JPH0395834A - Withstand voltage treating method for cathode ray tube - Google Patents

Withstand voltage treating method for cathode ray tube

Info

Publication number
JPH0395834A
JPH0395834A JP23202789A JP23202789A JPH0395834A JP H0395834 A JPH0395834 A JP H0395834A JP 23202789 A JP23202789 A JP 23202789A JP 23202789 A JP23202789 A JP 23202789A JP H0395834 A JPH0395834 A JP H0395834A
Authority
JP
Japan
Prior art keywords
electrode
voltage
grid electrode
anode
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23202789A
Other languages
Japanese (ja)
Other versions
JP2907884B2 (en
Inventor
Kumio Fukuda
福田 久美雄
Tsuyoshi Hosokawa
細川 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23202789A priority Critical patent/JP2907884B2/en
Publication of JPH0395834A publication Critical patent/JPH0395834A/en
Application granted granted Critical
Publication of JP2907884B2 publication Critical patent/JP2907884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE:To perform withstand voltage treatment of extremely high efficiency by applying positive pulse-like high voltage to an anode in the state that negative d.c. voltage is applied to one electrode, excluding the anode, among the electrodes which constitute an electron gun. CONSTITUTION:When a switch 17 is turned on, the first grid electrode G1 to the fifth grid electrode G5 are connected to a d.c. high-voltage power supply 16 and preset negative d.c. voltage is applied thereto, respectively. At this time, stray emission occurs in the vicinity of the opposite face of the electrode G5 to the sixth grid electrode G6. Also, stray emission occurs from the side face of the electrode G5 toward the inner wall of a neck portion 11. When a switch 21 is turned on in such a state and positive pulse-like high voltage is applied, electric discharge takes place between the electrode G6 and the electrode G5 and its current flows through an outside connection resistance 18, so that there is potential rise in the electrode G1, the second grid electrode G2 and the fourth grid electrode G4 to perform withstand voltage treatment between the electrode G5 and the electrode G4 and between the third grid electrode G3 and the electrode G2, respectively.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、陰極線管の最終製造工程において、耐電圧特
性を向上させるために行われる耐電圧処理方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a withstand voltage treatment method performed in the final manufacturing process of a cathode ray tube to improve withstand voltage characteristics.

(従来の技術) 一般に、陰極線管、例えばカラーブラウン管を製造する
に当たっては、その最終工程において、耐電圧特性を向
上させるために、スポットノツキングと称される耐電圧
処理が行われる。
(Prior Art) Generally, in manufacturing a cathode ray tube, such as a color cathode ray tube, in the final process, a withstand voltage treatment called spot knocking is performed in order to improve the withstand voltage characteristics.

この耐電圧処理方法としては、排気を完了したカラーブ
ラウン管に対して、その電子銃構体を構成する各電極の
うち、集束電極を含めた低電位電極系のすべてを接地し
た状態で、陽極に50〜80kV相当のパルス状の高電
圧を、数分から数10分にわたって繰返し印加する処理
方法がある。この処理を施すことにより、電極に付着し
ていた微小突起をはじめ、管内雰囲気中に浮遊していた
微小塵埃による電極付着物を、焼成または飛散させて、
実用状態における放電現象や、集束電極と陽極との間の
漏洩電流変化等を防止している。
This withstand voltage processing method is to apply a 50% voltage to the anode of a color cathode ray tube that has completed evacuation, with all of the low potential electrode systems including the focusing electrode among the electrodes constituting the electron gun assembly being grounded. There is a processing method in which a pulsed high voltage equivalent to ~80 kV is repeatedly applied over several minutes to several tens of minutes. By performing this treatment, the microscopic protrusions that had adhered to the electrodes, as well as the electrode deposits caused by microscopic dust floating in the tube atmosphere, are fired or scattered.
This prevents discharge phenomena and changes in leakage current between the focusing electrode and anode during practical use.

この他、特開昭63−241836号公報に示されるよ
うに、電子銃構体を構成する低電位電極系の耐電圧特性
を向上させるため、陽極と共に集束電極にも同時に高電
圧を印加する方法や、特開昭54−74363号公報に
示されるように、電子銃構体の陽極をアース電位にする
と共に、この電子銃構体が収納されるネック部外周に導
電性金属筒を嵌挿し、この導電性金属筒と、低電位電極
系である第1、第2、第4格子電極用のステムピンを一
括接続したソケットとに、共通に負の高電圧を断続的に
印加する方法等がある。
In addition, as shown in Japanese Unexamined Patent Publication No. 63-241836, there is a method in which a high voltage is simultaneously applied to the anode and the focusing electrode in order to improve the withstand voltage characteristics of the low potential electrode system that constitutes the electron gun assembly. , as shown in Japanese Patent Application Laid-Open No. 54-74363, the anode of the electron gun assembly is set to ground potential, and a conductive metal cylinder is inserted around the outer periphery of the neck portion in which the electron gun assembly is housed. There is a method of intermittently applying a common negative high voltage to a metal cylinder and a socket to which stem pins for first, second, and fourth grid electrodes, which are a low potential electrode system, are collectively connected.

