JPH0395493A - Criticality preventive device - Google Patents
Criticality preventive deviceInfo
- Publication number
- JPH0395493A JPH0395493A JP1232352A JP23235289A JPH0395493A JP H0395493 A JPH0395493 A JP H0395493A JP 1232352 A JP1232352 A JP 1232352A JP 23235289 A JP23235289 A JP 23235289A JP H0395493 A JPH0395493 A JP H0395493A
- Authority
- JP
- Japan
- Prior art keywords
- multiplication factor
- effective multiplication
- nuclear fuel
- effective
- nitric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003449 preventive effect Effects 0.000 title 1
- 239000003758 nuclear fuel Substances 0.000 claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 40
- 238000009826 distribution Methods 0.000 claims abstract description 30
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 27
- 239000003960 organic solvent Substances 0.000 claims abstract description 21
- 230000002265 prevention Effects 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims abstract description 4
- 238000000605 extraction Methods 0.000 claims description 14
- 238000012958 reprocessing Methods 0.000 claims description 10
- 238000004886 process control Methods 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 2
- 229910052770 Uranium Inorganic materials 0.000 abstract description 13
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 abstract description 13
- 229910052778 Plutonium Inorganic materials 0.000 abstract description 12
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 abstract description 12
- 239000000243 solution Substances 0.000 description 22
- 238000005202 decontamination Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 101001034845 Mus musculus Interferon-induced transmembrane protein 3 Proteins 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Extraction Or Liquid Replacement (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、再処理抽出工程の共除染、分配および精製の
各工程等において用いられる臨界防止装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a criticality prevention device used in co-decontamination, distribution, purification steps, etc. of a reprocessing extraction step.
(従来の技術)
従来から核燃料再処理]二場の各工程では、その各工程
内の各装置単独で、また装置相互の干渉によってそれら
の実効増倍率か決して],0を越えないように、つまり
臨界とならないよう、臨界安全設計を行っている。(Prior art) Conventionally, in each step of two-site nuclear fuel reprocessing, the effective multiplication factor of each device in each step, or due to mutual interference between devices, has never exceeded 0. In other words, criticality safety design is carried out to prevent criticality.
たとえば再処理抽出工程の共除染、分配および精製の各
工程では、供給される硝酸溶演の酸性度、その中のウラ
ンやプルトニウム等核燃料物質濃度および硝酸溶液や有
機溶媒中の各或分濃度、等の叉常時も考慮して変動しう
る範囲に対して未臨界となるように臨昇支全設計を行っ
ている。For example, in the co-decontamination, distribution and purification steps of the reprocessing extraction process, the acidity of the supplied nitric acid solution, the concentration of nuclear fuel materials such as uranium and plutonium therein, and the respective concentrations in the nitric acid solution and organic solvent are important. , etc., and the entire rising support is designed to be subcritical in a range that can fluctuate.
また、運転時の臨界安全管理においては、中性子あるい
はガンマ線の検出器を工程各所に設置しており、臨界に
よる放射線レベルの上昇を検出し、警報を発生させて運
転員や等に危険を知らせたり、または工程を停止する等
の措置がとられている。In addition, for criticality safety management during operation, neutron or gamma ray detectors are installed at various locations in the process to detect increases in radiation levels due to criticality and generate alarms to alert operators and others of danger. , or measures such as stopping the process are being taken.
(発明が解決しようとずる課@)
上述の再処理抽出工程において、ウランやプルトニウム
等の核燃料物質から核分裂性生成物を取り除く共除染工
程、ウランとプルトニウムを分離する分配工程およびウ
ラン、プルトニウムのそれぞれでその純度を更に上げる
精製工程で、実際にその機能を果す装置、ミキサ・セ1
ヘラやパルス力ラムは、核燃料物質を含む硝酸溶液およ
び有機溶媒の液々向流抽出器であり、その装置内部には
核燃料物質の濃度分布があり、また異常時にはその蓄積
が起こる場合もある。(The problem that the invention aims to solve@) In the above-mentioned reprocessing and extraction process, there is a co-decontamination process to remove fissile products from nuclear fuel materials such as uranium and plutonium, a distribution process to separate uranium and plutonium, and a process to separate uranium and plutonium. In the purification process to further increase the purity of each product, mixer cell 1 is the equipment that actually performs the function.
A spatula or a pulse force ram is a liquid-liquid countercurrent extractor for nitric acid solution and organic solvent containing nuclear fuel material, and there is a concentration distribution of nuclear fuel material inside the device, and accumulation may occur in abnormal situations.
したがって、運転時の臨界安全管理においては、臨界が
生じた後にいくつかの場所に設置した検出器の放射線レ
ベルの上昇から異′,+!?を検出するだけでは不十分
であり、臨界を未然に防ぐにはその内部各位置での核燃
料部物質の濃度を評価し、各種臨界データから臨界性を
即座に、数値的に評価することが必要である。Therefore, in criticality safety management during operation, it is important to check the rise in radiation levels of detectors installed at several locations after criticality occurs. ? It is not enough to detect criticality; in order to prevent criticality, it is necessary to evaluate the concentration of nuclear fuel materials at each location within the nuclear fuel, and to immediately and numerically evaluate criticality from various criticality data. It is.
本発明はかかる従来の事情に対処してなされたものであ
り、上記再処理抽出工程で使用される抽出器において、
通常時および異常時の臨界性を各種臨界データから即座
に、数値的に評価し、その数値を運転員に知らせること
により、適切な対処を可能とする臨界防止装置を提供し
ようとするものである。The present invention has been made in response to such conventional circumstances, and in the extractor used in the above-mentioned reprocessing extraction step,
The objective is to provide a criticality prevention device that enables appropriate measures to be taken by immediately numerically evaluating the criticality during normal and abnormal conditions from various criticality data and informing operators of the numerical values. .
[発明の構成]
(課柏を解決するための手段)
すなわち、本発明の臨界防止装置は、核燃料の再処理抽
出の各工程において、抽出装置に供給される硝酸溶液お
よび有機溶媒の状態をモニタする工程管理肋]定装置と
、この工程管理Mil1定装置から入力されたモニタ結
果から、各工程の再処理抽出装置内の核燃料物質濃度分
布を計算する核燃料物質濃度分布計算装置と、前記核燃
料物質濃度分布計算装置から入力された核燃料物質濃度
分布から、前記抽出装置内の実効増倍率を計算する実効
増倍率計算装置と、この実効土曽倍率計算装置から入力
された実効夛曽倍率と予め設定された実効士曽倍率上限
制限値とを比較して警報を発生する警報発生装置とを備
えたことを特徴とする。[Structure of the Invention] (Means for Solving Issues) That is, the criticality prevention device of the present invention monitors the state of the nitric acid solution and organic solvent supplied to the extraction device in each step of reprocessing and extraction of nuclear fuel. a nuclear fuel material concentration distribution calculation device that calculates the nuclear fuel material concentration distribution in the reprocessing extraction device of each process from the monitoring results input from the process control Mil1 fixed device; an effective multiplication factor calculation device that calculates an effective multiplication factor in the extraction device from the nuclear fuel material concentration distribution input from the concentration distribution calculation device; and an effective multiplication factor input from the effective Doso multiplication factor calculation device and a preset value. The present invention is characterized by comprising an alarm generation device that generates an alarm by comparing the calculated effective ratio with the upper limit value of the effective ratio.
(作 用)
上記横或の本発明の臨界防止装置では、たとえば抽出器
(ミキザ・セトラやパルスカラム)に供給される硝酸溶
波の酸性度、その中のウランやプルトニウム等核燃料物
質濃度および硝酸溶液や有機溶媒中の各或分濃度を工程
管理測定装置によリモニタする。(Function) In the above criticality prevention device of the present invention, for example, the acidity of the nitric acid solution supplied to the extractor (mixer settler or pulse column), the concentration of nuclear fuel materials such as uranium and plutonium therein, and the nitric acid The concentration of each part in the solution or organic solvent is monitored by a process control measuring device.
これら数値は核燃料物質濃度分布計算装置に入力され、
核燃料物質濃度分布計算装置は、ウランやプルトニウム
等核燃料物質濃度、硝酸溶液や有機溶媒中の各戒分濃度
条件から抽出器内の硝酸溶液と有機溶媒の核燃料物質濃
度分布を計算する。These values are input into the nuclear fuel material concentration distribution calculation device,
The nuclear fuel material concentration distribution calculation device calculates the nuclear fuel material concentration distribution in the nitric acid solution and organic solvent in the extractor from the concentration of nuclear fuel materials such as uranium and plutonium, and various concentration conditions in the nitric acid solution and organic solvent.
上記抽出器内の核燃料物質濃度分布は実効増倍率計算装
置に入力され、その各濃度に対応する実効増倍率が算出
される。The nuclear fuel material concentration distribution in the extractor is input to an effective multiplication factor calculation device, and an effective multiplication factor corresponding to each concentration is calculated.
この実効増化率の算出は、たとえば各濃度のウランまた
はプルトニウムの単体または混合物の無限平板または無
限円柱に対する実効増倍率のうち形状が相当する方の実
効増倍率から内外挿で求め、5
装置全体の実効増倍率としてはたとえばその最大値をと
る方法、あるいは、実際の形状に対してたとえば中性子
輸送計算コードや拡散コードを用いて詳細に計算する方
法等によって行う。This effective multiplication rate is calculated by interpolation from the effective multiplication factor for an infinite flat plate or infinite cylinder of uranium or plutonium alone or in a mixture at each concentration, whichever shape corresponds. The effective multiplication factor is calculated by, for example, taking the maximum value, or by calculating the actual shape in detail using, for example, a neutron transport calculation code or a diffusion code.
そして、この実効増倍率は警報発生装置に入力され、警
報発生装置は、この実効増倍率と予め内蔵されている実
効州倍率上眼制限値と比較し、′その値より大きい場合
には警報を発生させることにより、臨界状態となること
を未然に防止する。Then, this effective multiplication factor is input to the alarm generation device, and the alarm generation device compares this effective multiplication factor with a pre-built-in effective state multiplication upper limit value, and issues an alarm if it is larger than that value. This prevents a critical state from occurring.
(実施例)
以下、本発明の臨界防止装置を図面を参照して一実施例
について説明する。(Example) Hereinafter, one example of the criticality prevention device of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例の臨界防止装置の構成を示す
もので、図において符号1は工程管理測定装置を示して
いる。FIG. 1 shows the configuration of a criticality prevention device according to an embodiment of the present invention, and in the figure, reference numeral 1 indicates a process control measuring device.
この工程管理測定装置1は、ミキサ・セトラやパルスカ
ラム等の抽出器に供給される硝酸溶液の酸性度、その中
のウランやプルトニウム等核燃料物質濃度、および砧酸
溶液や有機溶媒中の各或分濃度を測定し、これらのAl
リ定データを核燃料物質6
濃度分布計算装置2に出力する。This process control measuring device 1 measures the acidity of a nitric acid solution supplied to an extractor such as a mixer/settler or a pulse column, the concentration of nuclear fuel materials such as uranium and plutonium in the nitric acid solution, and the concentration of various nuclear fuel materials in the nitric acid solution and organic solvent. Measure the concentration of these Al
The fixed data is output to the nuclear fuel material 6 concentration distribution calculation device 2.
核燃料物質濃度分布計算装置2は、入力されたウランや
プルトニウム等の核燃料物質濃度、硝酸溶液や有機溶媒
中の各或分濃度条件から抽出器内の硝酸溶液や有機溶媒
の核燃料物質濃度分布を計算し、実効増倍率計算装置3
に入力する。The nuclear fuel material concentration distribution calculation device 2 calculates the nuclear fuel material concentration distribution in the nitric acid solution and organic solvent in the extractor from the input nuclear fuel material concentration such as uranium and plutonium, and each certain concentration condition in the nitric acid solution and organic solvent. Effective multiplication factor calculation device 3
Enter.
なお、上記核燃料物質濃度分布は、ミキサ・セ1・ラの
場合にはたとえば、硝酸溶液と有機溶媒の移動に関して
はそれらの完全押し出し流れを、ウラン、プルトニウム
、核分裂性生成物、水素イオンおよび各種酸化・還元材
等の硝酸溶液および有機溶媒間の移行に関しては分配係
数を、また各戊分間の化学反応にはその速度式を総合的
に記述した連立微分方程式を立て、それを解くことによ
り算出することができる。The above nuclear fuel material concentration distribution is based on mixer SE1-RA, for example, the complete extrusion flow of nitric acid solution and organic solvent, uranium, plutonium, fissile products, hydrogen ions, and various Calculated by setting up and solving simultaneous differential equations that comprehensively describe the partition coefficient for the transfer of oxidizing and reducing agents between nitric acid solutions and organic solvents, and the rate equations for chemical reactions during each interval. can do.
一方、パルスカラムの場合には、たとえば硝酸溶演と有
機溶媒の移動に関してはそれらの流れと分散を考慮し、
各成分の硝酸溶岐および有機溶媒間の移行に関しては分
配係数や戒滴系等から計価される物質移動係数を、また
各戊分間の化学反応にはその速度式を総合的に記述した
連立微分方程式を立て、それを解くことにより同様に算
出することができる。On the other hand, in the case of a pulse column, for example, the flow and dispersion of nitric acid solution and organic solvent should be considered.
Regarding the nitric acid dissolution of each component and the transfer between organic solvents, mass transfer coefficients calculated from the partition coefficient and the droplet system are used, and for chemical reactions during each time period, the rate equations are comprehensively described. It can be similarly calculated by setting up a differential equation and solving it.
実効増倍率計算装置3は、その各濃度に幻応ずる実効増
倍率を、実効増倍率記憶装置4に記憶された各濃度のウ
ランまたはブル1・ニウムの11i体または混合物の無
限平板または無限円社に対する実効増倍率のうち形状か
相当する方の実効塊・倍率から内外押で求める。また装
置全体の実効土曽倍率は、たとえばその最大値として求
める。The effective multiplication factor calculation device 3 calculates the effective multiplication factor corresponding to each concentration by calculating the effective multiplication factor corresponding to each concentration by calculating the infinite plate or infinite circle of the 11i isomer or mixture of uranium or bull-1.nium at each concentration stored in the effective multiplication factor storage device 4. The effective multiplication factor for the shape is calculated from the effective mass/magnification of the corresponding one by internal and external pushing. Further, the effective Doso magnification of the entire device is determined, for example, as its maximum value.
上記実効増倍率記憶装置4に記憶された実効上曽倍率の
データは、国内外の臨界性に関するハンドブック等に記
載されているものである。また、核燃料物質が有機溶媒
中に溶解している形態の臨界性のデータは十分でないも
のの、その場合には同−a度の硝酸または水溶液として
データを用意すれば安全側と言える。なお、核燃料物質
の無限平板または無限円柱形状に対する実効増倍率は、
たとえば中性子輸送計算コードに対して核燃料物質溶液
の中性子断面積を引渡し、その実効権倍率を詳細に計算
して用意することもできる。The effective magnification factor data stored in the effective multiplication factor storage device 4 is described in domestic and international criticality handbooks and the like. Furthermore, although there is insufficient data on the criticality of nuclear fuel materials dissolved in organic solvents, in that case it can be said to be on the safe side if data is prepared as nitric acid or aqueous solutions of the same degree. In addition, the effective multiplication factor for an infinite flat plate or infinite cylindrical shape of nuclear fuel material is:
For example, the neutron cross section of a nuclear fuel material solution can be transferred to a neutron transport calculation code, and the effective rights multiplier can be calculated and prepared in detail.
そして、警報発生装置5は、入力された実効増倍率と予
め内蔵されている実効増倍率上限制限値とを比較し、実
効増倍率か実効地倍率上限制限値より大きい場合は警報
を発生ずる。Then, the alarm generating device 5 compares the input effective multiplication factor with a pre-built-in effective multiplication factor upper limit value, and generates an alarm if the effective multiplication factor is larger than the effective ground multiplication factor upper limit value.
すなわち、上記説明のこの実施例の臨界防止装置は、工
程管理測定装置1で410定される供給硝酸溶液の酸性
度、その中のウランやプルトニウム等核燃料物質濃度、
および硝酸溶l&や有機溶媒中の各成分濃度を越に、核
燃料物質濃度分布計算装置2でミキサ・セトラやパルス
力ラム内の核燃料物質濃度分布を計算する。そして、実
効増倍率計算装置3はその各濃度の硝酸溶演および有機
溶媒に対する核燃料物質濃度と実効増倍率の関係を記憶
する実効増倍率記憶装置4か供給する実効増倍率データ
からその条件下でのミキサ・セトラやパルスカラム内各
位置および装置全体としての実効j曽倍率を計算し、そ
の実効増倍率と予め安全側に設定されている実効増倍率
上限制限値とを比較して前者か後者を越えた場合に警報
発生装置5は警報9
を発生させ、臨界に至る危険性を警報で知らせる。That is, the criticality prevention device of this embodiment described above depends on the acidity of the supplied nitric acid solution, which is determined by the process control measurement device 1, the concentration of nuclear fuel materials such as uranium and plutonium,
The nuclear fuel material concentration distribution calculation device 2 calculates the nuclear fuel material concentration distribution in the mixer/settler and the pulse force ram, beyond the concentration of each component in the nitric acid solution and the organic solvent. Then, the effective multiplication factor calculation device 3 calculates the effective multiplication factor data supplied from the effective multiplication factor storage device 4 that stores the relationship between the nuclear fuel material concentration and the effective multiplication factor for each concentration of nitric acid solution and organic solvent under the conditions. Calculate the effective j multiplication factor for each position in the mixer/settler and pulse column and for the entire device, and compare the effective multiplication factor with the upper limit value of the effective multiplication factor, which is set in advance on the safe side, to determine whether it is the former or the latter. When the temperature exceeds the limit, the alarm generating device 5 generates an alarm 9 to notify the danger of reaching criticality.
なお、」二連したように、たとえば各位置の硝酸溶液や
有機溶媒の核燃料物質濃度に刻応ずる無限平板または無
限円柱の実効増倍率の最大値で装置全体の実効増倍率を
評価すると、過大評価となる。As mentioned above, if the effective multiplication factor of the entire device is evaluated using the maximum value of the effective multiplication factor of an infinite flat plate or infinite cylinder, which varies depending on the nuclear fuel material concentration of the nitric acid solution or organic solvent at each position, for example, it will be overestimated. becomes.
そこで、実効増倍率言1算装置3ではミキサ・セ1・ラ
やパルスカラム内の硝酸溶液と有機溶媒中の核燃料物質
濃度分布および各或分の濃度分布をそのまま取込み、実
際の形状に対してたとえば中性子輸送計算コードや拡散
コードを用いてミキサ・セトラやパルス力ラム全体の実
効増倍率を詳細に計算・評価することにより、実効増倍
率の評価精度を向上させることもできる。Therefore, the effective multiplication factor calculation device 3 takes in the nuclear fuel material concentration distribution in the nitric acid solution and organic solvent in the mixer cellar and pulse column as well as the concentration distribution in each certain portion, and calculates the actual shape. For example, the accuracy of evaluating the effective multiplication factor can be improved by calculating and evaluating the effective multiplication factor of the mixer settler and the entire pulse force ram in detail using a neutron transport calculation code or a diffusion code.
また、上述したような実効地倍率の計算を、人出力装置
から入力される運転員の要求、あるいは定期的に実施す
るようにし、この実効増倍率を実効増倍率上限制眼値と
ともに人出力装置に出力し、運転員にその結果を知らせ
るように構成すれば、ミキサ・セトラやパルス力ラムの
未臨界性を確認するとともに時間的変化の状況や異常時
のZ・I応を10
も図ることができる。In addition, the above-mentioned calculation of the effective magnification factor is performed at the operator's request input from the human output device or periodically, and this effective magnification factor is calculated along with the effective multiplication factor upper limit target value by the human output device. If configured to output the output and notify the operator of the results, it is possible to confirm the subcriticality of the mixer settler and pulse force ram, and also to take Z/I response in the event of time-varying conditions or abnormalities. I can do it.
[発明の効果コ
以上説明したように、本発明の臨界防止装置は、再処理
工程の共除染、分配および精製の各工程の抽出機器であ
るミキサ・セトラやパルスカラムにおいて、工程管理a
tリ定装置の測定値を用いて評価される核燃料物質濃度
分布および各戊分の濃度分布を用いて抽出装置内各位置
および装置全体としての実効堆倍率を計算し、その臨界
安全性を連続的に、または運転員の要求により評価する
ことができ、予め安全側に設定されている実効増倍率上
限制限値と比較し、警報を発生させることにより臨界を
未然に防止することができる。[Effects of the Invention] As explained above, the criticality prevention device of the present invention is suitable for process control a in the mixer/settler and pulse column, which are extraction equipment for each step of co-decontamination, distribution, and purification in the reprocessing process.
Using the nuclear fuel material concentration distribution evaluated using the measured value of the t-determining device and the concentration distribution at each point, the effective deposition rate for each position in the extraction device and for the entire device is calculated, and its criticality safety is continuously evaluated. Criticality can be prevented by comparing the effective multiplication factor with the upper limit value of the effective multiplication factor, which is preset on the safe side, and generating an alarm.
第1図は本発明の一実施例の臨界防止装置の概略構成示
す図である。
1・・・工程管理fllll定装置
2・・・核燃料物質濃度分布計算装置
3・・・実効増倍率計算装置
4・・・実効増倍率記憶装置
11
5・・・警報発生装置FIG. 1 is a diagram showing a schematic configuration of a criticality prevention device according to an embodiment of the present invention. 1...Process control fullll determination device 2...Nuclear fuel material concentration distribution calculation device 3...Effective multiplication factor calculation device 4...Effective multiplication factor storage device 11 5...Alarm generation device
Claims (1)
に供給される硝酸溶液および有機溶媒の状態をモニタす
る工程管理測定装置と、 この工程管理測定装置から入力されたモニタ結果から、
各工程の再処理抽出装置内の核燃料物質濃度分布を計算
する核燃料物質濃度分布計算装置と、 前記核燃料物質濃度分布計算装置から入力された核燃料
物質濃度分布から、前記抽出装置内の実効増倍率を計算
する実効増倍率計算装置と、この実効増倍率計算装置か
ら入力された実効増倍率と予め設定された実効増倍率上
限制限値とを比較して警報を発生する警報発生装置とを
備えたことを特徴とする臨界防止装置。(1) A process control measurement device that monitors the state of the nitric acid solution and organic solvent supplied to the extraction device in each step of nuclear fuel reprocessing and extraction, and the monitoring results input from this process control measurement device.
A nuclear fuel material concentration distribution calculation device that calculates the nuclear fuel material concentration distribution in the reprocessing extraction device in each process, and an effective multiplication factor in the extraction device from the nuclear fuel material concentration distribution input from the nuclear fuel material concentration distribution calculation device. An effective multiplication factor calculation device that calculates the effective multiplication factor, and an alarm generation device that compares the effective multiplication factor input from the effective multiplication factor calculation device with a preset effective multiplication factor upper limit value and generates an alarm. A criticality prevention device featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1232352A JP2809739B2 (en) | 1989-09-07 | 1989-09-07 | Criticality prevention device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1232352A JP2809739B2 (en) | 1989-09-07 | 1989-09-07 | Criticality prevention device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0395493A true JPH0395493A (en) | 1991-04-19 |
JP2809739B2 JP2809739B2 (en) | 1998-10-15 |
Family
ID=16937864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1232352A Expired - Fee Related JP2809739B2 (en) | 1989-09-07 | 1989-09-07 | Criticality prevention device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2809739B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003035795A (en) * | 2001-07-19 | 2003-02-07 | Toshiba Corp | Reprocessing method for reactor fuel, determination method for processing order, processing planning device and program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5693084A (en) * | 1979-12-27 | 1981-07-28 | Tokyo Shibaura Electric Co | Critical maintenance device of nuclear fuel |
JPS58121000A (en) * | 1982-01-14 | 1983-07-19 | 株式会社東芝 | Method of controlling ventilation of centralized exhaust type road tunnel |
JPS61144595A (en) * | 1984-12-18 | 1986-07-02 | 株式会社東芝 | Method of controlling operation of core |
JPS6327796A (en) * | 1986-07-21 | 1988-02-05 | 株式会社東芝 | Criticality controller |
-
1989
- 1989-09-07 JP JP1232352A patent/JP2809739B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5693084A (en) * | 1979-12-27 | 1981-07-28 | Tokyo Shibaura Electric Co | Critical maintenance device of nuclear fuel |
JPS58121000A (en) * | 1982-01-14 | 1983-07-19 | 株式会社東芝 | Method of controlling ventilation of centralized exhaust type road tunnel |
JPS61144595A (en) * | 1984-12-18 | 1986-07-02 | 株式会社東芝 | Method of controlling operation of core |
JPS6327796A (en) * | 1986-07-21 | 1988-02-05 | 株式会社東芝 | Criticality controller |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003035795A (en) * | 2001-07-19 | 2003-02-07 | Toshiba Corp | Reprocessing method for reactor fuel, determination method for processing order, processing planning device and program |
JP4643066B2 (en) * | 2001-07-19 | 2011-03-02 | 株式会社東芝 | Reactor fuel reprocessing method, processing sequence determination method, fuel processing planning apparatus and program |
Also Published As
Publication number | Publication date |
---|---|
JP2809739B2 (en) | 1998-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HUT69215A (en) | Method to detect coolant leaks and radioactivity monitoring system of reactors | |
CA2967736C (en) | Sodium-cesium ionization detector | |
JPH0395493A (en) | Criticality preventive device | |
CN107622804A (en) | A kind of method to set up of fuel element rupture detection alarming value | |
CN112651595B (en) | Method for formulating emergency action level of post-processing plant | |
JP2023030895A (en) | Neutron monitoring device, and spent nuclear fuel criticality management method | |
JP4080648B2 (en) | Operation planning method and operation monitoring method for reprocessing facility | |
JPH0566998B2 (en) | ||
JPH04256897A (en) | Neutron monitor device | |
JP3120905B2 (en) | Subcritical monitoring method for nuclear fuel | |
JP2006317248A (en) | Radiation measuring system | |
EP0198342B1 (en) | Method and device for the nucleus-specific monitoring of active or highly active liquids, particularly of primary coolants of boiling and pressure water reactors | |
JPS5810296A (en) | Abnormality detector | |
Hunt et al. | Criticality measurements on uranium metal spheres immersed in uranium solution | |
Hakkila et al. | Integrated international safeguards concepts for fuel reprocessing | |
JPS62293194A (en) | Method of monitoring non-criticality | |
JPH04184197A (en) | Below-critical state monitoring device | |
JP2001195131A (en) | Device and method for predicting liquid quantity of tank and device and method for detecting abnormality in liquid quantity of tank | |
JP6110915B2 (en) | How to monitor subcriticality | |
Mitin et al. | SPND detectors response at the control rod drop in WWER-1000. Measurement and modelling results | |
JPH05232238A (en) | Calibration of neutron monitor device | |
CN117807414A (en) | Risk early warning method, device, equipment and storage medium based on Internet of things data | |
JPH06214038A (en) | Neutron monitoring method and device therefor | |
Biach et al. | Process Holdup—The Regulatory View | |
Shipley | Principles of near-real-time materials accounting and control systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |