JPH0395979A - Method of diagnosing whether superconductive integrated circuit is good or bad - Google Patents

Method of diagnosing whether superconductive integrated circuit is good or bad

Info

Publication number
JPH0395979A
JPH0395979A JP1231876A JP23187689A JPH0395979A JP H0395979 A JPH0395979 A JP H0395979A JP 1231876 A JP1231876 A JP 1231876A JP 23187689 A JP23187689 A JP 23187689A JP H0395979 A JPH0395979 A JP H0395979A
Authority
JP
Japan
Prior art keywords
electrode
oxide film
integrated circuit
wafer
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1231876A
Other languages
Japanese (ja)
Other versions
JPH0587194B2 (en
Inventor
Akira Kamishiro
暁 神代
Hiroshi Nakagawa
博 仲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1231876A priority Critical patent/JPH0395979A/en
Publication of JPH0395979A publication Critical patent/JPH0395979A/en
Publication of JPH0587194B2 publication Critical patent/JPH0587194B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To diagnose a circuit all over en bloc at the defective conductivity and insulation places of a superconductive integrated circuit by applying anode oxidation to the side of a semiconductor substrate, and judging the conditions of oxide film formation at the surface of an electrode, and discriminating whether it lies in the electrode to be connected electrically with a superconductive grand plane or the electrode to be insulated. CONSTITUTION:A superfine probe 42 soaked in a jelly-form electrolyte 41 is connected to the negative pole of a DC power source 25. A wafer 31 is connected to the positive pole of the DC electrode 25 so as to form an anode. For this reason, the electrode, which is conductive with the wafer 31 by the application of the DC power source 25 acts as an anode and forms an oxide film, and the electrode, which is insulated from the wafer 31 by an insulator, never oxidizes. The oxide film about several hundred nm in thickness used in a superconductive integrated circuit 11 transmits some of the light from the outside and reflect the other at the surface. The transmitted light is reflected at the boundary face between the oxide film and a metallic electrode, and it interferes with the light reflected from the surface of the oxide film and exhibits the color in accord with the thickness of the oxide film. Accordingly, by the existence of color, the discrimination between the place where an oxide film is present or the place where it is not present can be carried out.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、超伝導集積回路を陽極酸化することにより
、電極の電気接続の良否の検査を行う超伝導集積回路の
良否の診断方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a method for diagnosing the quality of a superconducting integrated circuit, which tests the quality of the electrical connection of electrodes by anodizing the superconducting integrated circuit. It is.

〔従来の技術〕[Conventional technology]

第5図は従来の超伝導集積回路の良否の診断方法の一例
を示す斜視図で、1は超伝導集積回路、2は第1の電極
、3は第2の電極、4は絶縁層もしくは抵抗層、5は直
流電源、6は電流端子、7は電圧計、8は電圧端子であ
る。このように、従来の診断方法では、導通箇所あるい
は絶縁箇所を検出したい第1,第2の電極2,3間に定
電流を流し、各電極2.3間の電圧を測定することで、
検出を行っていた。
FIG. 5 is a perspective view showing an example of a conventional method for diagnosing the quality of a superconducting integrated circuit, in which 1 is a superconducting integrated circuit, 2 is a first electrode, 3 is a second electrode, and 4 is an insulating layer or a resistor. 5 is a DC power supply, 6 is a current terminal, 7 is a voltmeter, and 8 is a voltage terminal. In this way, in the conventional diagnostic method, a constant current is passed between the first and second electrodes 2 and 3 where a conduction point or an insulation point is to be detected, and the voltage between each electrode 2.3 is measured.
was performing detection.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の診断方法において回路が微細
化するにつれ、電流端子6や電圧端子8を各電極2,3
に接続することが難しくなってきた。
However, as circuits become finer in the conventional diagnostic method described above, the current terminal 6 and the voltage terminal 8 are connected to each electrode 2 and 3.
It has become difficult to connect to.

(2)1回の測定では、1対の電極2.3間の導通もし
くは絶縁しか知り得ない。したがって、超伝導集積回路
1の全ての電極間の導通,絶縁を検出するためには、多
大な時間と手間を要する。
(2) In one measurement, only the continuity or insulation between a pair of electrodes 2.3 can be determined. Therefore, it takes a lot of time and effort to detect continuity and insulation between all the electrodes of the superconducting integrated circuit 1.

という問題点があった。There was a problem.

この発明は、上記の問題点を解決するためになされたも
ので、超伝導集積回路の電極を部分的に陽極酸化するこ
とにより、回路内の導通と絶縁を簡単に診断できるよう
にした超伝導集積回路の良否の診断方法を得ることを目
的とする。
This invention was made in order to solve the above problems, and by partially anodizing the electrodes of a superconducting integrated circuit, it is possible to easily diagnose continuity and insulation in the superconducting integrated circuit. The purpose is to obtain a method for diagnosing the quality of integrated circuits.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る超伝導集積回路の良否の診断方法は、半
導体基板側を陽極として陽極酸化を施し、対象とする電
極の表面の酸化膜の形成状態を判定し、超伝導グランド
プレーンと電気的に接続されるべき電極または絶縁され
るべき電極となっているかどうかを識別するものである
The method for diagnosing the quality of superconducting integrated circuits according to the present invention involves performing anodic oxidation using the semiconductor substrate side as the anode, determining the state of formation of an oxide film on the surface of the target electrode, and electrically connecting it to the superconducting ground plane. This is to identify whether the electrode should be connected or insulated.

(作用) この発明においては、基板と導通している電極が陽極と
して作用するので、その表面が酸化して酸化膜が形成さ
れ、また、絶縁されている電極は陽極として作用せず、
酸化膜が形成されないため、酸化の程度によって導通と
絶縁の程度が診断できる。
(Function) In this invention, since the electrode that is electrically connected to the substrate acts as an anode, its surface is oxidized to form an oxide film, and the insulated electrode does not act as an anode.
Since no oxide film is formed, the degree of conduction and insulation can be diagnosed based on the degree of oxidation.

〔実施例) まず、超伝導集積回路と陽極酸化方法について説明する
[Example] First, a superconducting integrated circuit and an anodizing method will be explained.

(1)超伝導集積回路について 第2図は超伝導集積回路を示す断面図である。(1) About superconducting integrated circuits FIG. 2 is a sectional view showing a superconducting integrated circuit.

この図において、超伝導集積回路11は半導体基板12
上に超伝導グランドプレーン13,絶縁層14.超伝導
(もしくは常伝導)からなる第1.第2の電極15.1
6で構成されている。
In this figure, a superconducting integrated circuit 11 is connected to a semiconductor substrate 12.
A superconducting ground plane 13, an insulating layer 14 on top. The first one consists of superconductivity (or normal conduction). Second electrode 15.1
It consists of 6.

超伝導グランドプレーン13は磁界の閉じ込めおよびア
ースi極として必要であり、ジョセフソン素子,抵抗体
,配線等、他の電極を用いた回路の構成要素は超伝導グ
ランドプレーン13上の絶縁層14を介して形成される
(図示せず)。また、超伝導グランドプレーン13との
導通が必要な第1の電極15と、絶縁が必要な第2の電
極16とがあり、これらの導通.絶縁が設計どおりに構
成されていることが回路の正常動作を行う上で必要とな
るものである。
The superconducting ground plane 13 is necessary for magnetic field confinement and as an earth i-pole, and circuit components using other electrodes, such as Josephson elements, resistors, and wiring, use the insulating layer 14 on the superconducting ground plane 13. (not shown). Furthermore, there is a first electrode 15 that needs to be electrically connected to the superconducting ground plane 13, and a second electrode 16 that needs to be insulated. It is necessary for the circuit to operate properly that the insulation is configured as designed.

(2)陽極酸化方法について 第3図は陽極酸化方法の装置を示す概略構成図で、21
は電解槽、22は電解液、23.24は前記電解液22
に不溶な金属板、25は直流電源、26は電流計、27
は電圧計である。
(2) About the anodic oxidation method Figure 3 is a schematic diagram showing the equipment for the anodic oxidation method.
is an electrolytic tank, 22 is an electrolytic solution, and 23.24 is the electrolytic solution 22.
25 is a DC power supply, 26 is an ammeter, 27 is a metal plate that is insoluble in
is a voltmeter.

このように、電解液22の中に2板の金属板23.24
を入れ、一方の金属板23を直流電源25の陽極に、他
方の金属板24を直流電源25の陰極に接続する。そし
て、電解液22中の水酸化物イオンは電気的引力で陽極
に接続された金属板23に引きつけられ、金属板23の
表面で電子を放出し酸素を生成する。発生した酸素は金
属板23の表面を酸化する。
In this way, two metal plates 23 and 24 are placed in the electrolyte 22.
and connect one metal plate 23 to the anode of the DC power supply 25 and the other metal plate 24 to the cathode of the DC power supply 25. The hydroxide ions in the electrolytic solution 22 are attracted by electrical attraction to the metal plate 23 connected to the anode, and emit electrons on the surface of the metal plate 23 to generate oxygen. The generated oxygen oxidizes the surface of the metal plate 23.

このように、超伝導集積回路11に形成された第2図の
半導体基板12を金属板23として用いると、超伝導グ
ランドプレーン13は半導体基板12と電気的に接触し
ているため、超伝導グランドプレーン13と導通した第
1の電極15は第3図の金属板23として作用し、表面
に酸化膜が形成される。逆に、超伝導グランドプレーン
13と絶縁した第2の電極16は、金属板23として作
用せず、表面は酸化されない。したがって、酸化の程度
によって、各電極15.16と超伝導グランドプレーン
13との間の導通および絶縁の程度を診断し得る。
In this way, when the semiconductor substrate 12 shown in FIG. 2 formed in the superconducting integrated circuit 11 is used as the metal plate 23, the superconducting ground plane 13 is in electrical contact with the semiconductor substrate 12, so the superconducting ground plane 13 is in electrical contact with the semiconductor substrate 12. The first electrode 15 electrically connected to the plane 13 acts as the metal plate 23 in FIG. 3, and an oxide film is formed on the surface. Conversely, the second electrode 16 insulated from the superconducting ground plane 13 does not act as the metal plate 23 and its surface is not oxidized. Therefore, the degree of conduction and insulation between each electrode 15, 16 and the superconducting ground plane 13 can be diagnosed depending on the degree of oxidation.

しかし、第3図に示したような半導体基板12全体を電
解液22に浸す陽極酸化法では、半導体基板12上の全
ての回路に対して破壊検査となってしまい、以後の工程
にはその半導体基板12は使えない。第4図に示すよう
に、通常、1枚の基板となるウェーハ31の上には、第
2図に示す第1,第2の電極15.16により同一の回
路を有するチップ32が数十個製作される。チップ32
間の特性のばらつき(不良箇所の位置も含めて)は非常
に小さいことが知られている。したがって、任意の1チ
ップ32Aのみをテストパターンとして抜き取り検査を
行えば、破壊されるのはそのチップ32Aのみで、他の
チップ32については、以後の工程を続行させ得る。
However, in the anodic oxidation method in which the entire semiconductor substrate 12 is immersed in the electrolytic solution 22 as shown in FIG. The board 12 cannot be used. As shown in FIG. 4, on a wafer 31 serving as one substrate, there are usually several dozen chips 32 having the same circuit by means of first and second electrodes 15, 16 shown in FIG. Manufactured. chip 32
It is known that the variation in characteristics (including the location of defective parts) between the two is extremely small. Therefore, if a sampling inspection is performed using only one arbitrary chip 32A as a test pattern, only that chip 32A will be destroyed, and the subsequent steps can be continued for the other chips 32.

第1図はこの発明の一実施例を示す構威図で、第3図,
第4図と同一符号は同一部分を示し、41はゼリー状の
電解液、42は前記電解液41に浸漬された極細探針で
、直流電源25の負極に接続されている。ウェーハ31
は直流電源25の正極に接続されて陽極を形成する。こ
のため、直流電源25の通電によりウェーハ31と導通
している電極(第2図の第1の電極15相当)は陽極と
して作用して酸化膜を形成し、ウェーハ31と絶縁物(
第2図の絶縁層14に相当)によって絶縁ざれている電
8i(第2図の第2の電f!16に相当)は酸化するこ
とがないので酸化膜は形威されない。
Fig. 1 is a structural diagram showing an embodiment of the present invention, Fig. 3,
The same reference numerals as in FIG. 4 indicate the same parts, 41 is a jelly-like electrolytic solution, 42 is an ultrafine probe immersed in the electrolytic solution 41, and is connected to the negative electrode of the DC power source 25. wafer 31
is connected to the positive electrode of the DC power supply 25 to form an anode. Therefore, the electrode (corresponding to the first electrode 15 in FIG. 2) that is electrically connected to the wafer 31 when the DC power supply 25 is energized acts as an anode to form an oxide film, and the wafer 31 and the insulator (
The electrode 8i (corresponding to the second electrode f!16 in FIG. 2) which is insulated by the insulating layer 14 (corresponding to the insulating layer 14 in FIG. 2) is not oxidized, so that no oxide film is formed.

このように、チップ32Aにのみゼリー状の電解液41
を滴下し、極細探針42の陰極を用いれば、抜き取り検
査も可能となる。
In this way, the jelly-like electrolyte 41 is applied only to the chip 32A.
By dropping the liquid and using the cathode of the ultrafine probe 42, sampling inspection becomes possible.

超伝導集積回路11の各t極15,16としては、Nb
を用いた。電解液41としては、ホウ酸アンモニウム1
58g.エチレングリコール1124ml.水760m
lの混合液を用いた。電圧としは、20V程度を印加し
た。そして、電極材料としては、酸化されやすい金属に
限定される。
As each t-pole 15, 16 of the superconducting integrated circuit 11, Nb
was used. As the electrolyte 41, ammonium borate 1
58g. Ethylene glycol 1124ml. water 760m
A mixed solution of 1 was used. A voltage of about 20V was applied. The electrode material is limited to metals that are easily oxidized.

電解液41としては、水溶液のイオン濃度を向上させ、
ウエーハ31 (基板)との濡れが良いものならば広く
使用できる。電圧としては、表面から適度に酸化される
値を選ぶ。
As the electrolytic solution 41, the ion concentration of the aqueous solution is improved,
It can be widely used as long as it has good wettability with the wafer 31 (substrate). As for the voltage, choose a value that will moderately oxidize the surface.

なお、Nbの場合、超伝導グランドプレーン13と完全
に導通していれば、20Vで400人程度の酸化膜が形
成される。
Note that in the case of Nb, if it is completely electrically connected to the superconducting ground plane 13, an oxide film of about 400 layers is formed at 20V.

次に陽極酸化膜の判定について述べる。Next, the determination of the anodic oxide film will be described.

通常、超伝導集積回路11に用いられる数百nm程度の
厚みの酸化膜は、その表面で外部からの光を一部通過し
、一部反射する。透過光は酸化膜と金属電極との境界面
で反射され、酸化膜の表面での反射光と干渉し酸化膜の
厚みに応じた色を呈する。したがって、色の有無により
酸化膜のあるところとないところとの判別ができる。
Typically, an oxide film with a thickness of about several hundred nm used in the superconducting integrated circuit 11 transmits some light from the outside and reflects some light on its surface. The transmitted light is reflected at the interface between the oxide film and the metal electrode, interferes with the light reflected on the surface of the oxide film, and exhibits a color depending on the thickness of the oxide film. Therefore, it is possible to distinguish between areas with and without an oxide film based on the presence or absence of color.

