜を作製する
ことは、水面上に高分子溶液を供給し、その供給高分子
溶液が自発的に拡がり、溶媒が蒸発して固化し、それに
よって生成した薄膜を基材表面に移し取ることにより行
われていた。本発明者らは、この水面展開法で得られた
薄膜が水面上に単独で浮遊していること、ならびに脱溶
媒過程で高固形分のゲル状層として水面に存在すること
に着目し鋭意検討した結果、高分子溶液の自発的展開速
度よりも速い速度で生成薄膜を引き取ると、その薄膜に
分子配向性を付与できることを見いだし本発明に到達し
た。
Until now, continuous production of thin films by the water surface spreading method has been achieved by supplying a polymer solution on the water surface, spontaneously spreading the supplied polymer solution, evaporating the solvent and solidifying it, thereby forming a thin film. This was done by transferring a thin film onto the surface of a substrate. The present inventors focused on the fact that the thin film obtained by this water surface spreading method is floating independently on the water surface, and that it exists as a gel-like layer with a high solid content on the water surface during the solvent removal process, and conducted intensive studies. As a result, they discovered that molecular orientation can be imparted to a formed thin film by drawing it off at a speed faster than the spontaneous expansion speed of the polymer solution, and the present invention was achieved.

水面展開法によって作製される薄膜は、ポリマ一種、溶
媒、添加剤、展開条件によって異なるが、概して30人
〜1μmの膜厚である。一般に、高分子フィルムの配向
性は、X線回折、複屈折率などの測定によって評価され
るが、このような超薄膜に対しては簡便にその測定法を
応用することができない。そこで、本発明者らは、かか
る高分子超薄膜の配向性の尺度として、赤外二色性によ
る評価が、操作性、精度の面から好都合と判断しこれを
用いた。特に赤外分光装置FT−I Rを用いた二色比
の評価について説明すると、試料フィルムと入射赤外光
の間に偏光子をセットし、その偏光軸を試料の配向軸方
向に対して0°、90゜にセットして吸収スペクトルを
観測する。第1図にモデル的なスペクトルを示した。図
において、曲線Aが吸光度Abs//を示し、曲線Bが
吸光度Abs±を示している。特定の吸収波長において
得られる上記吸光度の比(A b s ///A b 
s上)が赤外二色比である。この値は、無配向フィルム
ではlとなる。この点に関し、実際に、ポリマー溶液を
キャスティングして作製したフィルムは無配向となるた
め、上記赤外二色比について、精度よ<1.00の値が
得られた。なお、二色比の評価については、紫外光を用
いた二色比の測定も利用することができるが、・概して
赤外光領域の方が定量性の高いピークが多く、かつFT
−IRという高感度、高精度の評価装置を利用できるこ
とから赤外光が有利である。本発明では、このような観
点から、薄膜の分子配向性の目安として赤外二色比の値
を用いている。しかし、この値は、あくまで相対的な値
であり、異種ポリマー間の数値を比較することは難しい
The thickness of the thin film produced by the water surface spreading method varies depending on the type of polymer, solvent, additives, and developing conditions, but the film thickness is generally 30 μm to 1 μm. Generally, the orientation of polymer films is evaluated by measuring X-ray diffraction, birefringence, etc., but these measurement methods cannot be easily applied to such ultra-thin films. Therefore, the present inventors determined that infrared dichroism evaluation is convenient as a measure of the orientation of such ultra-thin polymer films in terms of operability and accuracy, and used this evaluation. In particular, to explain the evaluation of dichroic ratio using an infrared spectrometer FT-IR, a polarizer is set between the sample film and the incident infrared light, and its polarization axis is set at 0 with respect to the orientation axis direction of the sample. 90° and observe the absorption spectrum. Figure 1 shows a model spectrum. In the figure, curve A shows absorbance Abs//, and curve B shows absorbance Abs±. The ratio of the above absorbances obtained at a specific absorption wavelength (A b s ///A b
s) is the infrared dichroic ratio. This value is 1 for a non-oriented film. Regarding this point, since the film actually produced by casting a polymer solution is non-oriented, a value of accuracy <1.00 was obtained for the above-mentioned infrared dichroic ratio. Regarding the evaluation of dichroic ratio, measurement of dichroic ratio using ultraviolet light can also be used; however, in general, there are more peaks with higher quantitative properties in the infrared light region, and FT
-Infrared light is advantageous because it allows use of a highly sensitive and highly accurate evaluation device called IR. In the present invention, from this viewpoint, the value of the infrared dichroic ratio is used as a measure of the molecular orientation of the thin film. However, this value is only a relative value, and it is difficult to compare values between different types of polymers.

