JPH0395376A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPH0395376A
JPH0395376A JP23103089A JP23103089A JPH0395376A JP H0395376 A JPH0395376 A JP H0395376A JP 23103089 A JP23103089 A JP 23103089A JP 23103089 A JP23103089 A JP 23103089A JP H0395376 A JPH0395376 A JP H0395376A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
cooler
freezer
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23103089A
Other languages
Japanese (ja)
Other versions
JP2760591B2 (en
Inventor
Yoshio Kodama
児玉 良夫
Masashi Toyoshima
昌志 豊嶋
Kiyoshi Katagai
清 片貝
Tsukasa Ichikawa
司 市川
Kyoji Hisada
久田 恭司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23103089A priority Critical patent/JP2760591B2/en
Publication of JPH0395376A publication Critical patent/JPH0395376A/en
Application granted granted Critical
Publication of JP2760591B2 publication Critical patent/JP2760591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a refrigerant accumulated in a refrigerant fluid reservoir from being increased and hence a fluid level from being raised from an open end of an inflow tube by interrupting a compressor after the refrigerant is directed to flow through both first and second coolers from a state where the refrigerant is directed to flow only through the second cooler. CONSTITUTION:When a compressor 62 is interrupted from a state where refrigerant is allowed to flow only through a refrigeration chamber cooler 18, the compressor 62 and a fan are forcedly operated independently of an output of a comparator for three minutes before the interruption of the compressor 62 and further a valve 65 is opened to direct the refrigerant to both coolers 44, 18, and after the elapse of three minutes the forced operation is interrupted at the time a flag F3 is reset. Accordingly, since a fluid level in an accumulator 68 is limited to L2 even after be interruption of the compressor 62, no refrigeration sound is produced. Although the period of the forced operation is determined to be a shortest one such that the refrigerant is also accumulated in the refrigerator chamber cooler 44 within a limit where no refrigeration sound is produced, it does not affect temperature control. Further, since the refrigerant fluid reservoir may be a typical one, separation function of gas/liquid refrigerant is not lost.

Description

【発明の詳細な説明】 (イ〉産業上の利用分野 本発明は第1の冷却器と第2の冷却器とを備え、更にコ
ンプレッサの吸入側に冷媒溜を取り付けた冷却装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a cooling device that includes a first cooler and a second cooler, and further includes a refrigerant reservoir on the suction side of a compressor.

(口)従来の技術 従来此の種冷却装置例えば冷凍冷蔵庫(よ例えば実公昭
58−32118号公報に示されている。
(Example) 2. Description of the Related Art Conventionally, there are conventional cooling devices such as refrigerator-freezers (for example, as shown in Japanese Utility Model Publication No. 58-32118).

ここに示された構或は、冷蔵室の冷却が必要なときは冷
媒を冷蔵室用冷却器を経た後冷凍室用冷却器に流し、冷
蔵室の冷却が不要な時は冷蔵室用冷却器をバイパスし、
冷凍室用冷却器のみに冷媒を流すことによって単一のコ
ンプレッサにより冷蔵室と冷凍室双方の独立した温度制
御を達成するようにしている。
In the structure shown here, when the refrigerator compartment needs to be cooled, the refrigerant passes through the refrigerator compartment cooler and then into the freezer compartment cooler, and when the refrigerator compartment does not need to be cooled, the refrigerant flows through the refrigerator compartment cooler. bypass and
By flowing refrigerant only through the freezer compartment cooler, independent temperature control of both the refrigerator compartment and the freezer compartment is achieved using a single compressor.

(ハ)発明が解決しようとする課題 ここで、コンプレッサの吸入側にはコンブしツサにおけ
る液圧縮を防止するために冷媒液溜(以下アキュムレー
タと称す。)が通常取り付けられる。又、冷媒回路内に
は両冷却器に冷媒が流れた状態で十分な冷却能力が発揮
されるように相当量の冷媒が封入される。
(c) Problems to be Solved by the Invention Here, a refrigerant reservoir (hereinafter referred to as an accumulator) is usually attached to the suction side of the compressor in order to prevent liquid compression in the kelp strainer. Further, a considerable amount of refrigerant is sealed in the refrigerant circuit so that sufficient cooling capacity can be exhibited with refrigerant flowing through both coolers.

従って、両冷却器に冷媒が流れている状態からコンプレ
ッサが停止しても、冷媒はある程度両冷却器内に溜るた
め、アキュムレータに溜る冷媒量は少ないが、例えば前
記冷凍室用冷却器のみに冷媒が流れている状態では冷蔵
室用冷却器内にほ冷媒は流れず、殆ど溜らないため、ア
キュムレー夕内に溜っている冷媒は多くなる。更にこの
状態からコンプレッサが停止すると高圧側からキャピラ
リチュープや冷凍室用冷却器を通って冷媒がアキュムレ
ータ内に流入するため、アキュムレータ内に溜る冷媒は
相当多量になる。
Therefore, even if the compressor stops while refrigerant is flowing through both coolers, a certain amount of refrigerant will accumulate in both coolers, and the amount of refrigerant accumulated in the accumulator will be small. When the refrigerant is flowing, very little refrigerant flows into the refrigerator compartment cooler and almost no refrigerant accumulates, so the amount of refrigerant accumulated in the accumulator increases. Furthermore, when the compressor stops in this state, refrigerant flows into the accumulator from the high-pressure side through the capillary tube and the freezer compartment cooler, so a considerable amount of refrigerant accumulates in the accumulator.

第5図に此の種アキュムレータ6Bの一般的構造を示す
。68aは所定容量を有するタンクであり、タンク68
aの下端から流入管68bが挿入され、タンク68a内
の所定の高さの位置に開放している。68cは流出管で
あり、タンク68a上端に開口している。
FIG. 5 shows the general structure of this type of accumulator 6B. 68a is a tank having a predetermined capacity;
An inflow pipe 68b is inserted from the lower end of tank 68a and opens at a predetermined height within tank 68a. 68c is an outflow pipe that opens at the upper end of the tank 68a.

