JPH0395502A - Filter for flame sensor - Google Patents

Filter for flame sensor

Info

Publication number
JPH0395502A
JPH0395502A JP23027789A JP23027789A JPH0395502A JP H0395502 A JPH0395502 A JP H0395502A JP 23027789 A JP23027789 A JP 23027789A JP 23027789 A JP23027789 A JP 23027789A JP H0395502 A JPH0395502 A JP H0395502A
Authority
JP
Japan
Prior art keywords
filter
refractive index
quartz substrate
flame sensor
index material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23027789A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugano
宏 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP23027789A priority Critical patent/JPH0395502A/en
Publication of JPH0395502A publication Critical patent/JPH0395502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an inexpensive filter for the flame sensor which has high sensitivity and immune from malfunction by providing wide-band filters which have specific structural formulas and differ in cutoff wavelength range on both surfaces of a quartz substrate and using Ge as a material with a high refractive index. CONSTITUTION:On the top surface of the quartz substrate (1) of the 4.3mu monochromatic filter for the flame sensor, the wide-band interference filter (2) has the structural formula I and the 2.3 - 4mum cutoff wavelength range is formed. (In the formula, H and L are the optical path lengths of a high-refractive-index material and a low-refractive-index material corresponding to 1/4 wavelength (lambda) respectively.) Similarly, the wide-band interference filter (3) which has the structural formula II and a 1.5 - 2.3mum cutoff wavelength range is formed on the reverse surface of the substrate similarly and Ge is used as the high- refractive-index materials of the wide-band interference filters (2) and (3). Consequently, the high-SN-ratio filter for the flame sensor which cuts off a noise input and transmits a signal input excellently can be obtained at low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は波長4.3μに中心波長をもつ赤外線のみを透
過させる単色フィルタに関し、更に詳しくは炎センサと
して熱線センサと組み合わせて使用する4.3μ単色フ
ィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a monochromatic filter that transmits only infrared rays having a center wavelength of 4.3μ, and more specifically, to a monochromatic filter that is used in combination with a heat ray sensor as a flame sensor. Regarding a 3μ monochromatic filter.

(従来技術) 炎センサにおいては、炎の放射する波長4 . 3 t
lに中心波長を持つ赤外線に対して感度が良く、ノイズ
入力に対して誤作動をなくすことが必要である。
(Prior art) In a flame sensor, the wavelength 4. 3t
It is necessary to have good sensitivity to infrared rays with a center wavelength at 1, and to eliminate malfunctions due to noise input.

そのため、熱線センサと組み合わせて炎の発光スペクト
ル4.3μ付近の波長域をできるだけ透過し、その他の
波長域では、すべて遮断する機能を持つフィルタを用い
ることが必要である。
Therefore, in combination with a heat ray sensor, it is necessary to use a filter that has the function of transmitting as much of the wavelength range around 4.3μ in the flame emission spectrum as possible, and blocking all other wavelength ranges.

これらの機能を有するものは炎センサ用として4.3μ
単色フィルタが用いられている。
Those with these functions are 4.3μ for flame sensors.
A monochromatic filter is used.

従来、炎センサ用4.3μ単色フィルタには赤外域で広
く吸収の少ないS i % G e又はAi203など
の赤外線透過材料からなる基板が用いられていまた、単
色フィルタとしては7アブリペロータイプの干渉フィル
タが知られており、Si.Geなどの高屈折率材とSi
n,ZnSなどの低屈折率材とを交互に積層したものが
用いられている。
Conventionally, 4.3μ monochromatic filters for flame sensors have used substrates made of infrared transmitting materials such as Si%Ge or Ai203, which have low absorption in the infrared region. Filters are known, such as Si. High refractive index material such as Ge and Si
A material in which low refractive index materials such as n, ZnS, etc. are alternately laminated is used.

しかし、この7アブリベロータイプの干渉フィルタは中
心波長にシャープなピークを有する透過帯を実現できる
が、中心波長以外で広帯域の遮断帯を有していない。
However, although this 7-abbrelow type interference filter can realize a transmission band having a sharp peak at the center wavelength, it does not have a broadband cutoff band at other than the center wavelength.

したがって、中心波長以外の遮断性を持たせるためには
さらに短波長側を遮断するための広帯域フィルタと長波
長側を遮断するための広帯域フィルタの少なくとも2種
以上の広帯域フィルタを非干渉層のスベサーを隔てて積
層しなければならない。
Therefore, in order to have blocking properties for wavelengths other than the center wavelength, at least two types of broadband filters, one for blocking shorter wavelengths and the other for blocking longer wavelengths, should be used as a smooth filter in the non-interference layer. It must be stacked with two layers separated.

これらはいずれも硬脆性の光学基板上に数lO層にわた
る高精度の多層化薄膜技術による加工を施して作製され
るものであり、損傷しやすく、かつ高価である。
All of these are fabricated by processing several lO layers on a hard and brittle optical substrate using a highly accurate multilayer thin film technology, and are easily damaged and expensive.

(発明が解決しようとする課題) 3 本発明を図によって説明すれば、第1図は本発明による
炎センサ用4.3μ単色フィルタの断面図であり、図中
1は石英基板、2及び3は高・低屈折率材を交互積層し
た広帯域干渉フィルタである。
(Problems to be Solved by the Invention) 3 To explain the present invention using figures, FIG. 1 is a sectional view of a 4.3μ monochromatic filter for a flame sensor according to the present invention, in which 1 is a quartz substrate, 2 and 3 are is a broadband interference filter made of alternating layers of high and low refractive index materials.

この第1図から明らかなように、本発明の炎センサ用4
.3μ単色フィルタは石英基板l上面には下記構造式〔
I〕 石英基板/ [ H + L 1] ’ H r ,λ
+’=2973Cnm)・・CI)で示されるような高
・低屈折率材を交互積層した広帯域干渉フィルタ2が形
威されており、更に石英基板1の下面には下記構造式(
1) 石英基板/ c H ! L 2 P,λ2色l931
cnm)”(1)で示されるような高・低屈折率材を交
互積層した広帯域干渉フィルタ3が形成されている。
As is clear from FIG. 1, the flame sensor 4 of the present invention
.. The 3μ monochromatic filter has the following structural formula on the top surface of the quartz substrate.
I] Quartz substrate/[H + L 1] ' H r , λ
+'=2973Cnm)...CI) A broadband interference filter 2 is formed by alternately laminating high and low refractive index materials, and the lower surface of the quartz substrate 1 has the following structural formula (
1) Quartz substrate/c H! L 2 P, λ2 color l931
A broadband interference filter 3 is formed by alternately laminating high and low refractive index materials as shown in (1).

構造式[1〕, (1)において、HIおよびL.はそ
れぞれ広帯域フィルタ2の高屈折率材および低屈折率材
の1/4波長01)の光路長を表し、H2およびL,は
それぞれ広帯域フィルタ3の高屈折率材および低屈折率
材の1/4波長(λ2)の光路長を本発明は炎センサ用
4.3μ単色フィルタとしてノイズ入力の遮断性と信号
入力の透過性に優れ、更に加工性及び生産性を得んとし
て研究を重ねた結果、石英基板とその両面に遮断帯の異
なる広帯域フィルタを1つずつ設けることによりノイズ
入力の遮断性と信号入力の透過性に優れ、かつ加工性及
び生産性がよく工業的メリットの大きい炎センサ用4.
3μ単色フィルタを提供することにある。
In structural formula [1], (1), HI and L. represent the optical path length of 1/4 wavelength 01) of the high refractive index material and the low refractive index material of the broadband filter 2, respectively, and H2 and L represent the 1/4 wavelength of the high refractive index material and the low refractive index material of the broadband filter 3, respectively. The present invention has an optical path length of 4 wavelengths (λ2) as a 4.3μ monochromatic filter for flame sensors, which has excellent noise input blocking properties and signal input transparency, and is the result of repeated research in an effort to obtain further workability and productivity. For flame sensors, it has excellent noise input blocking performance and signal input transparency by providing a quartz substrate and one broadband filter with a different cutoff band on both sides, and has good processability and productivity, which has great industrial benefits. 4.
The purpose of the present invention is to provide a 3μ monochromatic filter.

(課題を解決するための手段) 本発明は石英基板とその両面に高・低屈折率材の交互積
層による遮断帯の異なる2つの広帯域フィルタを設け、
その高屈折率材にはGeを用いたことを特徴とするもの
である。
(Means for Solving the Problems) The present invention provides two broadband filters with different cutoff bands by alternately laminating high and low refractive index materials on a quartz substrate and both surfaces thereof,
It is characterized in that Ge is used as the high refractive index material.

本発明による炎センサ用4.3μ単色フィルタはノイズ
入力の遮断性と信号入力の透過性に優れていることから
熱線センサと組み合わせて用いた場合、高感度でしかも
誤作動のない炎センサを実現することができる。
The 4.3μ monochromatic filter for flame sensors according to the present invention has excellent noise input blocking properties and signal input transparency, so when used in combination with a heat ray sensor, a flame sensor with high sensitivity and no malfunction can be achieved. can do.

(作用) 4 表わす。(effect) 4 represent

ここで光路長とは、膜厚と屈折率の積で定義される。Here, the optical path length is defined as the product of film thickness and refractive index.

高・低屈折率材を蒸着中に膜厚または屈折率を監視する
ことは難しく、通常光路長を監視することによって高・
低屈折率材を交互積層し、干渉フィルタが形成される。
It is difficult to monitor the film thickness or refractive index during the deposition of high and low refractive index materials, and it is common to monitor the optical path length.
An interference filter is formed by alternately laminating low refractive index materials.

またここで示されているλ1,λ2はその値を大きくす
ると、広帯域干渉フィルタの遮断帯域を長波長側へ、逆
にその値をちいさくすると遮断帯域を短波長側へ設計す
ることが出来、目的の遮断帯域に最適値を選ぶことがで
きる。
In addition, by increasing the values of λ1 and λ2 shown here, the cutoff band of the broadband interference filter can be designed to move to the longer wavelength side, and conversely, by decreasing the values, the cutoff band can be designed to the shorter wavelength side. The optimum value can be selected for the cutoff band.

本発明において用いられる広帯域干渉フィルタ2及び3
の高屈折率材としてはGeを用いる。
Wideband interference filters 2 and 3 used in the present invention
Ge is used as the high refractive index material.

これはGe自身の吸収特性により、1.7μ以下の信号
を遮断するためである。
This is because Ge itself blocks signals of 1.7 μm or less due to its absorption characteristics.

低屈折率材としては、特に限定するものではないがSi
O%Si02、ZnSなどを挙げることができる この広帯域干渉フィルタ2及び3として交互積層される
高・低屈折率材の形戊方法は、本発明において特に限定
されるものではない。例えば真空蒸着、スパッタリング
法などで形或することができる。
The low refractive index material is not particularly limited, but Si
The method of forming the high and low refractive index materials alternately laminated as the broadband interference filters 2 and 3, which may include O%Si02, ZnS, etc., is not particularly limited in the present invention. For example, it can be formed by vacuum evaporation, sputtering, or the like.

石英基板1としては波長4.3μで透明であり、かつ波
長5μ以上の赤外域を吸収することが必要である。
The quartz substrate 1 needs to be transparent at a wavelength of 4.3 μm and absorb infrared wavelengths of 5 μm or more.

石英基板lの厚さは透叩性を」二げるためには薄くする
ほうがよい。逆に波長5μ以上の赤外域を吸収するため
には、その厚さはO lμ以上必要である。
It is better to make the thickness of the quartz substrate l thinner in order to improve permeability. Conversely, in order to absorb infrared wavelengths of 5μ or more, the thickness needs to be O lμ or more.

したがって石英基板lの好ましい厚さは種類によっても
異なるが0.1〜1mmが好ましい。
Therefore, the preferred thickness of the quartz substrate l varies depending on the type, but is preferably 0.1 to 1 mm.

石英基板の両面に広帯域フィルタを設けるのは、例えば
石英基板の片側に、石英基板/フィルタ2/フィルタ3
という構成となる様に干渉フィルタを2つ重ねてしまえ
ば全くフィルタの機能をしなくなってしまう。
Broadband filters are provided on both sides of the quartz substrate, for example, by quartz substrate/filter 2/filter 3 on one side of the quartz substrate.
If two interference filters are stacked on top of each other in this configuration, they will no longer function as filters at all.

2つの異なる干渉フィルタを重ねる場合には、必ず非干
渉層を介する必要があり、その構戒は石英一7 5〜2.3μの波長の光をそれぞれ遮断することができ
る。
When two different interference filters are stacked, it is necessary to use a non-interference layer, which can block light with a wavelength of 75 to 2.3 microns using quartz.

高屈折率材(H +) : G eと低屈折率材(L+
):SiOの光路長がいずれもλ1/4となるよう、所
定の膜厚となるよう監視しつつ石英ガラスの面に真空蒸
着法によって交互に9層積層し、広帯域干渉フィルタ2
を形戊した。
High refractive index material (H+): Ge and low refractive index material (L+)
): Nine layers are alternately laminated on the surface of quartz glass by vacuum evaporation method while monitoring to obtain a predetermined film thickness so that the optical path length of SiO is λ1/4 in each case, and a broadband interference filter 2 is formed.
was shaped.

さらに形戊された広帯域干渉フィルタ2とは反対側の石
英ガラスのもう一方の面に高屈折率材(H2)二Geと
低屈折率材(L2):Si○の光路長がいずれもλ2/
4となるよう、所定の膜厚となるよう監視しつつ石英ガ
ラスの面に真空蒸着法によって交互に8層積層し、広帯
域干渉フィルタ3を形或した。
Further, on the other surface of the quartz glass opposite to the shaped broadband interference filter 2, a high refractive index material (H2), 2 Ge, and a low refractive index material (L2): Si○ have optical path lengths of λ2/
4, eight layers were alternately laminated on the surface of quartz glass by vacuum evaporation while monitoring to obtain a predetermined film thickness, thereby forming the broadband interference filter 3.

実施例2 石英基板1として厚さ0 . 3 mmの石英ガラスを
用い、広帯域干渉フィルタ2及び3として実施例1と同
様にして設けたものを実施例2とする。
Example 2 The quartz substrate 1 has a thickness of 0. Example 2 uses 3 mm quartz glass and provides broadband interference filters 2 and 3 in the same manner as Example 1.

ここで厚さ0.3mm及び0 . 5 mmの石英ガラ
スの分光透過率を第4図に示す。
Here, the thickness is 0.3 mm and 0.3 mm. Figure 4 shows the spectral transmittance of 5 mm quartz glass.

た複雑な構或となってしまう。This results in a complicated structure.

したがって干渉フィルタが2つの場合には石英基板の両
面に設けることが重要である。
Therefore, when there are two interference filters, it is important to provide them on both sides of the quartz substrate.

(実施例) 実施例l 石英基板1として、厚さQ.5mmの石英ガラスを用い
、この両面に付してなる広帯域干渉フィルタ2及び3の
高屈折率材としてGe、低屈折率材としてはSiOを用
いた。広帯域干渉フィルタ2及び3の構造は下記構造式
(1)及び〔II〕で決定される。
(Example) Example 1 The quartz substrate 1 has a thickness of Q. A 5 mm thick quartz glass was used, and Ge was used as the high refractive index material and SiO was used as the low refractive index material of the broadband interference filters 2 and 3 attached to both sides. The structures of the broadband interference filters 2 and 3 are determined by the following structural formulas (1) and [II].

石英基板7[H,L+]’Hl,λ+=2973〔nm
)・(1)石英基板// [ H 2 T− 2 ] 
’ ,λ2=l931〔nm)・・”(1)(但し、H
,Lはそれぞれ高屈折率材と低屈折率材の1./4波長
(λ)の光路長を表す。)第2図および第3図にシュミ
レーションによる分光透過率を示す。
Quartz substrate 7 [H, L+]'Hl, λ+ = 2973 [nm
)・(1) Quartz substrate // [H 2 T- 2 ]
' , λ2=l931[nm]...''(1) (However, H
, L are 1. of high refractive index material and low refractive index material, respectively. /4 represents the optical path length of wavelength (λ). ) Figures 2 and 3 show spectral transmittances based on simulations.

このように広帯域干渉フィルタ2は2.3〜4μの波長
の光を、また広帯域干渉フィルタ3は1,8− かくして製作した炎センサ用4.3μ単色フィルタの実
施例l及び2の分光透過率を第5図および第6図に示す
In this way, the broadband interference filter 2 transmits light with a wavelength of 2.3 to 4μ, and the broadband interference filter 3 transmits light with a wavelength of 1,8μ. are shown in FIGS. 5 and 6.

更に信号Sとしてガスライタの炎を、雑音Nとして蛍光
灯の光源を用い、フィルタ挿入前後の熱線センサの出力
比をS,Nとし、これらをフィルタの分光効率と考え、
更にその比をとったものをS/N比とした。
Furthermore, using the flame of a gas lighter as the signal S and the light source of a fluorescent lamp as the noise N, let the output ratio of the heat ray sensor before and after inserting the filter be S and N, and consider these as the spectral efficiency of the filter.
Furthermore, the ratio was taken as the S/N ratio.

フィルタとして実施例1及び2と比較例lとして市販の
4.3μ単色フィルタを用いた結果を第1表に示す。
Table 1 shows the results using commercially available 4.3μ monochromatic filters as Examples 1 and 2 and Comparative Example 1 as filters.

第1表 (発明の効果) 以上説明したように本発明によれば、本発明の赤外線単
色フィルタは、石英基板とその両面に遮断帯の異なる2
つの広帯域フィルタからなり、雑音の遮断性と信号の利
得に優れたものが、より安価に得られるフィルタであり
、高感度で誤作動のない炎センサ用としてS/N比の大
きい赤外線単色フィルタを提供するものである。
Table 1 (Effects of the Invention) As explained above, according to the present invention, the infrared monochromatic filter of the present invention has a quartz substrate and two different cutoff bands on both sides thereof.
A filter consisting of two wideband filters with excellent noise isolation and signal gain is a cheaper filter, and an infrared monochromatic filter with a high S/N ratio is used for flame sensors with high sensitivity and no malfunction. This is what we provide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炎センサ用4,3μ単色フィルタの構成(断面
図)、第2図は広帯域干渉フィルタ2のシュミレーショ
ンによる分光透過率、第3図は広帯域干渉フィルタ3の
シュミレーションによる分光透過率、第4図は厚さO−
3mmと0 . 5 mmの石英ガラスの分光透過率、
第5図は実施例lで得られた炎センサ用単色フィルタの
分光透過率、第6図は実施例2で得られた炎センサ用単
色フィルタの分光透過率をしめす。
Figure 1 shows the configuration (cross-sectional view) of a 4.3μ monochromatic filter for flame sensors, Figure 2 shows the simulated spectral transmittance of broadband interference filter 2, Figure 3 shows the simulated spectral transmittance of broadband interference filter 3, and Figure 3 shows the simulated spectral transmittance of broadband interference filter 3. Figure 4 shows thickness O-
3mm and 0. Spectral transmittance of 5 mm quartz glass,
FIG. 5 shows the spectral transmittance of the monochromatic filter for a flame sensor obtained in Example 1, and FIG. 6 shows the spectral transmittance of the monochromatic filter for a flame sensor obtained in Example 2.

Claims (1)

【特許請求の範囲】[Claims] (1)厚さが0.1〜1mmの石英基板の両面に高・低
屈折率材の交互積層による、遮断帯の異なる広帯域干渉
フィルタを付した炎センサ用フィルタにおいて、石英基
板の一方の面に付される広帯域干渉フィルタが下記の構
造式〔 I 〕で示され、遮断帯波長域が2.3〜4μで
あり、他方の面に付される広帯域干渉フィルタが下記の
構造式〔II〕で示され遮断帯波長域が1.5〜2.3μ
であり、さらにこれら2つの広帯域干渉フィルタの高屈
折率材としてゲルマニウムを用いことを特徴とする炎セ
ンサ用フィルタ。 〔構造式〕 石英基板//[H_1L_1]^4H_1、λ_1≒2
973〔nm〕…〔 I 〕石英基板//[H_2L_2
]^4、λ_2≒1931〔nm〕……〔II〕但し、H
、Lはそれぞれ高屈折率材と低屈折率材の1/4波長(
λ)の光路長を表す。
(1) In a flame sensor filter with a broadband interference filter with different cutoff bands made by alternately laminating high and low refractive index materials on both sides of a quartz substrate with a thickness of 0.1 to 1 mm, one side of the quartz substrate The broadband interference filter attached to the other side is shown by the following structural formula [I], and the cutoff band wavelength range is 2.3 to 4μ, and the broadband interference filter attached to the other side is shown by the following structural formula [II]. The cutoff wavelength range is 1.5 to 2.3μ.
A filter for a flame sensor, further comprising using germanium as a high refractive index material for these two broadband interference filters. [Structural formula] Quartz substrate //[H_1L_1]^4H_1, λ_1≒2
973 [nm]...[I] Quartz substrate //[H_2L_2
]^4, λ_2≒1931 [nm]...[II] However, H
, L are the quarter wavelengths of the high refractive index material and the low refractive index material, respectively (
λ) represents the optical path length.
JP23027789A 1989-09-08 1989-09-08 Filter for flame sensor Pending JPH0395502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23027789A JPH0395502A (en) 1989-09-08 1989-09-08 Filter for flame sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23027789A JPH0395502A (en) 1989-09-08 1989-09-08 Filter for flame sensor

Publications (1)

Publication Number Publication Date
JPH0395502A true JPH0395502A (en) 1991-04-19

Family

ID=16905282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23027789A Pending JPH0395502A (en) 1989-09-08 1989-09-08 Filter for flame sensor

Country Status (1)

Country Link
JP (1) JPH0395502A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183525A (en) * 2005-12-07 2007-07-19 Murakami Corp Dielectric multilayer film filter
CN100462738C (en) * 2005-07-15 2009-02-18 鸿富锦精密工业(深圳)有限公司 Light filter
WO2010150787A1 (en) * 2009-06-25 2010-12-29 パナソニック電工株式会社 Infrared gas detector and infrared gas measuring device
JP2014048161A (en) * 2012-08-31 2014-03-17 Asahi Kasei Electronics Co Ltd Infrared sensor module
JP2015087181A (en) * 2013-10-29 2015-05-07 アルプス電気株式会社 Light-receiving device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462738C (en) * 2005-07-15 2009-02-18 鸿富锦精密工业(深圳)有限公司 Light filter
JP2007183525A (en) * 2005-12-07 2007-07-19 Murakami Corp Dielectric multilayer film filter
WO2010150787A1 (en) * 2009-06-25 2010-12-29 パナソニック電工株式会社 Infrared gas detector and infrared gas measuring device
CN102575983A (en) * 2009-06-25 2012-07-11 松下电器产业株式会社 Infrared gas detector and infrared gas measuring device
JP2014048161A (en) * 2012-08-31 2014-03-17 Asahi Kasei Electronics Co Ltd Infrared sensor module
JP2015087181A (en) * 2013-10-29 2015-05-07 アルプス電気株式会社 Light-receiving device

Similar Documents

Publication Publication Date Title
US5200855A (en) Absorbing dichroic filters
KR102433179B1 (en) Induced transmission filter
US4793669A (en) Multilayer optical filter for producing colored reflected light and neutral transmission
US4553816A (en) Tunable Fabry-Perot filter
US7215466B2 (en) Optical filter for screening out infrared and ultraviolet light
US5400174A (en) Optical notch or minus filter
USRE33729E (en) Multilayer optical filter for producing colored reflected light and neutral transmission
US7212336B2 (en) Optical filter screening out infrared and ultraviolet light
CA2736292A1 (en) Thin film optical filters with an integral air layer
JPH0395502A (en) Filter for flame sensor
US7315420B2 (en) CWDM filter with four channels
EP1628146B1 (en) Optical low pass filter
CN105005107A (en) Multispectral dual-channel photonic crystal filter at visible region
CN103245999B (en) A kind of broad spectrum out-of-band rejection optical filter
JPH07209516A (en) Optical multilayer film filter
JPH05241017A (en) Optical interference multilayered film having yellow filter function
JP2019124942A5 (en)
JPH1078510A (en) Filter
US3427089A (en) Ultraviolet filter
JPH0743528A (en) Filter device
JPH04267202A (en) Multi-layer film interference filter
CN114325910B (en) Step characteristic passband narrowband optical filter
JPH07244215A (en) Interference filter for infrared ray
JPH07244216A (en) Transmission wavelength variable interference filter
CN216210007U (en) Ultra-narrow band filter with central wavelength of 350 +/-3 nm