(発明が解決しようとする課題) しかしながら、これらの耐電圧処理方法は、パルス状の
高電圧印加であるため断続的であったり、直流高電圧併
用の場合でも短時間処理であるため、電子統構体を構成
する電極間のみの耐電圧処理に終わってしまう。
(Problem to be solved by the invention) However, these withstand voltage processing methods apply intermittent high voltage in the form of pulses, and even when DC high voltage is used together, the processing is short-term, so electronic integration is difficult. This results in voltage resistance treatment only between the electrodes that make up the structure.

実際の使用条件下(数時間の連続長時間使用)では、上
記電極間の耐電圧特性だけでなく、各電極とネック部内
壁との間の耐電圧特性も重要である。すなわち、連続長
時間使用を行うと、時間の経過に伴ってネック部内壁が
陽極電圧によりチャージアップされるので、電極対向部
以外の箇所に付着している微小付着物等ににより、ネッ
ク部内壁との間で、ストレーエミッションや放電等の耐
電圧不良症状が生じるためである。このことは、製品と
して完成したカラーブラウン管を長時間連続動作させた
場合に、数十分または数時間経過時点でストレーエミッ
ションが発生したり、間歇的に放電が生じたりすること
を意味する。
Under actual usage conditions (continuous long-term use of several hours), not only the voltage resistance characteristics between the electrodes but also the voltage resistance characteristics between each electrode and the inner wall of the neck portion are important. In other words, when used continuously for a long time, the inner wall of the neck is charged up by the anode voltage over time, and the inner wall of the neck is charged up by the anode voltage. This is because withstand voltage failure symptoms such as stray emissions and discharge occur between the two. This means that when a completed color cathode ray tube is operated continuously for a long period of time, stray emissions may occur after several tens of minutes or hours have passed, or discharge may occur intermittently.

以下、上記現象をより詳細に説明する。The above phenomenon will be explained in more detail below.

たとえば6極の電子銃構体を備えたカラーブラウン管の
使用状態においては、電子銃構体の陽極である第6格子
電極に対して25〜30kV程度の陽極電圧が印加され
る。また、集束電極である第3および第5格子電極には
上記陽極電圧の28〜3296程度のフォーカス電圧が
印加され、さらに、第2および第4格子電極には500
〜800v程度のスクリーン電圧が印加され、そして、
第1格子電極は接地された状態で使用される。
For example, when a color cathode ray tube having a six-pole electron gun structure is used, an anode voltage of about 25 to 30 kV is applied to the sixth grid electrode, which is the anode of the electron gun structure. Further, a focus voltage of about 28 to 3296 of the above-mentioned anode voltage is applied to the third and fifth grid electrodes, which are focusing electrodes, and a focus voltage of about 500
A screen voltage of about ~800v is applied, and
The first grid electrode is used in a grounded state.

ここで、上記構成の電子銃構体が収納されるネック部内
壁の電位は、上記各動作電圧を印加するまでは零に近い
状態であるが、動作電圧を印加すると、時間の経過(例
えば数十分〜数時間)にともなってチャージアップされ
、電位が上昇する。
Here, the electric potential of the inner wall of the neck portion in which the electron gun structure having the above configuration is housed is in a state close to zero until each of the above operating voltages is applied. (minutes to several hours), the battery is charged up and the potential increases.

すなわち、各電極側面とネック部内壁との間の電位差が
拡大していく。したがって、この間に微小付着物等があ
ると上記電位差によりストレーエミッションや放電が発
生する。
That is, the potential difference between the side surface of each electrode and the inner wall of the neck portion increases. Therefore, if there are minute deposits or the like between them, stray emissions or discharge will occur due to the potential difference.

前述の、陽極以外の電極を接地した状態で陽極にパルス
状の高電圧を印加する耐電圧処理方法では、陽極である
第6格子電極とフォーカス電極である第5格子電極との
間の処理が主体となり、他の電極側面とネック部内壁と
の間に電位差が生じ難く、この間の耐電圧処理が行われ
ない。このため、使用状態において、前述したようにス
トレーエミッション等のような耐電圧不良が生じる。
In the above-described withstand voltage processing method in which a pulsed high voltage is applied to the anode with the electrodes other than the anode grounded, the processing between the sixth grid electrode, which is the anode, and the fifth grid electrode, which is the focus electrode, is It is difficult to generate a potential difference between the other electrode side surfaces and the inner wall of the neck portion, and no withstand voltage treatment is performed between them. For this reason, during use, voltage withstand defects such as stray emissions occur as described above.