双方の冷却器に冷媒が流れている状態では冷媒液位はL
,に示す状況であり、その状態からコンプレッサが停止
すると高圧側からの流入によってL,まで上昇する。一
方、冷凍室用冷却器のみに流れている状態では液位は略
L,と同様であるが、その状態からコンプレッサが停止
すると、高圧側からの流入によって液位は流入管68b
の開放端より高いL,まで上昇する. すると流入管68bから引き続き流入して来る冷媒ガス
が気泡となって液位L.にて弾けるため、ボコポコと所
謂冷媒音が発生する。
When refrigerant is flowing through both coolers, the refrigerant liquid level is L.
, and when the compressor stops from that state, the pressure rises to L due to the inflow from the high pressure side. On the other hand, when the liquid is flowing only to the freezer compartment cooler, the liquid level is approximately L, but when the compressor is stopped from that state, the liquid level is reduced to the inflow pipe 68b due to the inflow from the high pressure side.
It rises to L, which is higher than the open end of. Then, the refrigerant gas that continues to flow in from the inflow pipe 68b becomes bubbles and the liquid level reaches L. This causes the so-called refrigerant sound to pop.

これを解消するためには流入管68bの開放端を上昇さ
せることが考えられるが、それでは流出管68cの開口
との距離が近接するため、流入管68bから流入する液
冷媒が直接流出管68cに流入し、フンブレッサにて液
圧縮が発生する危険性がある。
In order to solve this problem, it is conceivable to raise the open end of the inflow pipe 68b, but in that case, the distance from the opening of the outflow pipe 68c will be close, so that the liquid refrigerant flowing from the inflow pipe 68b will directly flow into the outflow pipe 68c. There is a risk that fluid may flow into the tank and cause liquid compression at the humbpressor.

本発明は係る課題を解決することを目的としている. (二〉課題を解決するための手段 本発明は冷却装置においてコンプレッサから吐出されコ
ンデンサを経た冷媒を第1の冷却器及び第2の冷却器の
双方に流すか、前記第2の冷却器のみに流すかを選択的
に制御すると共に、コンプレッサの吸入側に冷媒液溜を
備え、前記第2の冷却器のみに冷媒を流している状態で
コンプレッサが停止する場合は、停止前に前記第1の冷
却器及び第2の冷却器の双方に冷媒を流す様にしたもの
である。
The present invention aims to solve this problem. (2) Means for Solving the Problems In the present invention, in a cooling device, refrigerant discharged from a compressor and passed through a condenser is allowed to flow through both a first cooler and a second cooler, or only into the second cooler. If the compressor is stopped with a refrigerant reservoir provided on the suction side of the compressor and refrigerant is flowing only into the second cooler, the first The refrigerant is made to flow through both the cooler and the second cooler.

(*〉作用 本発明によれば第2の冷却器のみに冷媒を流している状
態からコンプレッサが停止する前に第1及び第2の冷却
器の双方に冷媒を流した後停止するので、冷媒液溜に溜
る冷媒量の増加を抑制して流入管の開放端より液位が上
昇することを防止できる。
(*> Effect) According to the present invention, before the compressor stops from the state in which refrigerant is flowing only through the second cooler, the refrigerant flows through both the first and second coolers and then stops. It is possible to suppress an increase in the amount of refrigerant accumulated in the liquid reservoir and prevent the liquid level from rising from the open end of the inflow pipe.

(へ〉実施例 次に図面において実施例を説明する。第1図は冷却装置
の実施例としての冷凍冷蔵庫1の正面図を示す。冷凍冷
蔵庫1の正面開口は上下にそれぞれ一組ずつの観音開き
式の扉2,3及び4,5により閉璽され、更に最下段は
引き出し式扉6にて閉璽される。更に、扉2,3と4.
5間にはコントロールボックス7が突設されている.第
2図は扉2,3,4.5及び内扉40を除く冷凍冷蔵庫
1の正面図を示し、第3図及び第4図は第2図のA−A
,1!断面図及びB−B線断面図をそれぞれ示す,前方
に開口する外箱8とそれに組み込まれた内箱9間には断
熱材1oが現場発泡方式にて充填され断熱箱体11が構
成されている。
(g) Example Next, an example will be explained with reference to the drawings. Fig. 1 shows a front view of a refrigerator-freezer 1 as an example of the cooling device. The doors 2, 3 and 4, 5 are closed, and the bottom row is closed by a pull-out door 6. Furthermore, the doors 2, 3 and 4 are closed.
A control box 7 is protruded between 5 and 5. Figure 2 shows a front view of the refrigerator-freezer 1 excluding the doors 2, 3, 4.5 and the inner door 40, and Figures 3 and 4 are A-A in Figure 2.
,1! A heat insulating material 1o is filled by an in-situ foaming method between an outer box 8 that opens at the front and an inner box 9 built into the outer box 8, which is shown in a sectional view and a sectional view taken along the line B-B, respectively, to form a heat insulating box body 11. There is.

この断熱箱体11内は断熱性の仕切壁12によって上下
に区画され、相互に区画され且つ空気循環において独立
した上部室と下部室とが形成され、この上部室は更に断
熱性の区画壁13にて左右に区画され、第1の冷凍室1
4と第2の冷凍室15とが形成されている。前記上部室
背部には左右全幅に渡る区画板16によって上下方向の
冷却室17が形成され、ここに第2の冷却器としての冷
凍室用冷却器18が縦設される。
The inside of this heat insulating box 11 is divided into upper and lower parts by a heat insulating partition wall 12, forming an upper chamber and a lower chamber which are mutually partitioned and independent in terms of air circulation. The first freezer compartment 1 is divided into left and right sections.
4 and a second freezer compartment 15 are formed. At the back of the upper chamber, a vertical cooling chamber 17 is formed by a partition plate 16 spanning the entire left and right width, and a freezer compartment cooler 18 as a second cooler is vertically installed here.

冷却器18の上方であって区画壁13背方に位置する冷
却室17内には冷凍室用の送風機2oが配設される。又
、両冷凍室14と15に対応する区画板16には吹出口
21.22がそれぞれ形威され、更に第1の冷凍室14
下部に位置して製氷用吹田口23と第2の冷凍室15下
部に位置して吹出口24が形成されている。吹出口21
と23及び22と24はそれぞれ冷凍室用冷却器18ど
区画板16間に設けた断熱板25に独立して形成したダ
クト26と27により連通せられており送風機20とそ
の前方の区画板16との空間19と吹出口21.22及
びダクト26は連通せられている。送風機20はプロペ
ラファンで、回転して冷凍室用冷却器18と熱交換した
冷気を吸引して吹出口21及び22、吹出口23及び2
4よりそれぞれ両冷凍室14.15に吹き出し、室内を
循環した冷気は仕切壁12前部の吸込口28から吸引さ
れる。
A blower 2o for the freezer compartment is disposed in the cooling compartment 17 located above the cooler 18 and behind the partition wall 13. In addition, air outlets 21 and 22 are formed in the partition plates 16 corresponding to both the freezing compartments 14 and 15, respectively, and the first freezing compartment 14
An ice-making Suita port 23 is formed at the bottom, and an air outlet 24 is formed at the bottom of the second freezer compartment 15. Air outlet 21
23, 22, and 24 are connected to the freezer compartment cooler 18 by ducts 26 and 27 formed independently on a heat insulating plate 25 provided between the partition plates 16, respectively. The space 19, the air outlet 21, 22, and the duct 26 are communicated with each other. The blower 20 is a propeller fan that rotates and sucks in the cold air that has exchanged heat with the freezer compartment cooler 18 and sends it to the air outlets 21 and 22 and the air outlets 23 and 2.
The cold air blown out from the freezer compartments 14 and 15 from each of the freezer compartments 14 and 15 and circulated within the room is sucked through the suction port 28 at the front of the partition wall 12.

第1の冷凍室14内は製氷用吹出口23に対応して取り
付けられる図示しない仕切板によって上下に区画し、そ
の下方をこれも図示しない製氷皿を収容する製氷室とす
る。この様に第1の冷凍室14と第2の冷凍室15を区
画し、別々のs2及び3によって閉璽すれば、全体を一
枚の扉で閉じるよりも片方の開放面積は小さいので、扉
開放時の暖気の流入を極力押さえることができる。又、
後述する冷蔵室とは独立した冷気循環経路で冷却される
ので、生成氷への臭移りも生じない.仕切壁12下方の
下部室は冷蔵室゛38とされ、?に断熱性の仕切板39
によって上下に仕切られてその上方に仕切板39と内s
40によって氷温室41が形成される.氷温室41背方
の冷蔵室38上部には、区画板42により冷却室43が
構成され、その内部に第1の冷却器としての冷蔵室用冷
却器44が縦設される。冷蔵室用冷却器44上方には冷
蔵室用の送風機45が取り付けられ、その前方の区画板
42には氷温室41上方に延在するダクI■ 4 2 
aが形成されている。冷蔵室用冷却器44と区画板42
間には送風機45前方の空間から冷却器44両側を下方
に延在して冷蔵室38に開口するダクト47を作る断熱
板48が設けられる。送風機45はブロベラファンであ
り、回転して冷蔵室用冷却器44と熱交換した冷気を吸
引し、前方に吹き出してダクト42aの両側に形或した
複数の吐出口49から氷温室41内に冷気を吹き出すと
共に、ダクト47から吹出口46によって冷蔵室38に
も冷気を供給する。氷温室41を冷却した冷気は区画板
42に形成した吸込[150から、又、冷蔵室38を冷
却した冷気は仕切板39下面に形戒され、区画板42か
ら延在すると共に、前面及び側面に吸込口51を複数形
或された吸込ダクト52内を通って冷却室43に帰還す
る。
The inside of the first freezer compartment 14 is divided into upper and lower sections by a partition plate (not shown) attached in correspondence with the ice-making outlet 23, and the lower part thereof is used as an ice-making compartment for accommodating an ice-making tray (also not shown). If the first freezer compartment 14 and the second freezer compartment 15 are divided in this way and closed with separate seals s2 and s3, the open area of one side is smaller than if the whole is closed with one door, so The inflow of warm air when opened can be suppressed as much as possible. or,
Since the ice is cooled through a cold air circulation path independent of the refrigeration room (described later), there is no odor transfer to the ice produced. The lower chamber below the partition wall 12 is a refrigerator room 38. Insulating partition plate 39
partition plate 39 and inner s
40 forms an ice chamber 41. A cooling chamber 43 is formed by a partition plate 42 above the refrigerator compartment 38 at the back of the ice room 41, and a refrigerator compartment cooler 44 as a first cooler is installed vertically inside the cooling compartment 43. A refrigerator compartment air blower 45 is attached above the refrigerator compartment cooler 44, and a duct extending above the ice chamber 41 is installed on the partition plate 42 in front of the refrigerator compartment cooler 44.
a is formed. Refrigerator cooler 44 and partition plate 42
A heat insulating plate 48 is provided between them to form a duct 47 that extends downward from both sides of the cooler 44 from the space in front of the blower 45 and opens into the refrigerator compartment 38 . The blower 45 is a blower fan, which rotates to draw in the cold air that has exchanged heat with the refrigerator compartment cooler 44, and blows it forward into the ice room 41 through a plurality of discharge ports 49 formed on both sides of the duct 42a. While blowing out the cold air, the cold air is also supplied from the duct 47 to the refrigerator compartment 38 through the outlet 46. The cold air that has cooled the ice room 41 is drawn from the suction [150] formed in the partition plate 42, and the cold air that has cooled the refrigerator compartment 38 is drawn to the lower surface of the partition plate 39, extends from the partition plate 42, and flows from the front and side surfaces. The air then returns to the cooling chamber 43 through a suction duct 52 having a plurality of suction ports 51 .

ダクト42aには中央棚受29が垂下して取り付けられ
、又、氷温室41内左右側部に対向して棚受30,30
が吊り下げられている。これら棚受29,30.30間
には2枚の棚31.31が並列して支持される。この中
央棚受29内に吐出口49を開閉する手動ダンバーDが
取り付けられており、これによって氷温室41内の温度
を調節することができる様になっている。棚受30,3
0には上下に貫通した透孔30a,30aが穿設されて
おり、これによって吐出口49から吹き出された冷気は
棚31 .31下方にも流下し、氷温室41内は斑なく
冷却できる。
A central shelf bracket 29 is attached to the duct 42a in a hanging manner, and shelf brackets 30, 30 are arranged opposite to each other on the left and right sides of the ice room 41.
is suspended. Two shelves 31.31 are supported in parallel between these shelf supports 29, 30.30. A manual damper D for opening and closing the discharge port 49 is installed in the central shelf support 29, so that the temperature inside the ice room 41 can be adjusted. Shelf support 30,3
There are through holes 30a, 30a that pass through the shelf 31. 31, and the inside of the ice greenhouse 41 can be cooled evenly.

冷蔵室38下部は更に仕切板53と仕切前54によって
区画され、その下方に扉6に枠55にて支持された上方
開口の容器56が収容されてその内部を野菜室57とさ
れる。58は容器56内に設けた小容器である。60は
断熱箱体11下部に形成した機械室であり、機械室60
内後部に設けた基台61にコンプレッサ62が設置され
る。
The lower part of the refrigerator compartment 38 is further divided by a partition plate 53 and a partition front 54, and a container 56 with an upward opening supported by a frame 55 on the door 6 is housed below the partition plate 53, and the inside thereof is used as a vegetable compartment 57. 58 is a small container provided within the container 56. 60 is a machine room formed at the bottom of the heat insulating box 11;
A compressor 62 is installed on a base 61 provided at the inner rear part.

次に第4図は冷凍冷蔵庫1の冷媒回路図を示している。Next, FIG. 4 shows a refrigerant circuit diagram of the refrigerator-freezer 1.

コンプレッサ62から吐出された高温高圧のガス冷媒は
冷凍冷蔵庫1適所に配設したコンデンサ64に流入して
放熱し、液となった状態で分岐点Pに至る。分岐点Pか
らは電磁弁65と第1のキケビラリチューブ66と冷蔵
室用冷却器44及び冷凍室用室却器18の直列回路にて
或る第1の流路と、第2のキ勺ビラリチューブ67と冷
凍室用冷却器18の直列回路から成る第2の流路とに分
かれる。即ち、第2のキ〜ビラリチューブ67は電磁弁
65、第1のキャピラリチューブ66及び冷蔵室用冷却
器44をバイパスする形となる。第1のキ〜ビラリチュ
ーブ66の流路抵抗値は例えば5kg/cm”であり、
第2のキャピラリチューブ67のそれは7 kg/(が
とする。冷凍室用冷却器18を経たこれらの冷媒はコン
プレッサ62の吸入側に取り付けられた前述の冷媒液溜
としてのアキュムレータ68を経てコンプレッサ62に
帰還する。
The high-temperature, high-pressure gas refrigerant discharged from the compressor 62 flows into a condenser 64 disposed at an appropriate location in the refrigerator-freezer 1, radiates heat, and reaches a branch point P in a liquid state. From the branch point P, a series circuit of the solenoid valve 65, the first cracking tube 66, the refrigerator compartment cooler 44, and the freezer compartment cooler 18 connects a certain first flow path and a second key. It is divided into a second flow path consisting of a series circuit of the cold storage tube 67 and the freezer compartment cooler 18. That is, the second capillary tube 67 bypasses the solenoid valve 65, the first capillary tube 66, and the refrigerator compartment cooler 44. The flow path resistance value of the first Ki-Birari tube 66 is, for example, 5 kg/cm",
It is assumed that the weight of the second capillary tube 67 is 7 kg/(. to return to.

アキュムレータ68の流入管68bは冷凍室用冷却器1
8の出口管18aに、又、流出管68cはコンプレッサ
62の吸入側配管62aにそれぞれ連通接続される。流
入管68bからタンク68a内に流入した気液混合の冷
媒は、ここでガスと液に分離され、液冷媒はタンク68
a内に溜り、ガス冷媒のみが流出管68cからコンプレ
ッサ62に吸入される. 後述する如く電磁弁65は冷蔵室38の冷却が不要な時
は流路を閉じるので、コンデンサ64を出た冷媒は第2
のキャビラリチューブ67を経て冷凍室用冷却器18の
みに流入する。一方、冷凍冷蔵庫1のプルダウン時等の
冷蔵室38の冷却が必要なときは電磁弁65は流路を開
放する。
The inflow pipe 68b of the accumulator 68 is connected to the freezer compartment cooler 1.
The outlet pipe 18a of No. 8 and the outflow pipe 68c are connected to the suction side pipe 62a of the compressor 62, respectively. The gas-liquid mixed refrigerant flowing into the tank 68a from the inflow pipe 68b is separated into gas and liquid here, and the liquid refrigerant flows into the tank 68a.
Only the gas refrigerant accumulated in the gas refrigerant is sucked into the compressor 62 from the outflow pipe 68c. As will be described later, the solenoid valve 65 closes the flow path when cooling of the refrigerator compartment 38 is not required, so the refrigerant leaving the condenser 64 is transferred to the second
It flows only into the freezer compartment cooler 18 through the cavillary tube 67 . On the other hand, when the refrigerator compartment 38 needs to be cooled, such as when the refrigerator-freezer 1 is pulled down, the solenoid valve 65 opens the flow path.

電磁弁65が開放しているときはコンデンサ64を出た
冷媒は両キケビラリチューブ66及び67の流路抵抗値
の略逆比にて両流路に分流し、第1のキャビラリチュー
ブ66にて減圧された冷媒は冷蔵室用冷却器44に流入
して一部はまずそこで蒸発し、未蒸発冷媒が続いて冷凍
室用冷却器1旦に流入して蒸発する。一方第2のキヶビ
ラリチューブ67にて減圧された冷媒は冷凍室用冷却器
18に直接流入してそこで初めて蒸発する様になる。
When the solenoid valve 65 is open, the refrigerant that has exited the condenser 64 is divided into both flow paths at a substantially inverse ratio of the flow path resistance values of the two cavillary tubes 66 and 67, and flows into the first cavillary tube 66. The refrigerant whose pressure has been reduced in step flows into the refrigerator compartment cooler 44 and a part of it first evaporates there, and the unevaporated refrigerant subsequently flows into the freezer compartment cooler 1 and evaporates. On the other hand, the refrigerant whose pressure has been reduced in the second split tube 67 directly flows into the freezer compartment cooler 18, where it evaporates for the first time.

次に第6図は冷凍冷蔵庫1の制御装置70の電気回路を
示す。71はマイクロコンピュータである。74は冷蔵
室38内の温度を検出する負特性サーミスタにて成るセ
ンサーで抵抗75で分圧した端子電圧をコンバレータ7
6のく−)入力端子に入力している。コンバレータ76
の(+)入力端子には可変抵抗72と77にて或る基準
電圧が入力され、又、コンパレータ76の(+〉入力端
子と出力間には正帰還抵抗80が接続される。このコン
バレータ76の出力はマイクロコンピュータ71に入力
される。82は第2の冷凍室15内の温度を検出する負
特性サーミスタにて成るセンサーで抵抗83で分圧した
端子電圧をコンバレータ84の(一)入力端子に入力し
ている。コンバレータ84の(+)入力端子には可変抵
抗85と86にて成る基準電圧が入力され、又、コンバ
レータ84の〈+)入力端子と出力間には正帰還抵抗8
7が接続される。このコンパレータ84の出力もマイク
ロコンピュータ71に入力される。センサー82の端子
電圧は更にコンバレータ88の(−)入力端子に入力さ
れ、(+〉入力端子には抵抗89と90にて成る基準電
圧が入力され、又、コンバレータ88のく+〉入力端子
と出力間には正帰還抵抗91が接続される。このコンバ
レータ88の出力もマイクロコンピュータ71に入力さ
れる。マイクロコンピュータ71の出力には送風機45
と電磁弁65が同一出力に接続され、又、送風機20と
コンプレッサ62がそれぞれ接続される。
Next, FIG. 6 shows the electric circuit of the control device 70 of the refrigerator-freezer 1. 71 is a microcomputer. 74 is a sensor consisting of a negative characteristic thermistor that detects the temperature inside the refrigerator compartment 38, and the terminal voltage divided by the resistor 75 is sent to the converter 7.
No. 6-) Input is being made to the input terminal. Converter 76
A certain reference voltage is input to the (+) input terminal of the comparator 76 through variable resistors 72 and 77, and a positive feedback resistor 80 is connected between the (+> input terminal and the output of the comparator 76. The output is input to the microcomputer 71.A sensor 82 is a negative characteristic thermistor that detects the temperature inside the second freezing compartment 15.The terminal voltage divided by the resistor 83 is input to the (1) input terminal of the converter 84. A reference voltage made up of variable resistors 85 and 86 is input to the (+) input terminal of the converter 84, and a positive feedback resistor 8 is connected between the <+) input terminal of the converter 84 and the output.
7 is connected. The output of this comparator 84 is also input to the microcomputer 71. The terminal voltage of the sensor 82 is further input to the (-) input terminal of the comparator 88, the reference voltage formed by resistors 89 and 90 is input to the (+> input terminal, and the +> input terminal and A positive feedback resistor 91 is connected between the outputs.The output of this converter 88 is also input to the microcomputer 71.The output of the microcomputer 71 is connected to the blower 45.
and solenoid valve 65 are connected to the same output, and blower 20 and compressor 62 are connected to each other.

次に第7図から第8図に示すマイクロコンピュータ71
のブローチケートに基づいて両冷凍室14.15及び冷
蔵室38の温度制御を説明する。ステップ100で冷凍
室用冷却器18が除霜中か否か判断し、除霜中でなけれ
ばステップ101でフラグF3がセットされている・か
判断し、リセットされているとするとステップ102に
進む。
Next, the microcomputer 71 shown in FIGS. 7 to 8
Temperature control of both the freezer compartments 14 and 15 and the refrigerator compartment 38 will be explained based on the broached text. In step 100, it is determined whether or not the freezer compartment cooler 18 is being defrosted. If it is not defrosting, it is determined in step 101 whether the flag F3 is set. If it is reset, the process proceeds to step 102. .

ステップ102ではコンバレータ84の出力に基づく判
断を行う。コンバレータ84は両入力電位により、可変
抵抗85にて例えば−18℃〜−24℃の間のいずれか
の温度で設定された第2の冷凍室15の設定温度Aと、
センサー82が検出する第2の冷凍室15の温度T1を
比較し、抵抗87にて設定温度Aの上下に上限温度と下
限温度を設定されて温度T1が上昇して上限温度以上に
なったら出力を高電位(以下「H」と称す。)とし、温
度T1が低下して下限温度以下になったら出力を低電位
(以下r L 」と称す。)とする。マイクロコンピュ
ータ71はコンバレータ84の出力がr H ,となる
とステップ103に進み、rL,であればステップ10
6に進む。
In step 102, a determination is made based on the output of the comparator 84. The converter 84 sets a set temperature A of the second freezing compartment 15, which is set at a temperature between -18°C and -24°C by a variable resistor 85, depending on both input potentials, and
The temperature T1 of the second freezer compartment 15 detected by the sensor 82 is compared, and the upper and lower limit temperatures are set above and below the set temperature A by the resistor 87, and when the temperature T1 rises and exceeds the upper limit temperature, an output is generated. is set to a high potential (hereinafter referred to as "H"), and when the temperature T1 decreases to below the lower limit temperature, the output is set to a low potential (hereinafter referred to as r L ). The microcomputer 71 proceeds to step 103 when the output of the converter 84 becomes rH, and proceeds to step 10 if the output is rL.
Proceed to step 6.

