JPH0396016A - A/d conversion circuit - Google Patents

A/d conversion circuit

Info

Publication number
JPH0396016A
JPH0396016A JP23211289A JP23211289A JPH0396016A JP H0396016 A JPH0396016 A JP H0396016A JP 23211289 A JP23211289 A JP 23211289A JP 23211289 A JP23211289 A JP 23211289A JP H0396016 A JPH0396016 A JP H0396016A
Authority
JP
Japan
Prior art keywords
sampling
signal
value
integration
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23211289A
Other languages
Japanese (ja)
Other versions
JP2569825B2 (en
Inventor
Hiroshi Soma
弘 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1232112A priority Critical patent/JP2569825B2/en
Publication of JPH0396016A publication Critical patent/JPH0396016A/en
Application granted granted Critical
Publication of JP2569825B2 publication Critical patent/JP2569825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To suppress noise by using an integration value of multiplex sampling divided by the number of times of samplings or a difference of two integrated values of multiplex sampling in an A/D converter circuit used for the digital recording technology in a compact disk or the like. CONSTITUTION:An analog input signal In is sampled at a sampling circuit by using a pulse generated from a pulse generating circuit 17. The sampling signal is sent to an integration device 12 and added. The integration value of the integration device 12 is gradually increased while plural number of times of sampling are repeated and when the integration value reaches a reference value Ref, a switch 14 is operated and an output of the integration device is fed to a divider 15. The integration value is divided at the divider by using a counted value of a counter 16.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、A−D変換回路に関し、特に、コンパクトデ
ィスク等におけるディジタル記録技術に用いられるA−
D変換回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an A-D conversion circuit, and in particular to an A-D conversion circuit used in digital recording technology for compact discs and the like.
It is related to a D conversion circuit.

[従来の技術] 音響製品におけるディジタル記録は一般に第6図の流れ
図に示す諸段階を経てなされる.すなわち、音響信号を
一定時間毎に(例えば、1秒間に44700回)サンプ
リングしてそのときの信号レベルを測定し、続いて、こ
の測定値を段階分けし(量子化)、その後、この段階分
けに応じて“1”、“0”の符号付けをしている。
[Prior Art] Digital recording in audio products is generally performed through the various steps shown in the flowchart of Figure 6. That is, the acoustic signal is sampled at regular intervals (for example, 44,700 times per second), the signal level at that time is measured, this measured value is then divided into stages (quantization), and then this stage division is performed. It is coded as “1” or “0” depending on the value.

従来技術における信号の抽出は、第7図に示されるよう
に、一定周期毎に繰り返されるサンプリング区間S1、
S2、・・・において音声信号Sigを、それぞれ1回
ずつサンプリングすることによってなされていた. [発明が解決しようとする課題] ディジタル化記憶技術によれば、信号をディジタル化し
た後にはノイズが入り′込む余地のないことから、S/
Nを高く保持したまま、元の信号を再生することが可能
となる.しかしながら、上述した従来のサンプリング技
術では、サンプリングすべき信号に含まれるノイズに対
しては何も対策が講じられていない.そのため、従来技
術のものはサンプリングすべき信号において原音が小さ
く雑音と同等かあるいは雑音より小さい場合には、著し
い音質の劣化を伴う. [課題を解決するための手段] 本発明のA−D変換回路は、一定周期毎に繰り返される
一定時間のサンプリング区間において、多重サンプリン
グを行うように楕戒される.そして、サンプリング回路
の出力値としては、多重サンプリングの積算値を多重サ
ンプリングのサンプリング回数で除算した値、あるいは
、多重サンプリングの二つの加算値の差が用いられる.
[作 用] 雑音を含む同一原音を多重加算した場合、雑音がランダ
ム性を有することから(1)式が戒立する.’xrm 
v I +(m n +         ・・・・・
11)ここに、 FI :任意のサンプリング時の雑音と原音を含む信号 m :多重加算回数 ■1 :雑音を含まない原音成分゛ n1 :雑音戒分 である。
As shown in FIG. 7, signal extraction in the prior art involves sampling intervals S1, which are repeated at regular intervals;
This was done by sampling the audio signal Sig once each in S2, . . . . [Problems to be Solved by the Invention] According to digital storage technology, there is no room for noise to enter after the signal is digitized, so S/
It becomes possible to reproduce the original signal while keeping N high. However, the conventional sampling techniques described above do not take any measures against noise contained in the signal to be sampled. Therefore, when the original sound in the signal to be sampled is small and is equal to or smaller than noise, the conventional technology causes a significant deterioration in sound quality. [Means for Solving the Problems] The A/D conversion circuit of the present invention is configured to perform multiple sampling in a sampling period of a certain period of time that is repeated at certain intervals. Then, as the output value of the sampling circuit, a value obtained by dividing the integrated value of multiple sampling by the number of sampling times of multiple sampling, or a difference between two added values of multiple sampling is used.
[Effect] When the same original sound including noise is multiple-added, Equation (1) holds because the noise has randomness. 'xrm
v I + (m n + ...
11) Here, FI: Signal containing noise and original sound at arbitrary sampling time m: Number of multiple additions 1: Original sound component not containing noise n1: Noise signal.

ここで注目すべきことは、m回の多重加算で原音成分は
m倍となるのに対し、ランダム性雑音成分はr石倍で増
加する点である。(1)式で得た信号から原音を求める
ために(1)式を多重加算回数mで除算する. F + /m= v + + (Fi/m > n +
  −(2ここで、mを十分大きくすると、(2J式右
辺第2項は限りなくOに近づく。
What should be noted here is that while the original sound component is multiplied by m times by m multiple additions, the random noise component increases by r times. In order to obtain the original sound from the signal obtained using equation (1), equation (1) is divided by the number of multiple additions m. F + /m= v + + (Fi/m > n +
-(2Here, if m is made sufficiently large, the second term on the right side of the equation (2J) approaches O infinitely.

あるいは、原音を求めるために隣接する二つの積算値の
差をとる。
Alternatively, the difference between two adjacent integrated values is taken to find the original sound.

F1+I  Fl = v , + ( F]1T青−− ( m丁> n
 + − − (31(3)式においても、右辺第2項
はmの増大につれて減少する.すなわち、同一信号に対
する多重サンプリングを行い、{■式乃至(3)式に示
す処理を施すことにより、ノイズを抑制することができ
る。
F1+I Fl = v, + (F]1T blue--(m > n
+ − − (In Equation 31 (3), the second term on the right side decreases as m increases. In other words, by performing multiple sampling on the same signal and performing the processing shown in Equations (■) to (3), Noise can be suppressed.

[実施例] 次に、本発明の実施例について図面を、参照して説明す
る. 第1図は、本発明の一実施例におけるサンプリング回路
を示すブロック図である.同図に示すように、本実施例
では、あるサンプリング区間において、アナログ入力信
号Inを、パルス発生回路17で発生したパルスを用い
サンプリング回路でサンプリングする.このサンプリン
グ信号は積分器12へ送られここで加算される.積分器
の出力は比較器l3において規準値Refと比較され、
積分器12の積算値が規準値Refを超えていない場合
には、カウンタ16のカウント値に1を加えるとともに
パルス発生回路に信号を送り再度サンプリングを行う.
このようにサンプリングを複数回繰り返すうちに積分器
12の積算値は次第に増大し、ある時点で規準値Ref
を超える.すると、スイッチ14が動作して積分器の出
力が除算器15へ送られる.積算値はここでカウンタ1
6のカウOutとして出力される。この時点でカウンタ
16と積分器12はリセットされ、次のサンプリング区
間の開始を待つ. ここで、積分器12の出力が一定以上に大きくならない
ようにするのは、原音Vlが十分大きい場合には、積算
回数mが多くなるとmVlが極めて大きくなり、この信
号を取り扱う回路の容量を超えてしまうからである。一
般に原音Vlが大きい場合にはノイズn1の信号に占め
る割合は低下するから、上記のように加算回数に制限を
設けることは、回路の効率的使用の面から有意義なこと
である. また、第1図の回路において、入力アナログ信号が低レ
ベルである場合には、加算回数mが一定値に達したとき
に(サンプリング区間Stを超えたときに)、スイッチ
14を動作させてこの回路から出力信号Outを出力さ
せる。
[Example] Next, an example of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a sampling circuit in one embodiment of the present invention. As shown in the figure, in this embodiment, in a certain sampling period, the analog input signal In is sampled by the sampling circuit using pulses generated by the pulse generation circuit 17. This sampling signal is sent to an integrator 12 and added there. The output of the integrator is compared with a reference value Ref in a comparator l3,
If the integrated value of the integrator 12 does not exceed the reference value Ref, 1 is added to the count value of the counter 16 and a signal is sent to the pulse generating circuit to perform sampling again.
As the sampling is repeated multiple times in this way, the integrated value of the integrator 12 gradually increases, and at a certain point the reference value Ref
Exceeds. Then, the switch 14 operates and the output of the integrator is sent to the divider 15. The integrated value is counter 1 here.
It is output as 6 Cow Out. At this point, the counter 16 and integrator 12 are reset and wait for the start of the next sampling period. Here, the reason for preventing the output of the integrator 12 from becoming larger than a certain level is that if the original sound Vl is sufficiently large, as the number of integrations m increases, mVl will become extremely large, exceeding the capacity of the circuit that handles this signal. This is because Generally, when the original sound Vl is large, the proportion of the noise n1 in the signal decreases, so setting a limit on the number of additions as described above is meaningful from the standpoint of efficient use of the circuit. In addition, in the circuit shown in FIG. 1, when the input analog signal is at a low level, the switch 14 is operated when the number of additions m reaches a certain value (when it exceeds the sampling period St). The output signal Out is output from the circuit.

第2図は、第1図の実施例によるサンプリングの情況を
示した図であって、サンプリング区間S2およびm3回
のサンプリングがなされている.ここで、それぞれのサ
ンプリング区間で信号Sigが次第に大きくなっている
ものとすれば各サンプリング回数は、 ml >m2 >ms の関係をもつ。
FIG. 2 is a diagram showing the sampling situation according to the embodiment of FIG. 1, in which sampling is performed in sampling intervals S2 and m3 times. Here, assuming that the signal Sig gradually increases in each sampling period, the number of samplings has the following relationship: ml > m2 > ms.

第3図は、第1図の実施例による加算回数と積算さ゛れ
た原音レベルVl (=mv.)とノイズレベルN l
 (= r1n+ )との関係を示す図であって、同図
から明らかなように加算回数が増すにつれてV + /
 N Iは次第に増大する.第4図は、本発明の他の実
施例を示すブロック図である. この実施例では、積分器12の積算出力F1+1は差分
器1つへ入力され、ここで、前回迄の積算値F,を記憶
しているホールド回路18のホールド値が差し引かれる
.差分器19の差信号はスイッチ14へ入力される.積
分器12の出力が一定レベルを超えた場合あるいはカウ
ンタ16のカウント値が一定値に達した場合に、スイッ
チ14を介して出力信号Outが出力されるのは先の実
施例と同様である.第5図は、第4図の実施例の信号レ
ベルと加算回数の関係を示す図である.積算信号F+は
、積分器12の出力であって、これは積算原音レベルV
Iと積算ノイズレベルN+の和である。同図から明らか
なように、加算回数が増すとともにN1+4  Nlは
減少する。
FIG. 3 shows the number of additions, the integrated original sound level Vl (=mv.), and the noise level Nl according to the embodiment shown in FIG.
(=r1n+), and as is clear from the figure, as the number of additions increases, V + /
NI gradually increases. FIG. 4 is a block diagram showing another embodiment of the present invention. In this embodiment, the integrated output F1+1 of the integrator 12 is input to one differentiator, where the hold value of the hold circuit 18 that stores the integrated value F up to the previous time is subtracted. The difference signal from the differentiator 19 is input to the switch 14. As in the previous embodiment, when the output of the integrator 12 exceeds a certain level or when the count value of the counter 16 reaches a certain value, the output signal Out is outputted via the switch 14. FIG. 5 is a diagram showing the relationship between the signal level and the number of additions in the embodiment of FIG. 4. The integrated signal F+ is the output of the integrator 12, which is the integrated original sound level V
It is the sum of I and the cumulative noise level N+. As is clear from the figure, as the number of additions increases, N1+4Nl decreases.

なお、以上の実施例では、音響製品について説明したが
、本発明はこれに限定されるものではなく、他のA−D
変換回路にも用いられるものである. [発明の効果コ 以上説明したように、本発明は、A−D変換回路のサン
プリング回路において1つのサンプリング期間中に同一
信号を複数回サンプリングするものであるので、本発明
によれば、アナログ入力信号中に存在しているノイズ成
分を大きく縮小することができる.したがって、本発明
によれば、コンパクトディスク等の音響製品において、
従来例では唯一克服することのできなかったアナログー
ディジタル信号変換時における雑音成分の混入を防止す
ることができ、音響製品等の忠実度を飛躍的に向上させ
ることができる.
In addition, although the above embodiment describes an audio product, the present invention is not limited to this, and may be applied to other A-D products.
It is also used in conversion circuits. [Effects of the Invention] As explained above, the present invention samples the same signal multiple times during one sampling period in the sampling circuit of the A-D conversion circuit. It is possible to significantly reduce the noise components present in the signal. Therefore, according to the present invention, in an audio product such as a compact disc,
It is possible to prevent the introduction of noise components during analog-to-digital signal conversion, which was the only problem that could not be overcome with conventional methods, and the fidelity of audio products can be dramatically improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図お
よび第3図はその動作説明図、第4図は本発明の他の実
施例を示すブロック図、第5図はその動作説明図、第6
図はA−D変換回路の機能を示す流れ図、第7図は従来
例の動作を説明する図である.
Fig. 1 is a block diagram showing one embodiment of the present invention, Figs. 2 and 3 are diagrams explaining its operation, Fig. 4 is a block diagram showing another embodiment of the invention, and Fig. 5 is its operation. Explanatory diagram, No. 6
The figure is a flowchart showing the functions of the A-D conversion circuit, and FIG. 7 is a diagram explaining the operation of the conventional example.

Claims (1)

【特許請求の範囲】[Claims] ランダム雑音を含むアナログ信号を一定の時間間隔で繰
り返される一定時間のサンプリング区間においてサンプ
リングし、このサンプリング値をディジタル信号に変換
するA−D変換回路において、前記サンプリングはラン
ダム雑音を含むアナログ信号を前記一定時間内において
複数回サンプリングすることによりなされるものである
ことを特徴とするA−D変換回路。
In an A-D converter circuit that samples an analog signal containing random noise in a sampling period of a fixed time that is repeated at fixed time intervals, and converts the sampled value into a digital signal, the sampling converts the analog signal containing random noise into the digital signal. 1. An A-D conversion circuit characterized in that it is performed by sampling multiple times within a certain period of time.
JP1232112A 1989-09-07 1989-09-07 AD conversion circuit Expired - Lifetime JP2569825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232112A JP2569825B2 (en) 1989-09-07 1989-09-07 AD conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232112A JP2569825B2 (en) 1989-09-07 1989-09-07 AD conversion circuit

Publications (2)

Publication Number Publication Date
JPH0396016A true JPH0396016A (en) 1991-04-22
JP2569825B2 JP2569825B2 (en) 1997-01-08

Family

ID=16934195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232112A Expired - Lifetime JP2569825B2 (en) 1989-09-07 1989-09-07 AD conversion circuit

Country Status (1)

Country Link
JP (1) JP2569825B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106221A (en) * 1980-12-22 1982-07-02 Toshiba Corp Analogue-digital converter
JPS5943436A (en) * 1982-09-01 1984-03-10 Chino Works Ltd Input circuit
JPS59104299U (en) * 1982-12-28 1984-07-13 富士電機株式会社 data processing equipment
JPS633572A (en) * 1986-06-24 1988-01-08 Ricoh Co Ltd Signal processing method for infrared image pickup device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106221A (en) * 1980-12-22 1982-07-02 Toshiba Corp Analogue-digital converter
JPS5943436A (en) * 1982-09-01 1984-03-10 Chino Works Ltd Input circuit
JPS59104299U (en) * 1982-12-28 1984-07-13 富士電機株式会社 data processing equipment
JPS633572A (en) * 1986-06-24 1988-01-08 Ricoh Co Ltd Signal processing method for infrared image pickup device

Also Published As

Publication number Publication date
JP2569825B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JPS63138570A (en) Signal recording device
JPH0396016A (en) A/d conversion circuit
US4916449A (en) Wide dynamic range digital to analog conversion method and system
JP2001345700A (en) Analog-to-digital converter circuit
JP3048262B2 (en) Muting device
JPS62287717A (en) Digital/analog conversion circuit
JPH0715281A (en) Noise shaping device
JP2003017945A (en) Muting circuit
JP2000174627A (en) Sigma delta type a/d conversion device
JPH06101666B2 (en) Adaptive noise eliminator
JPH0555917A (en) A/d converter
JP4128067B2 (en) System clock generation circuit
JPH05315893A (en) Digital filter device
JP2525218B2 (en) Integrator circuit
JP2001244756A (en) Power amplifier
JPH03108914A (en) Analog/digital converter
JPH0758880B2 (en) Digital filter
JPH0481279B2 (en)
JPH05160735A (en) Sigmadelta modulator for oversampling a/d converter
JPH0683150B2 (en) Quantizer
JPS63274214A (en) Digital/analog converting circuit
JPS638646B2 (en)
JPH047610B2 (en)
JPS6030218A (en) Multichannel digital recording and reproducing device
JPH031622A (en) Digital voice processor