本発明は、水面展開法で薄膜化することのできる系につ
いては全て適応することができるものと考えられる。す
なわち、ある展開溶液を適切な溶液供給手段によって水
の表面に供給すると、自発的に展開し、ある速度(Am
/m1n)で固化した薄膜が前方に進行して行く。一般
には、上記生成薄膜をフィルム状の基材と接触させ、水
面上から引き上げることが行われており、この際、基材
フィルムの移動速度も上記速度Aと略同じ速度のAm/
m1nに設定し薄膜にストレスやたるみがないようにコ
ントロールされる(例えば、特開昭58−3831)。
It is believed that the present invention can be applied to all systems that can be made into thin films by the water surface development method. That is, when a certain developing solution is supplied to the surface of water by an appropriate solution supplying means, it will develop spontaneously and at a certain speed (Am
/m1n), the thin film solidified moves forward. Generally, the produced thin film is brought into contact with a film-like base material and pulled up from the water surface, and at this time, the moving speed of the base film is approximately the same as the speed A above.
m1n and controlled so that there is no stress or sag in the thin film (for example, Japanese Patent Laid-Open No. 58-3831).

現実には、本発明者らが行ったように、基材フィルムの
移動速度をAm/min以上にしても均一な薄膜積層体
が得られる。この際、当然ながら移動速度が速くなるほ
ど薄膜は薄くなり、見掛は上延伸処理を加えたような効
果も期待される。しかし、第2図に示した溶液の展開パ
ターンかられかるように引取の応力は主に溶液領域aで
緩和されると考えられ、固体フィルムを延伸したような
配向効果は常識的には考えられない。
In reality, a uniform thin film laminate can be obtained even if the moving speed of the base film is set to Am/min or higher, as the present inventors have done. At this time, as a matter of course, the faster the moving speed, the thinner the thin film becomes, and an effect that appears to be that of an upper stretching process is also expected. However, as can be seen from the solution development pattern shown in Figure 2, it is thought that the stress of pulling is mainly relaxed in the solution region a, and an orientation effect similar to that produced by stretching a solid film cannot be considered in common sense. do not have.

第2図においては、lはノズル、2は水面、3は放出さ
れたポリマー溶液、4は巻取ローラであり、aは上記ポ
リマー溶液の溶液領域、bはゲル状領域、Cは固体膜領
域である。しかし、本発明者らは、このような技術常識
にとられれず、基材フィルムの移動速度をA m / 
m l n以上にすると、薄膜に分子配向が生じると考
え、引取速度を変化させて作製した薄膜について先に述
べた赤外二色比の値を求めた。なお、この際、赤外スペ
クトル測定用のサンプルは、連続的に水面上を移動して
行く固化フィルム(第2図の領域C)を緊張状態のまま
赤外サンプルホルダー(窓枠状)ですくい取って評価に
供した。その結果、意外にも、溶液の自発展開速度以外
で巻き取った薄膜の二色比はl。
In FIG. 2, l is a nozzle, 2 is a water surface, 3 is a discharged polymer solution, 4 is a take-up roller, a is a solution area of the polymer solution, b is a gel-like area, and C is a solid film area. It is. However, the present inventors did not follow such common technical knowledge and changed the moving speed of the base film to A m /
Considering that molecular orientation occurs in the thin film when it is m l n or more, the above-mentioned infrared dichroic ratio values were determined for thin films produced by varying the take-up speed. At this time, the sample for infrared spectrum measurement is scooped with an infrared sample holder (window frame shape) while keeping the solidified film (area C in Figure 2) in tension as it moves continuously on the water surface. I took it and submitted it for evaluation. As a result, surprisingly, the dichroic ratio of the thin film wound at a rate other than the spontaneous unfolding speed of the solution was l.