(発明の効果) 以上説明したようにこの発明は、半導体基板側を陽極と
して陽極酸化を施し、対象とする電極の表面の酸化膜の
形成状態を判定し、超伝導グランドプレーンと電気的に
接続されるべき電極または絶縁されるべき電極となって
いるかどうかを識別するので、超伝導集積回路の導通不
良および絶縁不良箇所を回路全体にわたって一括して診
断できるため、検査が簡単で経済的である利点を有する
(Effects of the Invention) As explained above, the present invention performs anodic oxidation using the semiconductor substrate side as the anode, determines the state of oxide film formation on the surface of the target electrode, and electrically connects it to a superconducting ground plane. Since it identifies whether an electrode should be isolated or insulated, it is possible to diagnose conduction defects and insulation defects in a superconducting integrated circuit at once across the entire circuit, making inspection easy and economical. has advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成図、第2図は超
伝導集積回路の一例を示す断面図、第3図は陽極酸化方
法の説明図、第4図はウエーハとチップの形状を示した
図、第5図は従来の超伝導集積回路の診断方法を示す斜
視図である。 図中、11は超伝導集積回路、12は半導体基板、13
は超伝導グランドプレーン、14は絶縁層、15は第1
の電極、16は第2の電極、21は電解槽、22は電解
液、23.24は金属板、25は直流電源、31はウエ
ーハ、32はチップ、32Aは任意のチップ、41は電
解液、42は極細探針である。 第1図 第 5 図 弓
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a sectional view showing an example of a superconducting integrated circuit, Fig. 3 is an explanatory diagram of an anodizing method, and Fig. 4 is a shape of a wafer and a chip. FIG. 5 is a perspective view showing a conventional method for diagnosing a superconducting integrated circuit. In the figure, 11 is a superconducting integrated circuit, 12 is a semiconductor substrate, and 13 is a superconducting integrated circuit.
is a superconducting ground plane, 14 is an insulating layer, and 15 is a first
, 16 is a second electrode, 21 is an electrolytic tank, 22 is an electrolytic solution, 23.24 is a metal plate, 25 is a DC power supply, 31 is a wafer, 32 is a chip, 32A is an arbitrary chip, 41 is an electrolytic solution , 42 are ultrafine probes. Figure 1 Figure 5 Bow

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に、この半導体基板と導通する超伝導グ
ランドプレーンが形成され、この超伝導グランドプレー
ンと電気的に接続されるべき電極と電気的に絶縁される
べき電極とが形成された超伝導集積回路の良否の診断方
法において、前記半導体基板側を陽極として陽極酸化を
施し、対象とする電極の表面の酸化膜の形成状態を判定
し、前記超伝導グランドプレーンと電気的に接続される
べき電極または絶縁されるべき電極となっているかどう
かを識別することを特徴とする超伝導集積回路の良否の
診断方法。
A superconducting integrated circuit in which a superconducting ground plane that is electrically connected to the semiconductor substrate is formed on a semiconductor substrate, and an electrode that is to be electrically connected to the superconducting ground plane and an electrode that is to be electrically insulated are formed. In the method for diagnosing the quality of a circuit, anodic oxidation is performed using the semiconductor substrate side as an anode, the formation state of an oxide film on the surface of the target electrode is determined, and the electrode to be electrically connected to the superconducting ground plane is determined. Or, a method for diagnosing the quality of a superconducting integrated circuit, the method comprising identifying whether the electrode is an electrode that should be insulated or not.
JP1231876A 1989-09-07 1989-09-07 Method of diagnosing whether superconductive integrated circuit is good or bad Granted JPH0395979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1231876A JPH0395979A (en) 1989-09-07 1989-09-07 Method of diagnosing whether superconductive integrated circuit is good or bad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1231876A JPH0395979A (en) 1989-09-07 1989-09-07 Method of diagnosing whether superconductive integrated circuit is good or bad

Publications (2)

Publication Number Publication Date
JPH0395979A true JPH0395979A (en) 1991-04-22
JPH0587194B2 JPH0587194B2 (en) 1993-12-15

Family

ID=16930410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1231876A Granted JPH0395979A (en) 1989-09-07 1989-09-07 Method of diagnosing whether superconductive integrated circuit is good or bad

Country Status (1)

Country Link
JP (1) JPH0395979A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691725A (en) * 1995-09-08 1997-11-25 Mitsubishi Denki Kabushiki Kaisha Distance measuring apparatus capable of measuring plural distance data for calculated angle ranges
US5699150A (en) * 1995-07-14 1997-12-16 Mitsubushi Denki Kabushiki Kaisha Vehicle optical radar apparatus
US5959734A (en) * 1997-11-26 1999-09-28 Mitsubishi Denki Kabushiki Kaisha Distance measuring device
US6064471A (en) * 1997-11-26 2000-05-16 Mitsubishi Denki Kabushiki Kaisha Distance measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149975A (en) * 1974-05-22 1975-12-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149975A (en) * 1974-05-22 1975-12-01

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5699150A (en) * 1995-07-14 1997-12-16 Mitsubushi Denki Kabushiki Kaisha Vehicle optical radar apparatus
US5691725A (en) * 1995-09-08 1997-11-25 Mitsubishi Denki Kabushiki Kaisha Distance measuring apparatus capable of measuring plural distance data for calculated angle ranges
US5959734A (en) * 1997-11-26 1999-09-28 Mitsubishi Denki Kabushiki Kaisha Distance measuring device
US6064471A (en) * 1997-11-26 2000-05-16 Mitsubishi Denki Kabushiki Kaisha Distance measuring device

Also Published As

Publication number Publication date
JPH0587194B2 (en) 1993-12-15

Similar Documents

Publication Publication Date Title
JP3558434B2 (en) Electrical wiring inspection method and apparatus
JPH0395979A (en) Method of diagnosing whether superconductive integrated circuit is good or bad
JP4277398B2 (en) Wiring board inspection equipment
US4427496A (en) Method for improving the inspection of printed circuit boards
US6736699B2 (en) Electrolytic polishing apparatus, electrolytic polishing method and wafer subject to polishing
US7393702B2 (en) Characterizing the integrity of interconnects
KR20030026208A (en) Semiconductor device inspecting method
JP3038114U (en) Probe with insulating coating and probe card using the same
US6248601B1 (en) Fix the glassivation layer's micro crack point precisely by using electroplating method
JP2959529B2 (en) Semiconductor wafer inspection apparatus and inspection method using charged particle beam
Seger New method of measuring electrode resistance for quality control
JPS63119216A (en) Method and apparatus for identifying polarity of electrolytic capacitor
Gajda Techniques in failure analysis of MOS devices
SU1572170A1 (en) Method of inspection of dielectric film thickness on electrically conducting substrate
JP2001267385A (en) Evaluation method for semiconductor wafer
JP3281164B2 (en) Foot Lift Detection Method Using IC In-Circuit Tester
JP2600102B2 (en) Superconducting integrated circuit structure and its manufacturing method
JPH0566732B2 (en)
Libsch et al. Potential‐Induced Impedance Variations in Barrier‐Type Aluminum Oxide Films in Aqueous Sodium Sulfate
JPH0152690B2 (en)
CN117491832A (en) Method for detecting semiconductor device
KR100632534B1 (en) Insulation layer measuring device and measuring method
JPS6257255B2 (en)
Manca et al. In situ failure detection in thick film multilayer systems
JPH04342150A (en) Inspection of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term