ステップ103ではコンバレータ76の出力に基づく判
断を行う。コンバレータ76は両入力電位により、可変
抵抗76にて例えば0℃〜4℃の間のいずれかの温度で
設定された冷蔵室38の設定温度Bと、センサー74が
検出する冷蔵室38の温度T2を比較し、抵抗80にて
設定温度Bの上下に上限温度と下限温度を設定されて温
度T2が上昇して上限温度以上になったら出力をl″H
」とし、温度T2が低下して下限温度以下になったら出
力を「L」とする。マイクロコンピュータ71はコンバ
レータ76の出力がr H ,となるとステップ105
に進んでフラグF2をリセットし、l″L」であればス
テップ104でフラグF2をセットし、何れも次にステ
ップ111に進んでコンプレッサ62を運転する。即ち
、第2の冷凍室15若しくは冷蔵室38の冷却が必要な
時はコンプレッサ62を運転する. ここで後述する如く、スデップ120でもステップ10
3と同一の処理をし、コンバレータ76の出力が「L」
ならばステップ122に進みフラグF3がリセットされ
ていればステップ124で弁65を閉じ、送風機45を
停止する。即ち、フラグF2は弁65が閉じ冷媒が冷凍
室用冷却器18にのみ流れている間セットされることに
なる。
In step 103, a determination is made based on the output of the comparator 76. The converter 76 uses both input potentials to generate a set temperature B of the refrigerator compartment 38, which is set at a temperature between 0°C and 4°C by the variable resistor 76, and a temperature T2 of the refrigerator compartment 38 detected by the sensor 74. The upper and lower limit temperatures are set above and below the set temperature B using the resistor 80, and when the temperature T2 rises and exceeds the upper limit temperature, the output is set to l″H.
”, and when the temperature T2 decreases to below the lower limit temperature, the output is set to “L”. When the output of the converter 76 becomes r H , the microcomputer 71 performs step 105.
If the flag is l″L, the flag F2 is set in step 104, and in either case, the process proceeds to step 111, where the compressor 62 is operated. That is, when it is necessary to cool the second freezer compartment 15 or the refrigerator compartment 38, the compressor 62 is operated. As will be described later, even in step 120, step 10
The same process as in 3 is performed, and the output of the converter 76 is "L".
If so, the process proceeds to step 122, and if the flag F3 has been reset, the valve 65 is closed and the blower 45 is stopped in step 124. That is, the flag F2 is set while the valve 65 is closed and the refrigerant is flowing only to the freezer compartment cooler 18.

ステップ106でもステップ103同様の処理をし、フ
ンバレータ76の出力が「H」ならばステップ105に
進み、rL」の時はステップ1o7に進む。ステップ1
07で仕フラグF2がセットされているか判断し、リセ
ットされていればステップ110でコンプレッサ62を
停止する。ブラグF2がセットされているとステップ1
08に進み、ブラグF3をセットし、次にステップ1o
9でマイクロコンピュータ71がその機能として有する
タイマーTM2に3分を設定してステップ111に進む
In step 106, the same processing as in step 103 is performed, and if the output of the humidifier 76 is "H", the process proceeds to step 105, and if it is "rL", the process proceeds to step 1o7. Step 1
It is determined in step 07 whether the work flag F2 is set, and if it is reset, the compressor 62 is stopped in step 110. If the flag F2 is set, step 1
Proceed to step 08, set brag F3, then step 1o
At step 9, the microcomputer 71 sets the timer TM2 as its function to 3 minutes, and proceeds to step 111.

ステップ110及び111からはステップ112に進み
、フラグF3がセットされているか判断し、セットされ
ていればステップ113でタイマーTM2を減算し、ス
テップ114でタイマーTM2のカウントが0か判断し
、0でなければステップ116に進み、0であればステ
ップ115でブラグF3をリセットする。即ち、フラグ
F3は冷凍室用冷却器18のみに冷媒が流れている状態
から両室15及び38の冷却が不要となった時にステッ
プ10Bでセットされ、それから3分後にステップ11
5でリセットされる。
From steps 110 and 111, the process proceeds to step 112, where it is determined whether the flag F3 is set. If it is set, timer TM2 is subtracted at step 113. At step 114, it is determined whether the count of timer TM2 is 0. If not, the process proceeds to step 116, and if it is 0, the flag F3 is reset in step 115. That is, the flag F3 is set in step 10B when the refrigerant is flowing only through the freezer compartment cooler 18 and cooling of both compartments 15 and 38 is no longer necessary, and 3 minutes later, the flag F3 is set in step 11.
It is reset at 5.

次にステップ116及び117で両冷却器44及び18
が除霜中か判断し、いずれも除霜中でなければステップ
118に進み、コンバレータ88の出力に基づく判断を
行う。コンバレータ88は両人力゛電位により抵抗89
及び90にて例えば−12℃の温度で設定された第2の
冷凍室15の異常温度Cと、センサー82が検出する第
2の冷凍室15の温度T1を比較し、抵抗91にて設定
される多少のヒステリシスをもってT1が異常温度以上
となると出力をr H ,とし、それより低くければ出
力を「L」とする。マイクロコンピュータ71はコンバ
レータ88の出力が「L,であればステップ120に進
んでステップ103と同様の処理をし、コンパレータ7
6の出力がr H ,であればステップ123で弁65
を開き、且つ送風機45を運転し、『L」であれば前述
の如くステップ124で弁65を閉じ、且つ送風機45
を停止する。即ち、冷蔵室38の冷却が必要な場合は弁
65を開いて前述の如くコンプレッサ62を運転し、冷
媒を冷蔵室用冷却器44に流し、且つ送風ja45を運
転して冷蔵室38及び氷温室41を冷却し、冷却が不要
な場合は弁65を閉じて冷蔵室用冷却器44への冷媒流
入を阻止し、送風機45を停止する。
Next, in steps 116 and 117, both coolers 44 and 18
It is determined whether or not the defrosting is being performed. If neither is being defrosted, the process advances to step 118 and a determination is made based on the output of the converter 88. The converter 88 is connected to the resistor 89 due to the potential of both people.
In step 90, the abnormal temperature C of the second freezing compartment 15 set at a temperature of, for example, -12°C is compared with the temperature T1 of the second freezing compartment 15 detected by the sensor 82, and the temperature T1 set by the resistor 91 is compared. When T1 exceeds the abnormal temperature with some hysteresis, the output is set to r H , and when it is lower than that, the output is set to "L". If the output of the comparator 88 is "L", the microcomputer 71 proceeds to step 120, performs the same process as step 103, and outputs the output of the comparator 7
If the output of valve 65 is r H , then in step 123 the valve 65 is
is opened and the blower 45 is operated, and if it is "L", the valve 65 is closed in step 124 as described above, and the blower 45 is operated.
stop. That is, when it is necessary to cool the refrigerator compartment 38, the valve 65 is opened, the compressor 62 is operated as described above, the refrigerant is flowed to the refrigerator compartment cooler 44, and the blower ja 45 is operated to cool the refrigerator compartment 38 and the ice room. 41, and if cooling is not required, close the valve 65 to prevent refrigerant from flowing into the refrigerator compartment cooler 44, and stop the blower 45.

次にステップ125ではコンプレッサ62が運転中か判
断し、運転中であればステップ126でブラグF3がセ
ットされているか判断し、リセットされていればステッ
プ127でステップ102と同様の処理をし、コンパレ
ータ84の出力がr H Jの時はステップ129で送
風機2oを運転し、「L,の時ほステップ128で送風
機2oを停止する。即ち、第2の冷凍室15の冷却が必
要な時はコンプレッサ62を運転し、且つ送風機20を
運転して両冷凍室14及び15を冷却し、不要な時は送
風機20を停止する, ここでフラグF3がセットされるとステップ101から
ステップ130でフラグF2をリセットしステップ11
1に直接進んでコンプレッサ62を運転する。更にステ
ップ122ではステップ123に進んで弁65を開き送
風機20を運転する。又、ステップ126ではステップ
129に直接進んで送風機20を運転する。即ち、冷凍
室用冷却器18のみに冷媒が流れている状態からコンブ
1ノッサ62が停止しようとする時は、停止前に3分間
フンパレータ76或いは84の出力に関係なくコンプレ
ッサ62、送風機20及び45を強制的に運転し、更に
弁65を開いて両冷却器44及び18に冷媒を流し、3
分間経過後にフラグF3がリセットされたらステップ1
10,124及び129でこの強制運転を停止する。従
ってアキュムレータ68内の液位はコンプレッサ62停
止後もL,までに止まるので、前述の冷媒音は発生しな
い。この強制運転の期間は冷媒が冷蔵室用冷却器44に
も溜り、冷媒音が発生しない範囲で温度制御に悪影響を
与えないよう最も短い期間に決定することになるが、実
験では1乃至2分間では効果がなかった。
Next, in step 125, it is determined whether the compressor 62 is in operation, and if it is in operation, it is determined in step 126 whether or not the plug F3 is set, and if it is reset, the same process as in step 102 is performed in step 127, and the comparator When the output of 84 is rHJ, the blower 2o is operated in step 129, and when it is ``L,'' the blower 2o is stopped in step 128.In other words, when the second freezing compartment 15 needs to be cooled, the compressor 2o is operated. 62 and the blower 20 to cool both freezer compartments 14 and 15, and stop the blower 20 when it is not needed.If the flag F3 is set here, the flag F2 is set in steps 101 to 130. Reset step 11
1 to operate the compressor 62. Furthermore, in step 122, the process proceeds to step 123, where the valve 65 is opened and the blower 20 is operated. Further, in step 126, the process directly advances to step 129 to operate the blower 20. That is, when the combus 1 nosser 62 is about to stop from a state where refrigerant is flowing only to the freezer compartment cooler 18, the compressor 62, blower 20, and 45 , the valve 65 is opened to allow the refrigerant to flow into both the coolers 44 and 18, and the
If the flag F3 is reset after the minute has passed, step 1
This forced operation is stopped at steps 10, 124 and 129. Therefore, the liquid level in the accumulator 68 remains at L even after the compressor 62 is stopped, so the above-mentioned refrigerant noise does not occur. The period of this forced operation is determined to be the shortest period so that the refrigerant does not accumulate in the refrigerator compartment cooler 44 and does not cause refrigerant noise and does not adversely affect temperature control. It had no effect.

両冷凍室14或いは15に例えば大量の食品が投入され
る等により、熱負荷が増え、第2の冷凍室15の温度T
Iが異常に上昇して−12℃である温度Cを上回るとコ
ンバレータ88の出カがrH」となるのでマイクロコン
ピュータ71はステップ118から121に進みフラグ
F4及びF3がリセットされていればステップ121及
び122からステップ124に進む。即ち、第2の冷凍
室l5の温度が異常に上昇した時はコンバレータ76の
出力に関係なく、弁65を閉じて冷媒を冷凍室用冷却器
18のみに流して両冷凍室14及び15の冷却能力を増
大させることにより、投入された食品の迅速な凍結を達
成すると共に、既に収納されている食品の融解を防止す
る。
For example, when a large amount of food is put into both freezer compartments 14 or 15, the heat load increases, and the temperature T of the second freezer compartment 15 decreases.
If I rises abnormally and exceeds the temperature C which is -12°C, the output of the converter 88 becomes rH, so the microcomputer 71 proceeds from step 118 to step 121, and if flags F4 and F3 have been reset, step 121 and 122, proceeding to step 124. That is, when the temperature of the second freezer compartment 15 rises abnormally, the valve 65 is closed and the refrigerant flows only through the freezer compartment cooler 18 to cool both freezer compartments 14 and 15, regardless of the output of the converter 76. The increased capacity achieves rapid freezing of input food and prevents food already stored from thawing.

ここで、フラグF4は冷凍冷蔵庫1の電源投入時にセッ
トされ、フラグF4がセットされている場合はステップ
121から120に進み、前述の異常温度時の運転は行
わない。従って冷凍冷蔵庫1を据付けた後の所謂プルダ
ウン時は第2の冷凍室15の温度が高くても両冷却器4
4・及び18に冷媒を流して各室14,15,38.4
1の冷却を行う。又、このフラグF4は第2の冷凍室1
5の温度T1がCより低下した時点でステップ118か
ら119に進みリセットされる。
Here, the flag F4 is set when the refrigerator-freezer 1 is powered on, and if the flag F4 is set, the process proceeds from step 121 to step 120, and the above-mentioned operation at abnormal temperature is not performed. Therefore, during the so-called pull-down after installing the refrigerator-freezer 1, even if the temperature of the second freezer compartment 15 is high, both coolers 4
4. and 18 by flowing refrigerant into each chamber 14, 15, 38.4
Perform cooling as described in step 1. Also, this flag F4 is the second freezer compartment 1.
When the temperature T1 of No. 5 falls below C, the process proceeds from step 118 to step 119 and is reset.

尚、実施例では所謂冷凍冷蔵庫に本発明を適用したが、
それに限らず例えば単一の貯蔵室を二つの冷却器にて冷
却し、双方に冷媒を流すか、片方のみに流すか選択し、
冷却能力を選択的に制御するものにも有効である。
In addition, in the examples, the present invention was applied to a so-called refrigerator-freezer, but
For example, you can cool a single storage room with two coolers and choose whether to flow the refrigerant into both or only one.
It is also effective for selectively controlling cooling capacity.

〈ト〉発明の効果 本発明によれば冷媒を第1の冷却器及び第2の冷却器の
双方に流すか、第2の冷却器のみに流すかを選択的に制
御し、コンプレッサの吸入側に冷媒液溜を備えたものに
おいて、第2の冷却器のみに冷媒を流している状態から
コンプレッサが停止しようとする時は停止前に双方の冷
却器に冷媒を流してから停止するので、コンプレッサの
停止中に冷媒液溜に溜る冷媒量を少なくし、それによっ
て冷媒液溜での冷媒音の発生を防止できる。又、冷媒液
溜も通常のものを用いれば良い′ので、気液冷媒の分離
機能を損うこともない。
<G> Effects of the Invention According to the present invention, it is possible to selectively control whether the refrigerant flows to both the first cooler and the second cooler or only to the second cooler, and In a compressor equipped with a refrigerant reservoir, when the compressor attempts to stop from a state in which refrigerant is flowing only to the second cooler, the refrigerant flows to both coolers before stopping, so the compressor It is possible to reduce the amount of refrigerant that collects in the refrigerant reservoir during the stoppage of the refrigerant, thereby preventing the generation of refrigerant noise in the refrigerant reservoir. Furthermore, since a normal refrigerant reservoir can be used, the gas-liquid refrigerant separation function is not impaired.

【図面の簡単な説明】[Brief explanation of drawings]

第1図!ま冷凍冷蔵庫の正面図、第2図は一部扉を除く
冷凍冷蔵庫の正面図、第3図は第2図のA−A線断面図
、第4図は冷媒回路図、第5図は冷媒液溜の縦断面図、
第6図は制御装置の電気回路図、第7図乃至第8図はマ
イクロコンピュータのソフトウェアを示すフローチャー
トである。 1・・・冷凍冷蔵庫、  14.15・・・第1及び第
2の冷凍室、  18・・・冷凍室用冷却器、 38・
・・冷蔵室、  44・・・冷蔵室用冷却器、 62・
・・コンプレッサ、  64・・・コンデンサ、  6
5・・・電磁弁、66.67・・・第1及び第2のキ〜
ピラリチューブ、  68・・・冷媒液溜、 70・・
・制御装置。
Figure 1! Fig. 2 is a front view of the refrigerator-freezer, with some doors removed, Fig. 3 is a sectional view taken along line A-A in Fig. 2, Fig. 4 is a refrigerant circuit diagram, and Fig. 5 is a refrigerant diagram. Longitudinal cross-sectional view of the liquid reservoir,
FIG. 6 is an electric circuit diagram of the control device, and FIGS. 7 and 8 are flow charts showing software of the microcomputer. 1... Freezer-refrigerator, 14.15... First and second freezer compartments, 18... Freezer compartment cooler, 38.
...Refrigerating room, 44...Refrigerating room cooler, 62.
...Compressor, 64...Capacitor, 6
5...Solenoid valve, 66.67...First and second key~
Pillari tube, 68... Refrigerant reservoir, 70...
·Control device.

Claims (1)

【特許請求の範囲】[Claims] 1、コンプレッサから吐出されコンデンサを経た冷媒を
第1の冷却器及び第2の冷却器の双方に流すか、前記第
2の冷却器のみに流すかを選択的に制御すると共に、前
記コンプレッサの吸入側に冷媒液溜を備えたものに於て
、前記第2の冷却器のみに冷媒を流している状態で前記
コンプレッサが停止する場合は、停止前に前記第1の冷
却器及び第2の冷却器の双方に冷媒を流す事を特徴とす
る冷却装置。
1. Selectively control whether the refrigerant discharged from the compressor and passed through the condenser flows to both the first cooler and the second cooler or only to the second cooler, and also controls the suction of the compressor. In a compressor equipped with a refrigerant liquid reservoir on the side, if the compressor is stopped while the refrigerant is flowing only to the second cooler, the first cooler and the second cooler are A cooling device characterized by flowing refrigerant into both sides of the container.
JP23103089A 1989-09-06 1989-09-06 Cooling system Expired - Lifetime JP2760591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23103089A JP2760591B2 (en) 1989-09-06 1989-09-06 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23103089A JP2760591B2 (en) 1989-09-06 1989-09-06 Cooling system

Publications (2)

Publication Number Publication Date
JPH0395376A true JPH0395376A (en) 1991-04-19
JP2760591B2 JP2760591B2 (en) 1998-06-04

Family

ID=16917171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23103089A Expired - Lifetime JP2760591B2 (en) 1989-09-06 1989-09-06 Cooling system

Country Status (1)

Country Link
JP (1) JP2760591B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193995A (en) * 2005-01-14 2006-07-27 Nippon Steel Corp Joint structure of pile and pillar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193995A (en) * 2005-01-14 2006-07-27 Nippon Steel Corp Joint structure of pile and pillar
JP4695886B2 (en) * 2005-01-14 2011-06-08 新日本製鐵株式会社 Pile and column joint structure

Also Published As

Publication number Publication date
JP2760591B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
US7237395B2 (en) Methods and apparatus for controlling refrigerators
US5499514A (en) Defrost water drain system for a refrigerator
JPS59164860A (en) Refrigeration cycle of refrigerator
JPH06174315A (en) Evaporating refrigerating device of plurality of temperature type having variable speed compressor
JPH06194022A (en) Indirect cooling type refrigerator
US2775873A (en) Still chilled refrigerator
AU2014303819B2 (en) Refrigerator
KR20020087682A (en) Air circulation system of Refrigerator
JPH0395376A (en) Cooling device
JP2772173B2 (en) refrigerator
JP2006275467A (en) Showcase
JP2000283626A (en) Refrigerator
JPH109744A (en) Refrigerator
EP3410046A1 (en) Refrigerator
KR100719246B1 (en) Apparatus for cooling door of kimchee refrigerator and method for controlling the same
JP6261535B2 (en) Freezer refrigerator
JPH0395377A (en) Freezer refrigerator
JP2003287331A (en) Refrigerator
WO2022143413A1 (en) Refrigerator
WO2023284589A1 (en) Refrigerator
KR101872608B1 (en) Refrigerator
JPH02263080A (en) Refrigerator
JP2000180016A (en) Refrigerator
KR200165717Y1 (en) Apparatus for preventing ice formation of refrigerator
JP3819644B2 (en) refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 12