OO基以外値を示した。第3図には代表的な結果を示す
が、引取速度の増大とともに二色比はほぼ直線的に増加
し、例えば1.2,1.4というような値を示した。こ
れは薄膜の構成分子が高度に配向していることを示して
いる。
Values other than OO group were shown. FIG. 3 shows typical results, and the dichroic ratio increased almost linearly as the take-up speed increased, and showed values such as 1.2 and 1.4, for example. This indicates that the constituent molecules of the thin film are highly oriented.

このように高速で巻き取った水面展開薄膜がその分子配
向性に起因する赤外二色比を示す理由についての詳細は
不明であるが、引取時の応力が展開溶液の未蒸発部(第
2図の領域a)だけで緩和できず、一部溶媒が揮発して
高固形分濃度になったゲル状層(第2図の領域b;干渉
色変化によって目視でも確認可能)に応力が加わり、分
子鎖を巻取方向に延伸させる効果が働いたものと考えら
れる。
The details of why a thin film developed on a water surface that is rolled up at high speed exhibits an infrared dichroic ratio due to its molecular orientation are unknown, but the stress at the time of taking it off causes the unevaporated part of the developing solution (second Stress is applied to the gel-like layer (area b in Figure 2, which can be visually confirmed by a change in interference color), which cannot be relaxed only in area a) of the figure, and has a high solid content concentration due to partial solvent volatilization. It is thought that the effect of stretching the molecular chains in the winding direction worked.

本発明の効果を発現できる系は、水面展開法で薄膜を形
成できる全ての系である。ポリマーとしては、ポリブテ
ン、ポリペンテン、ポリメチルペンテン、ポリヘキセン
等のオレフィン系ポリマーや、酢酸セルロース、ニトロ
セルロースなどのセルロース誘導体、ポリフッ化ビニル
、ポリフッ化ビニリデンなどの含フツ素ポリマー、ポリ
メチルメタクリレート、ポリエチルメタクリレートなど
のアクリル系ポリマー、各種ポリイミドおよびその前駆
体のポリアミド酸などが利用できる。展開溶剤としては
、上記ポリマーを溶解する有機溶剤であればほぼ利用す
ることができる。ただし、−種類の溶剤で充分な水面展
開性が得られない場合には展開助剤として第二の有機溶
剤を添加することも有効である。このような展開助剤と
しては、脂肪族、脂環族または芳香族のケトン、エステ
ル、アルコール、アミン、アルデヒド、パーオキサイド
ならびにこれらの混合物があげられる。
Systems that can exhibit the effects of the present invention are all systems that can form a thin film by a water surface spreading method. Examples of polymers include olefin polymers such as polybutene, polypentene, polymethylpentene, and polyhexene, cellulose derivatives such as cellulose acetate and nitrocellulose, fluorine-containing polymers such as polyvinyl fluoride and polyvinylidene fluoride, polymethyl methacrylate, and polyethyl. Acrylic polymers such as methacrylate, various polyimides, and their precursor polyamic acids can be used. As the developing solvent, almost any organic solvent that dissolves the above polymer can be used. However, if sufficient water surface developability cannot be obtained with the -type of solvent, it is also effective to add a second organic solvent as a development aid. Such developing aids include aliphatic, cycloaliphatic or aromatic ketones, esters, alcohols, amines, aldehydes, peroxides and mixtures thereof.

本発明において、特に有効に分子配向させることのでき
るポリマーは、骨格の分子構造が比較的剛直な素材であ
り、芳香族ポリイミドおよびその前駆体のポリアミド酸
などは好適に利用することができる。このようなポリマ
ーの代表例は、−数式(1)で表されるポリアミド酸お
よび式(■)で表されるポリイミドである。
In the present invention, the polymer that can be particularly effectively oriented is a material with a relatively rigid molecular structure of the skeleton, and aromatic polyimide and its precursor polyamic acid can be suitably used. Typical examples of such polymers are - polyamic acid represented by formula (1) and polyimide represented by formula (■).

この系では、前述した展開助剤をIwL%以上含有する
溶液を用いることが好ましい。
In this system, it is preferable to use a solution containing IwL% or more of the above-mentioned developing aid.

本発明において、水面展開連続製膜に用いるポリマー溶
液の濃度は、0.5〜30wt%好ましくは1〜20w
t%である。ポリマー濃度が低すぎると均一な連続膜を
得ることが難しく、逆に高すぎると水面上で溶液の展開
性が低下するため好ましくない。
In the present invention, the concentration of the polymer solution used for continuous film formation on a water surface is 0.5 to 30 wt%, preferably 1 to 20 wt%.
t%. If the polymer concentration is too low, it will be difficult to obtain a uniform continuous film, whereas if it is too high, the spreadability of the solution on the water surface will decrease, which is not preferable.

本発明は、上記のようなポリマー溶液を水面上に展開し
て薄膜を生成させ、その生成薄膜の自発展開速度以上の
巻取速度で基材の表面に付着一体化させるものである。
In the present invention, the above-mentioned polymer solution is spread on a water surface to form a thin film, and the thin film is adhered and integrated onto the surface of a substrate at a winding speed higher than the spontaneous spreading speed of the formed thin film.

上記薄膜の生成ないし基材表面への付着は、例えば第4
図に示すように、ノズル11からポリマー溶液を水槽1
2内の水面13上に放出し、水面13上に生成された薄
膜14を第1.第2.第3のロール15〜17により、
連続的に移行するシート状基材18の表面に付着させる
という方法により行われる。このような連続製膜方式と
しては、各種の方式(特開昭56−92926号公報、
同57−107204号公報、同57−10704号公
報、同5B−3829号公報、同5B−3831号公報
、同60−102907号公報、同60−156508
号公報)が知られている。本発明においても、図面で示
した方法以外に、上記各種の連続製膜法のうちの適宜の
方法を利用することができる。
The formation of the above-mentioned thin film or its attachment to the surface of the base material can be achieved by, for example, the fourth
As shown in the figure, the polymer solution is poured into the water tank 1 from the nozzle 11.
The thin film 14 generated on the water surface 13 is discharged onto the water surface 13 in the first container. Second. By the third rolls 15 to 17,
This is carried out by a method of attaching it to the surface of the sheet-like base material 18 that is continuously transferred. As such a continuous film forming method, various methods (Japanese Unexamined Patent Publication No. 56-92926,
No. 57-107204, No. 57-10704, No. 5B-3829, No. 5B-3831, No. 60-102907, No. 60-156508
Publication No.) is known. Also in the present invention, in addition to the method shown in the drawings, any suitable method among the various continuous film forming methods described above can be used.

上記のような水面展開薄膜を付着一体化する基材として
は、プラスチックフィルム、不織布、金属箔、膜、無機
結晶、セラミック板、ガラス、紙等があげられる。基材
上への薄膜の付着(布設)は単層であってもよいし、複
層であってもよい。
Examples of the base material to which the above water surface spread thin film is attached and integrated include plastic films, nonwoven fabrics, metal foils, membranes, inorganic crystals, ceramic plates, glass, and paper. The thin film may be attached (layed) onto the base material in a single layer or in multiple layers.

複層の場合は、先に布設した薄膜に付着している水分を
完全に乾燥させてから積層するのが好ましい。
In the case of multiple layers, it is preferable to completely dry the moisture adhering to the previously laid thin film before laminating the layers.

本発明の高分子薄膜は、上記のようにして得られるもの
であって、単層でその厚みがO,003〜1.0μmで
赤外二色比が1.05以上の配向薄膜であり、例えば、
液晶配向膜なと光学的、電気的異方性を必要とする超薄
層として有効に利用することができる。特に、上記−数
式(1)、(II)のポリマーを用いると、上記のよう
な配向薄膜が円滑に得られる。
The polymer thin film of the present invention is obtained as described above, and is a single layer oriented thin film with a thickness of 0.003 to 1.0 μm and an infrared dichroic ratio of 1.05 or more, for example,
It can be effectively used as an ultra-thin layer that requires optical and electrical anisotropy, such as a liquid crystal alignment film. In particular, when the polymers of the above-mentioned formulas (1) and (II) are used, the above-mentioned oriented thin film can be smoothly obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明は、水面展開法によって高分子薄
膜を形成する際、高分子溶液の水面上での自発的展開速
度以上の引取速度で生成薄膜を支持基材に密着積層する
ものであり、それによって赤外二色比1.05以上の分
子配向のなされた超薄膜を良好に形成することができる
という優れた効果を奏する。そして、得られた薄膜はそ
の分子配向により液晶配向膜等として優れた性能を発揮
する。
As described above, in the present invention, when forming a polymer thin film by the water surface spreading method, the produced thin film is closely laminated on a supporting substrate at a take-up speed that is higher than the spontaneous spreading speed of the polymer solution on the water surface. This has an excellent effect in that an ultra-thin film with molecular orientation having an infrared dichroic ratio of 1.05 or more can be formed satisfactorily. The obtained thin film exhibits excellent performance as a liquid crystal alignment film etc. due to its molecular orientation.

つぎに、本発明を実施例にもとづいて比較例と併せて説
明する。
Next, the present invention will be explained based on Examples along with Comparative Examples.

〔実施例1〕 粘度3.0 、4.9秒のニトロセルロースをシクロヘ
キサノンに溶解し10wt%の溶液として展開溶液を調
製した。この溶液を第4図に示す連続製膜装置のノズル
から1mj!/minの速度で水面上に放出し、形成さ
れた薄膜を基材としてのポリエチレンテレフタレートフ
ィルム(PETフィルム)を15m/n+inの速度で
移動させながら接触させて付着一体化し、配向薄膜積層
体を得た。この際、水面上の薄膜をサンプリングして膜
厚を測定すると0.05μmで、赤外二色比(2920
cm−’)を測定すると1.10の値を示した。
[Example 1] Nitrocellulose with a viscosity of 3.0 and 4.9 seconds was dissolved in cyclohexanone to prepare a developing solution as a 10 wt % solution. This solution is pumped through the nozzle of the continuous film forming apparatus shown in Fig. 4 at a rate of 1 mj! The formed thin film was brought into contact with a polyethylene terephthalate film (PET film) as a base material while moving at a speed of 15 m/n+in to adhere and integrate, thereby obtaining an oriented thin film laminate. Ta. At this time, when the thin film on the water surface was sampled and the film thickness was measured, it was 0.05 μm, and the infrared dichroic ratio (2920
cm-') showed a value of 1.10.

〔実施例2〕 ニド0セルロースに代えて平均重合度800のポリ塩化
ビニルを用いた。それ以外は実施例1と同様にして配向
薄膜積層体を得た。得られた薄膜部分の厚みは0.03
μmで、赤外二色比(2900cm−’)は1.15で
あった。
[Example 2] Polyvinyl chloride with an average degree of polymerization of 800 was used in place of Nido0 cellulose. Otherwise, an oriented thin film laminate was obtained in the same manner as in Example 1. The thickness of the obtained thin film part is 0.03
In μm, the infrared dichroic ratio (2900 cm-') was 1.15.

〔実施例3〕 等量の3.3’、4.4’−ビフェニルテトラカルボン
酸ジ無水物と4,4′−ジ(p−アミノフェノキシ)ジ
フェニルへキサフルオロプロパンをN、N−ジメチルア
セトアミド(DMAc)中室部下で反応させてポリアミ
ド酸を合成した。このポリアミド酸溶液にアセトフェノ
ンを添加し、ポリアミド酸5%、DMAc/アセトフェ
ノン=l/1(重量基準)になるように調製した。この
溶液を第4図に示す連続製膜装置のノズルから0゜92
 m l /minの速度で水面上に放出し、形成され
た薄膜を基材としてのPETフィルムを15m/min
の速度で移動させながら接触させて付着−体化し、配向
薄膜積層体を得た。得られた薄膜部分の厚みは0.01
μmで、赤外二色比(1500cm−’)は1.35で
あった。
[Example 3] Equal amounts of 3.3',4.4'-biphenyltetracarboxylic dianhydride and 4,4'-di(p-aminophenoxy)diphenylhexafluoropropane were mixed with N,N-dimethylacetamide. (DMAc) Polyamic acid was synthesized by reacting under the middle chamber. Acetophenone was added to this polyamic acid solution so that the polyamic acid solution was 5% and the ratio of DMAc/acetophenone was 1/1 (by weight). This solution was pumped through the nozzle of the continuous film forming apparatus shown in Figure 4 at 0°92
ml/min onto the water surface, and the formed thin film was used as a base material for PET film at 15 m/min.
They were brought into contact with each other while moving at a speed of 100 to form an adherent body, thereby obtaining an oriented thin film laminate. The thickness of the obtained thin film part is 0.01
In μm, the infrared dichroic ratio (1500 cm-') was 1.35.

〔比較例〕[Comparative example]

実施例3と同様にポリアミド酸薄膜を展開し、PETフ
ィルムと5m/minの速度で付着一体化させた。この
溶液の自発展開速度は約5m/winであり、得られた
薄膜部分の厚みは0.015μmで、赤外二色比(15
00co+−’)は0.98と無配向状態であった。
A polyamic acid thin film was developed in the same manner as in Example 3, and adhered and integrated with the PET film at a speed of 5 m/min. The spontaneous development speed of this solution is about 5 m/win, the thickness of the obtained thin film part is 0.015 μm, and the infrared dichroic ratio (15
00co+-') was 0.98, indicating a non-oriented state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFTIRで測定した配向薄膜の赤外二色の測定
スペクトル図、第2図(A)は水面上で高分子溶液の展
開を示す平面模式図、第2図(B)はその要部の拡大側
面図、第3図は引取速度を変えて作製した配向薄膜の赤
外二色比の変化の状態を示す線図、第4図は連続製膜装
置の一例の構成図である。 特許出願人   日東電気工業株式会社代理人   弁
理士  西 藤 征 彦第1 図 弔l 図
Figure 1 is an infrared two-color measurement spectrum of an oriented thin film measured by FTIR, Figure 2 (A) is a schematic plan view showing the development of a polymer solution on the water surface, and Figure 2 (B) is its outline. FIG. 3 is a diagram showing changes in the infrared dichroic ratio of oriented thin films produced by varying take-up speeds, and FIG. 4 is a configuration diagram of an example of a continuous film forming apparatus. Patent Applicant Nitto Electric Industry Co., Ltd. Agent Patent Attorney Yukihiko Nishifuji Figure 1 Condolence Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)水面展開法で得られる膜厚0.003〜0.1μ
mの薄膜において、この薄膜を形成する高分子素材が分
子配向し、特定の赤外波長における二色比が1.05以
上である高分子配向薄膜。
(1) Film thickness 0.003 to 0.1μ obtained by water surface development method
An oriented polymer thin film having a dichroic ratio of 1.05 or more at a specific infrared wavelength, in which the polymer material forming the thin film has molecular orientation.
(2)高分子素材が、下記の一般式( I )で表される
ポリアミド酸および一般式(II)で表されるポリイミド
の少なくとも一方によつて構成されている特許請求の範
囲第1項記載の高分子配向薄膜。 ▲数式、化学式、表等があります▼・・・( I ) ▲数式、化学式、表等があります▼・・・(II) 〔式(I)、(II)において、R_1は芳香族テトラカ
ルボン酸残基である。R_2はH、炭素数1〜30の脂
肪族、脂環族あるいは芳香族(これらが相互に組み合わ
さつていてもよい)の1価の基およびSi(R_4)_
3(R_4は炭素数1〜6の脂肪族、脂環族、芳香族の
1価の基)のなかから選ばれ、相互に同じであつても異
なつていてもよい。R_3は芳香族ジアミン残基である
。〕
(2) Claim 1, wherein the polymer material is composed of at least one of a polyamic acid represented by the following general formula (I) and a polyimide represented by the general formula (II). oriented polymer thin film. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(II) [In formulas (I) and (II), R_1 is aromatic tetracarboxylic acid It is a residue. R_2 is H, an aliphatic, alicyclic, or aromatic monovalent group having 1 to 30 carbon atoms (these may be combined with each other), and Si(R_4)_
3 (R_4 is an aliphatic, alicyclic, or aromatic monovalent group having 1 to 6 carbon atoms), and may be the same or different. R_3 is an aromatic diamine residue. ]
(3)高分子溶液を連続的に水面上に供給し、得られる
薄膜を支持基材と密着積層する水面展開連続製膜におい
て、高分子溶液の水面上での自発的展開速度以上で製膜
することを特徴とする高分子配向薄膜の製造法。
(3) In continuous water surface spreading film formation, in which a polymer solution is continuously supplied onto the water surface and the resulting thin film is laminated in close contact with a supporting substrate, the film is formed at a rate higher than the spontaneous spreading speed of the polymer solution on the water surface. A method for producing an oriented polymer thin film characterized by:
(4)支持基材が、プラスチックフィルム、不織布、金
属箔、膜、無機結晶、セラミック板、ガラスまたは紙で
ある特許請求の範囲第3項記載の高分子配向薄膜の製造
法。
(4) The method for producing an oriented polymer thin film according to claim 3, wherein the supporting substrate is a plastic film, nonwoven fabric, metal foil, membrane, inorganic crystal, ceramic plate, glass, or paper.
JP7300788A 1988-03-25 1988-03-25 Oriented high polymer thin film and production thereof Pending JPH01245031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7300788A JPH01245031A (en) 1988-03-25 1988-03-25 Oriented high polymer thin film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7300788A JPH01245031A (en) 1988-03-25 1988-03-25 Oriented high polymer thin film and production thereof

Publications (1)

Publication Number Publication Date
JPH01245031A true JPH01245031A (en) 1989-09-29

Family

ID=13505857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7300788A Pending JPH01245031A (en) 1988-03-25 1988-03-25 Oriented high polymer thin film and production thereof

Country Status (1)

Country Link
JP (1) JPH01245031A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124534A (en) * 1988-11-02 1990-05-11 Nitto Denko Corp Liquid crystal display element and manufacture thereof
JP2014175111A (en) * 2013-03-07 2014-09-22 Japan Advanced Institute Of Science & Technology Hokuriku Polymer electrolyte, proton conducting membrane and fuel cell
WO2021010214A1 (en) * 2019-07-16 2021-01-21 Agc株式会社 Gel production method and gel production device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124534A (en) * 1988-11-02 1990-05-11 Nitto Denko Corp Liquid crystal display element and manufacture thereof
JP2014175111A (en) * 2013-03-07 2014-09-22 Japan Advanced Institute Of Science & Technology Hokuriku Polymer electrolyte, proton conducting membrane and fuel cell
WO2021010214A1 (en) * 2019-07-16 2021-01-21 Agc株式会社 Gel production method and gel production device

Similar Documents

Publication Publication Date Title
EP1726613B1 (en) Honeycomb composite film, and method for producing the same
WO2015005122A1 (en) Optical film, polarizer, image display device, and optical-film manufacturing device
JP2004046194A (en) Manufacturing method for optical compensator
JP3554619B2 (en) Manufacturing method of long optical compensation sheet
JP5116256B2 (en) Honeycomb composite film and manufacturing method thereof
JPH07101026A (en) Laminate with improved polarization characteristics and release film therefor
JPH01245031A (en) Oriented high polymer thin film and production thereof
US4752643A (en) Transparent poly-p-phenylene-terephthalamide film
JPH01198638A (en) Aromatic polyimide film and production thereof
WO2001081958A1 (en) Method of aligning liquid-crystalline compound
JPH0520723B2 (en)
US6589663B2 (en) Aromatic polyamide film
JP2008203386A (en) Manufacturing method of optical laminate and image display apparatus
JP3878693B2 (en) Polarizing plate and liquid crystal display device using the same
JP4378739B2 (en) Manufacturing method of polarizing plate
JPS5598723A (en) Production of multilayer liquid crystal display device
JPH1123839A (en) Polarizing plate
JPH09304621A (en) Production of phase difference film
JP2001013324A (en) Production of phase difference plate
JPH0228222A (en) Production of aramid film
JPS62104714A (en) Film and preparation thereof
JP4048417B2 (en) Polybenzoazole film
JPS63268638A (en) Polyamide film
JP2003094469A (en) Saturated norbornene film for optical use and its manufacturing method
JPH02245234A (en) Device for continuously forming ultrathin film