この他の前記従来例も、長時間使用によるネック部内壁
と各電極側面との間の耐電圧特性については考えられて
いず、その確保も十分でない。
In the other conventional examples as well, no consideration has been given to voltage resistance characteristics between the inner wall of the neck portion and the side surfaces of each electrode due to long-term use, and the voltage resistance characteristics are not sufficiently ensured.

本発明の目的は、各電極間は勿論、長時間使用で問題と
なるネック部内壁と各電極側面との間についても、効率
良く、しかも簡単に処理して、高い耐電圧特性を有する
陰極線管を得ることができる陰極線管の耐電圧処理方法
を提供することにある。
An object of the present invention is to provide a cathode ray tube that has high withstand voltage characteristics by efficiently and easily treating not only the space between each electrode, but also the space between the inner wall of the neck part and the side surface of each electrode, which becomes a problem when used for a long time. An object of the present invention is to provide a method for treating cathode ray tubes with withstand voltage, which can obtain the following characteristics.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明による陰極線管の耐電圧処理方法は、電子銃構体
を構成する各電極のうち、陽極以外の少なくとも1つの
電極に負の直流電圧を印加した状態で、前記陽極にパル
ス状の正の高電圧を印加するものである。
(Means for Solving the Problems) A withstand voltage treatment method for a cathode ray tube according to the present invention includes applying a negative DC voltage to at least one electrode other than the anode among the electrodes constituting the electron gun assembly. A pulsed positive high voltage is applied to the anode.

(作用) 本発明では、陽極以外の電極に負の直流電圧、すなわち
、実際の使用条件より少し強制度を持たせたに等しい直
流電圧を印加することにより、陽極との間にストレーエ
ミッションを連続的に発生させることができる。また、
ネック部内壁は、通常の使用状態であれば時間の経過と
共に陽極電圧に向かって上昇するが、負の直流電圧を印
加することにより、その時点から強制度を持った電位差
が確保できることになる。
(Function) In the present invention, by applying a negative DC voltage to electrodes other than the anode, that is, a DC voltage equivalent to a DC voltage with a degree of force slightly higher than the actual usage conditions, stray emissions are continuously generated between the electrodes and the anode. can be generated. Also,
Under normal use, the inner wall of the neck will rise toward the anode voltage over time, but by applying a negative DC voltage, a forced potential difference can be maintained from that point on.

このように、通常の使用状態でネック部をチャージアッ
プしたのと等価な条件で電極間にも電位差を持たせ、ス
トレーエミッションを連続的に発生させた状態で、陽極
に処理電圧、すなわち、正のパルス状高電圧を印加する
ことにより、この処理電圧が、耐電圧処理の必要な部分
に印加されることになり、極めて効率の良い耐電圧処理
を行うことができる。その結果長時間の使用にも耐える
信頼性の高い耐電圧特性を有する陰極線管を得ることが
できる。
In this way, a potential difference is created between the electrodes under conditions equivalent to charging up the neck part under normal usage conditions, and while stray emissions are continuously generated, a processing voltage, that is, a positive By applying a pulsed high voltage of 1, this processing voltage is applied to the portions requiring withstand voltage treatment, and extremely efficient withstand voltage treatment can be performed. As a result, a cathode ray tube can be obtained that has highly reliable withstand voltage characteristics that can withstand long-term use.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において、11は陰極線管用ガラスバルブのネッ
ク部で、その内部には電子銃構体l2が収納されている
。この電子銃構体12は周知のように、第1格子電極G
1、第2格子電極G2、集束電極としての第3格子電極
G3、第4格子電極G4、同じく集束電極としての第5
格子電極G5、陽極としての第6格子電極G6からなり
、これらの格子電極61〜G6は、図示しないビードガ
ラスによって、相互に一定間隔を保って保持されている
。な汀、前記第3格子電極G3と第5格子電極G5とは
コネクタ13により共通接続されており、また、第2格
子電極G2と第4格子電極64との間はコネクタ14に
よって共通接続されている。
In FIG. 1, 11 is a neck portion of a glass bulb for a cathode ray tube, and an electron gun assembly 12 is housed inside the neck portion. As is well known, this electron gun structure 12 has a first grid electrode G.
1. A second grid electrode G2, a third grid electrode G3 as a focusing electrode, a fourth grid electrode G4, and a fifth grid electrode also as a focusing electrode.
It consists of a grid electrode G5 and a sixth grid electrode G6 serving as an anode, and these grid electrodes 61 to G6 are held at a constant distance from each other by bead glass (not shown). Furthermore, the third grid electrode G3 and the fifth grid electrode G5 are commonly connected by a connector 13, and the second grid electrode G2 and the fourth grid electrode 64 are commonly connected by a connector 14. There is.

次に、このように構成された陰極線管のネック部ll内
および電子銃構体l2の各電極間を耐電圧処理する耐電
圧処理装置を説明する。
Next, a withstand voltage processing apparatus for performing withstand voltage processing on the inside of the neck portion 11 of the cathode ray tube constructed as described above and between each electrode of the electron gun assembly 12 will be described.

l6は直流高圧電源で、その正極側は接地され、また負
極側はスイッチl7を介した後、第1格子電極G1と、
コネクタ14により互いに内部接続されている第2格子
電極G2および第4格子電極G4とにそれぞれ接続する
と共に、外部接続抵抗l8を介した後、集束電極として
コネクタ13により内部接続されている第3格子電極G
3および第5格子電極G5とそれぞれ接続している。こ
のため、スイッチ17をオンすることにより、これら各
電極Gl, G2, G3. G4,G5に対して負の
直流電圧を印加する。
16 is a DC high voltage power supply, the positive side of which is grounded, and the negative side connected to the first grid electrode G1 after passing through a switch 17;
A third grid is connected to a second grid electrode G2 and a fourth grid electrode G4 which are internally connected to each other by a connector 14, and is also internally connected by a connector 13 as a focusing electrode after passing through an external connection resistor l8. Electrode G
3 and the fifth grid electrode G5, respectively. Therefore, by turning on the switch 17, each of these electrodes Gl, G2, G3 . A negative DC voltage is applied to G4 and G5.

”20は高圧パルス電源で、その一端は接地され、また
他端はスイッチ2lを介した後、陽極である第6格子電
極G6に、ガラスバルプの図示しないファンネル部に設
けられたアノードボタンを介して接続されており、スイ
ッチ21をオンすることにより陽極G6に対して正のパ
ルス状高電圧を印加する。
20 is a high-voltage pulse power supply, one end of which is grounded, and the other end is connected to the sixth grid electrode G6, which is an anode, through a switch 2l and an anode button provided in the funnel (not shown) of the glass bulb. When the switch 21 is turned on, a positive pulsed high voltage is applied to the anode G6.

ここで、前記直流高圧電源l6は、実際の使用状態にお
ける陽極電圧の1.2〜1.5倍相当の負の電圧、例え
ば−35kVを生じるように設定されている。また、正
の高圧パルス電源20は3〜101{z(,例えば5H
z)テ、30〜50kV(例えば35kv)ノパルス状
高電圧を発生するように設定されている。
Here, the DC high voltage power supply 16 is set to generate a negative voltage equivalent to 1.2 to 1.5 times the anode voltage in actual use, for example, -35 kV. In addition, the positive high voltage pulse power supply 20 is 3 to 101{z (, for example, 5H
z) It is set to generate a pulse-like high voltage of 30 to 50 kV (for example, 35 kV).

このような構成において、スイッチ17をオン操作する
と、第1格子電極61〜第5格子電極G5は直流高圧電
源l6に接続され、それぞれに負の所定の直流電圧が印
加される。そして、第6格子電極G6と第5格子電極G
5との間に、直流高圧電源16から供給された電圧によ
る電位差が生じる。また、ネック部口の内壁は、スイッ
チI7がオンされる前は無電荷に近い状態であるが、ス
イッチ17がオンされると第l格子電極01〜第5格子
電極G5により負の電荷が与えられ、各電極側面との間
にそれぞれ電位差が生じる。
In such a configuration, when the switch 17 is turned on, the first grid electrode 61 to the fifth grid electrode G5 are connected to the DC high voltage power supply l6, and a predetermined negative DC voltage is applied to each of them. Then, the sixth grid electrode G6 and the fifth grid electrode G
5, a potential difference occurs due to the voltage supplied from the DC high voltage power supply 16. Furthermore, the inner wall of the neck opening is in a nearly uncharged state before the switch I7 is turned on, but when the switch 17 is turned on, a negative charge is applied to the inner wall of the neck opening by the first grid electrode 01 to the fifth grid electrode G5. , and a potential difference is generated between each electrode side surface.

このことは、カラーブラウン管を適当な強制度を持たせ
て長時間動作させたのとほぼ等価な状態を作ったことを
意味する。この時点では耐電圧処理が行われていないか
、または不十分な状態であるため、第5格子電極G5の
、第6格子電極G6との対向面付近からストレーエミッ
ションが生じる。
This means that we have created a condition that is almost equivalent to operating a color cathode ray tube for a long time with an appropriate degree of force. At this point, voltage resistance treatment is not performed or is insufficient, so stray emissions occur from near the surface of the fifth grid electrode G5 facing the sixth grid electrode G6.

また、第5格子電極G5の側面からネック部11の内壁
に向かって−(または影響を受けて)ストレーエミッシ
ョンが発生する。
In addition, stray emissions occur from the side surface of the fifth grid electrode G5 toward the inner wall of the neck portion 11 (or under the influence).

このようにストレーエミッションが出ている状態で、ス
イッチ21をオンし、正のパルス状高電圧(処理電圧)
を印加すると、前記ストレーエミッションが発生してい
る箇所で放電が起こり、電極付着物等のストレーエミッ
ション源を効率良く焼或または飛散させることができる
With stray emissions appearing in this way, turn on the switch 21 and apply a positive pulsed high voltage (processing voltage).
When applied, a discharge occurs at the location where the stray emissions are occurring, and stray emission sources such as electrode deposits can be efficiently burnt out or scattered.

上記耐電圧処理により、第6格子電極G6から第5格子
電極G5に放電が起こると、その放電電流は外部接続抵
抗l8に流れ、第1格子電極G1、第2格子電極G2お
よび第4格子電極G4に対し電位を上昇させ、第5格子
電極G5と第4格子電極G4、第3格子電極G3と第2
格子電極G2との間をそれぞれ耐電圧処理する。外部接
続抵抗18にはInkΩ程度のものを使用する。
When a discharge occurs from the sixth lattice electrode G6 to the fifth lattice electrode G5 due to the above-described withstand voltage treatment, the discharge current flows to the externally connected resistor l8, and the discharge current flows to the first lattice electrode G1, the second lattice electrode G2, and the fourth lattice electrode G5. The potential is increased with respect to G4, and the fifth grid electrode G5 and the fourth grid electrode G4, the third grid electrode G3 and the second grid electrode
A withstand voltage treatment is applied between the grid electrode G2 and the grid electrode G2. For the externally connected resistor 18, a resistor of approximately InkΩ is used.

このように、陽極としての第6格子電極G6以外の電極
に負の直流高電圧を印加することにより、実際の使用時
に長時間実装で問題となる、陽極電圧のチャージアップ
によるネック部11の内壁での、ストレーエミッション
の発生および放電症状等を極めて簡単に設定でき、この
状態で陽極に処理電圧である正のパルス状高電圧を印加
することによって、必要な部分を、瞬時にかつ効率的に
耐電圧処理することができる。このため、長時間使用に
耐え得る信頼性の高い耐電圧特性を有するカラーブラウ
ン管が得られる。
In this way, by applying a negative DC high voltage to the electrodes other than the sixth lattice electrode G6 as an anode, the inner wall of the neck portion 11 due to charge-up of the anode voltage, which can be a problem with long-term mounting during actual use. The occurrence of stray emissions and discharge symptoms can be set extremely easily, and by applying a positive pulse-like high voltage, which is the processing voltage, to the anode in this state, the necessary parts can be instantly and efficiently set. Can be treated with voltage resistance. Therefore, a color cathode ray tube can be obtained that has highly reliable withstand voltage characteristics that can withstand long-term use.

なお、上記耐電圧処理方法は、従来の耐電圧処理過程の
一部に適用しても効果はあるが、大部分に導入すること
で耐電圧処理時間を1/3程度と大幅に短縮することが
できる。
Note that the above-mentioned withstand voltage treatment method is effective even when applied to a part of the conventional withstand voltage treatment process, but by introducing it to the majority of the process, the withstand voltage treatment time can be significantly shortened to about 1/3. I can do it.

次に、第2図で示す実施例を説明する。この実施例では
、直流高圧電源16として、出力電圧が35kVに設定
された電源(以下−35kV電源と呼ぶ)+6Aと、同
じ<−12kVに設定された電源(以下12kV電源と
呼ぶ)16Bと、同じ<−23kVに設定された電源(
以下−23kV電源と呼ぶ)16Cとを設けテイル。−
35kV電源16^および−+2kV電源16Bは切換
スイッチ17およびノーマリーオンスイッチ23を介し
た後、第1格子電極Gl,および、コネクタ14により
内部接続された第2格子電極G2、第4格子電極G4に
接続する。したがって、これらの電極Gl, G2, 
G4には、切換スイッチ17の切換動作により、−35
kVまたは−+2kVのいずれかを選択的に印加するこ
とができる。また、−23kV電源16Cは、ノーマリ
ーオンスイッチ24を介した後、コネクタ13により内
部接続されている第3格子電極63dよび第5格子電極
G5と接続している。したがって、これら電極G3, 
G5には、ノーマリーオンスイッチ24がオン状態のと
きに−23kVが印加される。
Next, the embodiment shown in FIG. 2 will be explained. In this embodiment, the DC high voltage power supply 16 includes a power supply +6A whose output voltage is set to 35 kV (hereinafter referred to as -35 kV power supply), and a power supply 16B whose output voltage is set to the same <-12 kV (hereinafter referred to as 12 kV power supply). Power supply set to the same <-23kV (
(hereinafter referred to as -23kV power supply) 16C is provided for the tail. −
The 35kV power supply 16^ and the -+2kV power supply 16B are connected to the first grid electrode Gl, the second grid electrode G2, and the fourth grid electrode G4, which are internally connected by the connector 14, after passing through the changeover switch 17 and the normally-on switch 23. Connect to. Therefore, these electrodes Gl, G2,
-35 is set to G4 by the switching operation of the selector switch 17.
Either kV or -+2kV can be selectively applied. Further, the -23 kV power supply 16C is connected to the third grid electrode 63d and the fifth grid electrode G5, which are internally connected by the connector 13, through the normally-on switch 24. Therefore, these electrodes G3,
-23 kV is applied to G5 when the normally-on switch 24 is in the on state.

高圧パルス電源20は、第1図の実施例と同様に、スイ
ッチ21を介した後、陽極である第6格子電極G6に接
続している。
The high-voltage pulse power source 20 is connected to the sixth grid electrode G6, which is an anode, through a switch 21, as in the embodiment shown in FIG.

上記構成において、耐電圧処理を行うに当たっては、ま
ず、スイッチ17を−35kV電源16^側に、また、
スイッチ21を高圧パルス電源2o側にそれぞれ切換え
る。この状態では電極Gl,G2 G4には35kVが
印加サレ、電極G3,G5 ニハ.−23kV i)<
印加されており、さらに電極G6には正のパルス状高電
圧(例えば+35kV )が周期的に印加されている。
In the above configuration, when performing voltage resistance processing, first, switch 17 is set to the -35kV power supply 16^ side, and
Switches 21 are respectively switched to the high voltage pulse power supply 2o side. In this state, 35 kV is applied to the electrodes Gl, G2 and G4, and the voltage of 35 kV is applied to the electrodes G3 and G5. -23kV i)<
Furthermore, a positive pulsed high voltage (for example, +35 kV) is periodically applied to the electrode G6.

すなわち、電極G6に+35kYが印加されると電極G
6と65との電位差は7QkVと極めて大きくなり、こ
の間の耐電圧処理(スポットノッキング)が行われる。
That is, when +35kY is applied to the electrode G6, the electrode G
The potential difference between 6 and 65 becomes extremely large, 7QkV, and withstand voltage treatment (spot knocking) is performed during this time.

また、ネック部l1の内壁は負の電荷が帯電しているの
で、前記正のパルス状高電圧が印加されると、この間の
電位差も太き《なり、したがって、ネック部II内壁と
の間の耐電圧処理も同時に行われる。
In addition, since the inner wall of the neck portion l1 is negatively charged, when the positive pulse-like high voltage is applied, the potential difference therebetween also increases. Withstand voltage treatment is also performed at the same time.

次に、ノーマリーオンスイッチ23をオフにした後、ス
イッチ17を−12kV電源16B側に切換え、再びノ
ーマリーオンスイッチ23をオンにする。この切換によ
り電極G3およびG5に印加されている電圧は−12k
Vに変化する。すなわち、電極G3, G5と電極G2
, G4との間の電圧方向が反転し、かつ電位差は11
kVとなり、これら電極間の耐電圧処理が行われる。
Next, after turning off the normally-on switch 23, the switch 17 is switched to the -12 kV power supply 16B side, and the normally-on switch 23 is turned on again. Due to this switching, the voltage applied to electrodes G3 and G5 is -12k.
Changes to V. That is, electrodes G3, G5 and electrode G2
, G4, the voltage direction is reversed, and the potential difference is 11
kV, and voltage resistance treatment between these electrodes is performed.

なお、図の例では、スイッチ2lは始めから高圧パルス
電源20側に切換えられていたが、最初は接地側に切換
えておいても良い。この場合、スイッチ21は、ある程
度時間が経過してから高圧パルス電源20側に切換えれ
ば良い。
In the illustrated example, the switch 2l is switched to the high voltage pulse power supply 20 side from the beginning, but it may be switched to the ground side at first. In this case, the switch 21 may be switched to the high voltage pulse power source 20 side after a certain amount of time has passed.

次に、第3図の実施例を説明する。この実施例は、第2
図と同様に、直流高圧電源16として3つの直流電源1
6^, 168. 16Cを持つが、その内の一っ16
cは出力電圧を−23kV〜−35kVの範囲で可変で
きるように構成されている。また、高圧パルス電源20
としては、電圧および周波数とも、第l図および第2図
で示したものと同様の第1のパルス電源20^と、電圧
および周波数とも上記第1のパルス電源20^の半分程
度に設定された第2のパルス電源20Bとを設けている
Next, the embodiment shown in FIG. 3 will be explained. In this example, the second
As shown in the figure, three DC power supplies 1 are used as the DC high voltage power supply 16.
6^, 168. It has 16C, but one of them is 16
c is configured so that the output voltage can be varied within the range of -23 kV to -35 kV. In addition, high voltage pulse power supply 20
The voltage and frequency of the first pulsed power source 20^ were set to be similar to those shown in Figures 1 and 2, and both the voltage and frequency were set to about half of the first pulsed power source 20^ described above. A second pulse power source 20B is provided.

上記直流電源、すなわち、−35kV電源16Aおよび
−12kV電源16Bは、第2図と同様に、切換スイッ
チ17およびノーマリーオンスイッチ23を介した後、
第1格子電極Gl,および、コネクタ14により内部接
続された第2格子電極G2、第4格子電極G4に接続し
ている。また、可変電源l6Cは、切換スイッチ26の
一方の切換側およびノーマリーオンスイッチ24を介し
た後、コネクタ13により内部接続されている第3格子
電極G3および第5格子電極G5と接続している。第1
のパルス電源20Aは、切換スイッチ27の一方の切換
側およびスイッチ21を介した後、陽極である第6格子
電極G6に接続している。さらに、第2のパルス電源2
0Bは前記切換スイッチ26.27の、それぞれの他方
の切換側に接続している。
The DC power supplies, that is, the -35kV power supply 16A and the -12kV power supply 16B, are connected to the changeover switch 17 and the normally-on switch 23, as in FIG.
It is connected to a first grid electrode Gl, and a second grid electrode G2 and a fourth grid electrode G4 which are internally connected by a connector 14. Further, the variable power supply l6C is connected to the third grid electrode G3 and the fifth grid electrode G5, which are internally connected by the connector 13, through one switching side of the changeover switch 26 and the normally-on switch 24. . 1st
The pulse power source 20A is connected to the sixth grid electrode G6, which is an anode, through one switching side of the changeover switch 27 and the switch 21. Furthermore, a second pulse power source 2
0B is connected to the other switching side of each of the changeover switches 26 and 27.

上記構成において、耐電圧処理を行うに当たっては、ま
ず、スイッチ17を−35kV電源l6^側に、また、
スイッチ26を可変電源16c側に、スイッチ2127
を第1のパルス電源2OA側にそれぞれ切換える。この
状態では電極Gl, G2. G4には−35kVが印
加され、電極G3,G5+,:は−23kV 〜−35
kV (7)可変電圧が印加されており、さらに電極G
6には正のパルス状高電圧(例えば+35kY )が周
期的に印加される。
In the above configuration, when carrying out withstand voltage processing, first, switch 17 is set to the -35kV power supply l6^ side, and
Switch 26 to the variable power supply 16c side, switch 2127
are respectively switched to the first pulse power supply 2OA side. In this state, the electrodes Gl, G2 . -35kV is applied to G4, and electrodes G3, G5+,: -23kV to -35
kV (7) A variable voltage is applied, and the electrode G
6 is periodically applied with a positive pulsed high voltage (for example, +35 kY).

ここで、電極G3, G5への印加電圧を−23kYに
調整すると、電極G2, G4とG3, G5との電位
差によりこの間の耐電圧処理が行われる。また印加電圧
を−23kVから−35kYに徐々に調整すると、各電
極G2,G4との電位差が徐々に変化するとともに、電
極G6に正のパルス状高電圧(例えば、+35kV )
が印加されたとき、電極G6と65との間の電位差は7
0kVと最適な値になり、この間の耐電圧処理を効果的
に行うことができる。もちろん、ネック部11の内壁と
の間の耐電圧処理も前記実施例と同様に行われる。
Here, when the voltage applied to the electrodes G3 and G5 is adjusted to -23 kY, withstand voltage processing is performed due to the potential difference between the electrodes G2 and G4 and G3 and G5. Further, when the applied voltage is gradually adjusted from -23kV to -35kY, the potential difference between each electrode G2 and G4 gradually changes, and a positive pulse-like high voltage (for example, +35kV) is applied to the electrode G6.
is applied, the potential difference between electrodes G6 and 65 is 7
The optimum value is 0 kV, and withstand voltage processing during this period can be effectively performed. Of course, the voltage resistance treatment between the neck portion 11 and the inner wall is performed in the same manner as in the previous embodiment.

上記耐電圧処理を行った後、さらにスイッチ17ヲ−1
2kV電源16B側に、Xイyチ26  27を第2の
パルス電源21B側に切換え、電極G3, G5とG2
,G4との間の耐電圧処理を行えば、よりいっそう確実
な耐電圧処理となる。
After the above-mentioned withstand voltage treatment, the switch 17-1 is further
Switch the 2kV power supply 16B to the second pulse power supply 21B, and switch the electrodes G3, G5 and G2 to the second pulse power supply 21B.
, G4, the withstand voltage processing becomes even more reliable.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、各電極間は勿論、長時間
使用で問題となるネック部内壁と各電極側面との間につ
いても、効率良く、しかも簡単に耐電圧処理することが
でき、高い耐電圧特性を有する信頼性の高い陰極線管を
得ることができる。
As described above, according to the present invention, it is possible to efficiently and easily apply voltage resistance treatment not only between each electrode, but also between the inner wall of the neck part and the side surface of each electrode, which becomes a problem when used for a long time. A highly reliable cathode ray tube with high withstand voltage characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による陰極線管の耐電圧処理方法の一実
施例に用いる耐電圧処理装置の構成を示す回路図、第2
図および第3図はいずれも本発明の他の実施例に用いる
耐電圧処理装置の構成例を示す回路図である。 11・・ネック部、12・・電子銃構体、l6・負の直
流電圧を生じる直流高圧電源、20・・正のパルス状高
電圧を生じる高圧パルス電源、Gl, G2,(;3,
 G4, G5・・陽極以外の電極、G6・・陽極とし
ての電極。 )1l』
FIG. 1 is a circuit diagram showing the configuration of a withstand voltage processing apparatus used in an embodiment of the withstand voltage processing method for cathode ray tubes according to the present invention;
Both FIG. 3 and FIG. 3 are circuit diagrams showing a configuration example of a withstand voltage processing apparatus used in another embodiment of the present invention. DESCRIPTION OF SYMBOLS 11... Neck part, 12... Electron gun structure, l6... DC high-voltage power supply that generates a negative DC voltage, 20... High-voltage pulse power supply that generates a positive pulse-like high voltage, Gl, G2, (;3,
G4, G5... Electrodes other than an anode, G6... Electrodes as an anode. )1l'

Claims (1)

【特許請求の範囲】[Claims] (1)電子銃構体を構成する各電極のうち、陽極以外の
少なくとも1つの電極に負の直流電圧を印加した状態で
、前記陽極にパルス状の正の高電圧を印加することを特
徴とする陰極線管の耐電圧処理方法。
(1) A pulsed positive high voltage is applied to the anode while a negative DC voltage is applied to at least one electrode other than the anode among the electrodes constituting the electron gun structure. Voltage resistance treatment method for cathode ray tubes.
JP23202789A 1989-09-07 1989-09-07 Withstand voltage treatment method for cathode ray tube Expired - Fee Related JP2907884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23202789A JP2907884B2 (en) 1989-09-07 1989-09-07 Withstand voltage treatment method for cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23202789A JP2907884B2 (en) 1989-09-07 1989-09-07 Withstand voltage treatment method for cathode ray tube

Publications (2)

Publication Number Publication Date
JPH0395834A true JPH0395834A (en) 1991-04-22
JP2907884B2 JP2907884B2 (en) 1999-06-21

Family

ID=16932819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23202789A Expired - Fee Related JP2907884B2 (en) 1989-09-07 1989-09-07 Withstand voltage treatment method for cathode ray tube

Country Status (1)

Country Link
JP (1) JP2907884B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100234637B1 (en) * 1994-02-03 1999-12-15 쓰치야 히로오 Heat insulated container and manufacture thereof
KR100341228B1 (en) * 1999-07-12 2002-06-20 니시무로 타이죠 Cathode ray tube apparatus
JP2007332833A (en) * 2006-06-13 2007-12-27 Sanden Corp Compressor and water heater using the compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100234637B1 (en) * 1994-02-03 1999-12-15 쓰치야 히로오 Heat insulated container and manufacture thereof
US6179155B1 (en) 1994-02-03 2001-01-30 Nippon Sanso Corporation Insulated vessel and method of production therefor
KR100341228B1 (en) * 1999-07-12 2002-06-20 니시무로 타이죠 Cathode ray tube apparatus
JP2007332833A (en) * 2006-06-13 2007-12-27 Sanden Corp Compressor and water heater using the compressor

Also Published As

Publication number Publication date
JP2907884B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
PL133432B1 (en) Method of carrying out the high-voltage test of the assembly of base of electron gun cathode-ray tube
JPH0395834A (en) Withstand voltage treating method for cathode ray tube
US4682963A (en) High voltage processing of CRT mounts
US4883438A (en) Method for spot-knocking an electron gun mount assembly of a CRT
JP2641461B2 (en) Aging method of cathode ray tube
US4682962A (en) Method of manufacturing a cathode ray tube
JP2673049B2 (en) Manufacturing method of cathode ray tube
JP2586220B2 (en) Manufacturing method of color cathode ray tube
KR950008025Y1 (en) High-voltagr circuit forbrown tube manufacture
KR0135045B1 (en) Method for spot knocking an electron gun assembly cathode ray tube
KR100211428B1 (en) High voltage control method of electron gun
JPH0246626A (en) Spot knocking method of electron gun mount structure
JPH0373090B2 (en)
JPS63241836A (en) Electrode knocking method for cathode-ray tube
JPH01128337A (en) Discharge cleaner for electron gun
JPH097522A (en) Knocking method for cathode-ray tube and cathode-ray tube
EP0634771B1 (en) Method for spot-knocking an electron gun assembly of a cathode ray tube
JPH01225034A (en) Manufacture of cathode-ray tube
JPH01169840A (en) Cathode-ray tube processing method for improvement of withstand voltage characteristic
JP2637115B2 (en) Manufacturing method of cathode ray tube
JPS6026256B2 (en) Cathode ray tube manufacturing method
JPH0447637A (en) Manufacture of color cathode-ray tube
JPS6089037A (en) Cathode ray tube
DE3663425D1 (en) Method for heating electron gun electrodes during manufacture
JPS6054138A (en) Manufacture of cathode-ray tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees