JPH0395365A - Low temperature generator using metallic hydride - Google Patents
Low temperature generator using metallic hydrideInfo
- Publication number
- JPH0395365A JPH0395365A JP22993889A JP22993889A JPH0395365A JP H0395365 A JPH0395365 A JP H0395365A JP 22993889 A JP22993889 A JP 22993889A JP 22993889 A JP22993889 A JP 22993889A JP H0395365 A JPH0395365 A JP H0395365A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- metal hydride
- hydrogen gas
- storage container
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000004678 hydrides Chemical class 0.000 title claims abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000001257 hydrogen Substances 0.000 claims abstract description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 27
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 238000001816 cooling Methods 0.000 claims abstract description 14
- 238000005338 heat storage Methods 0.000 claims abstract description 9
- 150000004681 metal hydrides Chemical class 0.000 claims description 50
- 229910052987 metal hydride Inorganic materials 0.000 claims description 49
- 239000002184 metal Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 9
- 238000005057 refrigeration Methods 0.000 abstract description 8
- 239000000498 cooling water Substances 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000010521 absorption reaction Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 10
- 229910018007 MmNi Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【発明の詳細な説明】
(イ) 産業上の利用分野
本発明は金属水素化物を用いたv!.温発生装置に関す
るものである。[Detailed description of the invention] (a) Industrial application field The present invention uses v! .. This relates to a temperature generator.
(ロ)従来の技術
この種の低温発生装置としては従来より提案されており
、その一例を第1図に示すシステム構或図と第2図に示
す金属水素化物の特性図により説明する。(b) Prior Art This type of low temperature generator has been proposed in the past, and one example will be explained with reference to the system configuration shown in FIG. 1 and the characteristic diagram of metal hydride shown in FIG. 2.
第1図において、(1)は加熱源で熱媒体循環路(2)
により金属水素化物を収納した金属水素化物収納容器(
3)に接続されている。(4)は冷却源で同じく熱媒体
循環路(5)により金属水素化物を収納した金属水素化
物収納容器(6)に接続されている.(7)aび(8)
は前記収納容器(3) 116 +を加熱源(1)と冷
却源(4)に夫々切換接続して交互に加熱冷却を行うた
めの切換手段で3方切換弁と管体の組合せにより構成さ
れている。In Figure 1, (1) is the heating source and the heat medium circulation path (2)
Metal hydride storage container containing metal hydride (
3) is connected to. (4) is a cooling source, which is also connected to a metal hydride storage container (6) containing a metal hydride through a heat medium circulation path (5). (7) abi (8)
is a switching means for alternately heating and cooling the storage container (3) 116 + by switchingly connecting it to the heating source (1) and the cooling source (4), respectively, and is constituted by a combination of a three-way switching valve and a pipe body. ing.
前記収納容器<3 1 (6 1には夫々逆止弁(9
) (101及び(11) (12+を介して水素導管
(13) (14)により膨張機構(絞り装置)を有す
る膨張型低温発生装置としての冷凍機(15)が接続さ
れている。The storage containers <3 1 (6 1 each have a check valve (9
) (101 and (11) (12+) A refrigerator (15) as an expansion type low temperature generator having an expansion mechanism (throttling device) is connected by a hydrogen conduit (13) (14).
(l6)は前記水素導管(13)の途中に設けた冷却器
としてのガスー水熱交換器である。(16) is a gas-water heat exchanger as a cooler installed in the middle of the hydrogen conduit (13).
上記の構成において加熱源(1)で加熱された熱媒体に
より金属水素化物収納容器(3)の金属水素化物から発
生(a点)した高圧、高温の水素は逆止弁(10)を開
き水素導管(13)及びガスー水熱交J!lli器(1
6)を経由して冷凍機(l5)に流入するが、高圧、高
温の水素は前記ガスー水熱交換器(16)において冷却
水により冷却され、高圧・常温となり前記冷凍機(15
)の入口側で膨張して冷凍熱を発生する。In the above configuration, the high pressure and high temperature hydrogen generated (at point a) from the metal hydride in the metal hydride storage container (3) by the heat medium heated by the heat source (1) opens the check valve (10) to release the hydrogen. Conduit (13) and gas-water heat exchanger J! lli device (1
6), the high-pressure, high-temperature hydrogen is cooled by cooling water in the gas-water heat exchanger (16), becomes high pressure and room temperature, and flows into the refrigerator (15).
) expands on the inlet side and generates refrigeration heat.
その後水素は冷凍機(l5)の出口側より水素導管(1
4)及び逆止弁(11)を経由して金属水素化物収納容
器(6)の金属水素化物に吸蔵(b点)される。この際
金属水素化物は発熱するが冷却源(4)からの冷却され
た熱媒体により冷却されているので水素の吸蔵作用は進
行する。After that, hydrogen is transferred from the outlet side of the refrigerator (l5) to the hydrogen conduit (1
4) and the check valve (11), the metal hydride is occluded (point b) in the metal hydride storage container (6). At this time, the metal hydride generates heat, but since it is cooled by the cooled heat medium from the cooling source (4), the hydrogen storage action progresses.
次に切換手段f7 ) <8 )を切換えることにより
一方の金属水素化物収納容器(3)は冷却源(4)に、
他方の金属水素化物収納容器(6)は加熱源(1)に夫
々接続されて前述のサイクルが継続的に行なわれる。Next, by switching the switching means f7) <8), one metal hydride storage container (3) is switched to the cooling source (4).
The other metal hydride storage containers (6) are respectively connected to the heating source (1) and the above-mentioned cycle is carried out continuously.
このような冷凍システムは、例えば特公昭47−370
90号公報に開示されている。Such a refrigeration system is, for example,
It is disclosed in Publication No. 90.
(ハ) 発明が解決しようとする課題
しかしながら従来の方式ではIMiの金属水素化物収納
容器を用いて切換により冷凍サイクルを継続しているた
めに効率が極めて悪いという問題がある。(c) Problems to be Solved by the Invention However, in the conventional system, the efficiency is extremely low because the refrigeration cycle is continued by switching using the IMi metal hydride storage container.
本発明は、上記の不都合を解決して効率を2倍に上げる
ことを主要な目的とするものである。The main object of the present invention is to solve the above-mentioned disadvantages and to double the efficiency.
(二)課題を解決するための手段
本発明による金属水素化物を用いた低温発生装置は、平
衡水素圧力が高い第1の金属水素化物を収納し、冷却源
で冷却される第1金属水素化物収納容器Aと、平衡水素
圧力が低い第2の金属水素化物を収納し、加熱源で加熱
される第2金属水素化物収納容器Bと、蓄熱槽を有した
熱媒体循環路により相互に接続される第1の金属水素化
物を収納した第1金属水素化物収納容器C及び第2の金
属水素化物を収納した第2金属水素化物収納容器Dと、
冷却器を有する水素導管により前記収納容器A及びCに
接続される第1の冷凍機と、同じく冷却器を有する水素
導管により前記収納容器B及びDに接続される第2の冷
凍機と、前記収納容器A及びCと前記収納容器B及びD
を前記冷却源と加熱源に対して交互に切換える切換手段
とにより楕或したものである。(2) Means for Solving the Problems The low temperature generator using a metal hydride according to the present invention houses a first metal hydride having a high equilibrium hydrogen pressure, and the first metal hydride is cooled by a cooling source. The storage container A and the second metal hydride storage container B, which stores a second metal hydride having a low equilibrium hydrogen pressure and is heated by a heating source, are interconnected by a heat medium circulation path having a heat storage tank. a first metal hydride storage container C containing a first metal hydride; and a second metal hydride storage container D containing a second metal hydride;
a first refrigerator connected to the storage containers A and C by a hydrogen conduit having a cooler; a second refrigerator connected to the storage containers B and D by a hydrogen conduit also having a cooler; Storage containers A and C and the storage containers B and D
The switching means alternately switches between the cooling source and the heating source.
(ホ)作 用
本発明によれば、一つの熱源にて2機の冷凍機を作動し
、一段目の反応熱により二段目を駆動し・ているために
効率は2倍となる。(E) Function According to the present invention, two refrigerators are operated by one heat source, and the second stage is driven by the reaction heat of the first stage, so the efficiency is doubled.
また熱駆動によって騒音や振動が小さいた極低温《−1
50℃以下)の冷凍出熱可能なシステムが槽或される。In addition, thermal drive allows for low noise and vibration at extremely low temperatures《-1〉
A system capable of refrigerating heat output (below 50°C) is installed in the tank.
(へ)実施例
以下本発明の実施例を第3図に基づいて説明する。(2
0)及び(21)はこのシステムの作動温度範囲におい
て、水素平衡圧力が高いLaN i.系の第1の金属水
素化!i@旧,を収容した第1金属水素化物収納容器(
22)及び(23)はこのシステムの作動温I!範ク
囲において水素平衡圧力が低いMmNi,系の第2の金
属水素化物l2を収容した第2金属水素化物収納容器で
ある。(f) Example Hereinafter, an example of the present invention will be described based on FIG. 3. (2
0) and (21) are LaN i. The first metal hydrogenation of the system! First metal hydride storage container containing i@former (
22) and (23) are the operating temperature I! of this system. This is a second metal hydride storage container containing a second metal hydride 12 of the MmNi system, which has a low hydrogen equilibrium pressure in the range.
(24)は加熱部で、例えばボイラー等の加熱によりオ
イル等の熱媒体を加熱し、3方弁(25ai (25b
)(25c) (25dl及び管体(26a) (26
b)により構或される切換手段(27)の切換により第
2金属水素化物収納容器(22)あるいは(23)に加
熱された熱媒体を熱交換的に供給する。(28)は蓄熱
槽であり補助用加熱部(29)を有している,
前記蓄熱槽(28)と冷却部(30)とは前記第1金属
水素化物収納容器(20)及び(2l)と3方弁(31
al i3lb)(31c) (31d)と管体(32
a) (32b)により構成される切換手段(33)の
切換により熱交換的に接続されるようになっている。前
記第1金属水素化物収納容器(20)及び(21)には
夫々逆止弁(34a) (34b)及び(34cl (
34d)が接続されており、前記逆止弁(34al (
34C)及び(34bl (34dlの間には水素導管
(351 (36)によりガスー水熱交換器(37)を
介在して膨張機構を有する第1冷凍機(38)が接続さ
れている。(24) is a heating part that heats a heat medium such as oil by heating a boiler, etc., and heats a three-way valve (25ai (25b)
) (25c) (25dl and tube body (26a) (26
By switching the switching means (27) constituted by b), the heated heat medium is supplied to the second metal hydride storage container (22) or (23) in a heat exchange manner. (28) is a heat storage tank and has an auxiliary heating section (29). The heat storage tank (28) and the cooling section (30) are the first metal hydride storage containers (20) and (2l). and 3-way valve (31
al i3lb) (31c) (31d) and tube body (32
a) They are connected in a heat exchange manner by switching the switching means (33) constituted by (32b). The first metal hydride storage containers (20) and (21) are provided with check valves (34a) (34b) and (34cl), respectively.
34d) is connected, and the check valve (34al (
A first refrigerator (38) having an expansion mechanism is connected between (34C) and (34bl (34dl) through a hydrogen conduit (351 (36)) via a gas-water heat exchanger (37).
また前記第2金属水素化物収納容器(22)及び(23
)には夫々逆止弁t39a) +39b)及び(39c
) (39d)が接続されており、前記逆止弁(39a
) (39c)及び(39b)(39d+の間には水素
導管(401 (41)により前記ガスー水熱交換器(
37)を介在してFlj?A機構を有する第2冷凍機(
42)が接続されている。Further, the second metal hydride storage containers (22) and (23)
) are equipped with check valves t39a) +39b) and (39c), respectively.
) (39d) is connected, and the check valve (39a
) (39c) and (39b) (39d+ are connected to the gas-water heat exchanger (
37) through Flj? A second refrigerator with mechanism A (
42) is connected.
次に動作について説明する。Next, the operation will be explained.
まず本装置の実施例において使用する金属水素化物の温
度と圧力の特性図を第4図に示す。First, FIG. 4 shows a characteristic diagram of the temperature and pressure of the metal hydride used in the embodiment of this apparatus.
まず、切換手段(27)の3方弁(25c) f25d
iを切換えて第2金属水素化物収納容器(23)を加熱
部(24)に接続する。次に加熱部(24)をボイラー
により加熱し、T+(200゜C)以上に加熱された熱
媒オイルを前記収納容器(23)に送り込む。これによ
り前記収納容器(23)内の第2金属水素化物組}2は
加熱されて第4図に示す如く該収納容器内の水素は高圧
(a点)となる。その結果逆止弁(39c)が開き水素
導管(40)を通り,ガスー水熱交換器(37)に至る
,ここで高圧、高温の水素は冷却水により冷却され、高
圧常温となりこれが第2冷凍機(42)に流入し膨張し
て冷凍熱を発生する。その後水素ガスは水素導管(41
)を経由して逆止弁(39b)を通り収納容器(22)
内の第2の金属水素化物MH2に吸蔵(b点)される(
T2)。この際、収納容器(22)内の金属水素化物M
H2は発熱するが、この熱は熱媒オイルにて熱交換的に
回収し蓄熱槽(28)に蓄熱する。前記蓄熱槽(28)
の蓄熱によってT2 ( 1 00’C )前後の熱媒
オイルを収納容器(2l)に熱交換的に送り込む。前記
収納容器(Z1)内の平衡水素序力の高い金属水素化物
MH.は加熱され、第4図に示すように収納容器(21
)内の水素は高圧(C点)となる。これによって逆止弁
(34c)は開き水素導管(35)を通りガスー水熱交
l!!lI器(37)に至る。ここで高圧、高温の水素
は冷却水により冷却され、高圧常温となりこれが第1冷
凍機(38)に入り、ここで膨張して冷凍熱を発生する
。その後水素ガスは、水素導管(36}及び逆止弁(3
4blを通り収納容器(20)内の金属水素化物Ml1
.に吸蔵(d点)される。この際収納容器(20)内の
MH,は発熱するが冷却部(30)にて外部に放熱する
(Tsi.このようにして第1冷.11(38)及び第
2冷凍機(42)は−1ラ0゜C以下の出熱可能な冷凍
熱を発生する。また切換手段(27)(33)の3方弁
(25a) (25b) (25cl (25d)及び
(31a) (3To’) (31c)(31d)を切
換えることにより収納容器(22)と(23)及び収納
容器(20)と(21)を夫々加熱部(24)と冷却部
(30)に切換え接続し、前述と同一サイクルを連続的
に繰り返す。First, the three-way valve (25c) f25d of the switching means (27)
i is switched to connect the second metal hydride storage container (23) to the heating section (24). Next, the heating section (24) is heated by a boiler, and the heating medium oil heated to T+ (200° C.) or higher is sent into the storage container (23). As a result, the second metal hydride group 2 in the storage container (23) is heated, and the hydrogen in the storage container becomes under high pressure (point a) as shown in FIG. As a result, the check valve (39c) opens and passes through the hydrogen conduit (40) to the gas-water heat exchanger (37).Here, the high-pressure, high-temperature hydrogen is cooled by cooling water, becoming high-pressure and at room temperature. It flows into the machine (42) and expands to generate refrigeration heat. After that, the hydrogen gas is transferred to the hydrogen conduit (41
) and the check valve (39b) to the storage container (22).
is occluded (point b) in the second metal hydride MH2 in (
T2). At this time, the metal hydride M in the storage container (22)
Although H2 generates heat, this heat is recovered by heat exchange using heat medium oil and stored in a heat storage tank (28). The heat storage tank (28)
Due to the heat storage, the heat medium oil around T2 (100'C) is sent into the storage container (2l) in a heat exchange manner. Metal hydride MH. with high equilibrium hydrogen ordering power in the storage container (Z1). is heated and placed in a storage container (21) as shown in Figure 4.
) is at high pressure (point C). As a result, the check valve (34c) opens and the hydrogen conduit (35) passes through the gas-water heat exchange l! ! This leads to the II vessel (37). Here, the high-pressure, high-temperature hydrogen is cooled by cooling water, becomes high-pressure and at room temperature, enters the first refrigerator (38), expands there, and generates freezing heat. Thereafter, the hydrogen gas is passed through the hydrogen conduit (36} and the check valve (36).
Metal hydride Ml1 in the storage container (20) passing through 4bl
.. It is occluded (point d). At this time, the MH in the storage container (20) generates heat, but the heat is radiated to the outside in the cooling section (30). -1 la Generates refrigeration heat that can output heat of 0°C or less. Also, the three-way valves (25a) (25b) (25cl (25d) and (31a) (3To') of the switching means (27) (33) By switching (31c) and (31d), the storage containers (22) and (23) and the storage containers (20) and (21) are switched and connected to the heating section (24) and cooling section (30), respectively, and the same as above. Repeat the cycle continuously.
(ト)発明の効果
本発明による金属水素化物を用いた低温発生装置は上述
の如く楕戒したので、従来に比較すると、一つの熱源に
て、2台の冷凍機を動かし、一段目の反応熱により二段
目を駆動しているために効率は2倍となる。また熱駆動
のため騒音や振動が小さく、−150℃以下の冷凍出熱
を得るシステムが提供できる。(G) Effects of the Invention Since the low temperature generator using metal hydride according to the present invention has the above-mentioned limitations, compared to the conventional method, it is possible to operate two refrigerators using one heat source and perform the first stage reaction. The efficiency is doubled because the second stage is driven by heat. Furthermore, since it is thermally driven, it has low noise and vibration, and can provide a system that obtains a refrigeration heat output of -150°C or less.
第1図は従来例の低温発生装置のシステム構成図、第2
図は従来例に使用する金属水素化物のサイクル線図を例
示した特性図、第3i2lは本発明の一実施例を示す低
温発生装置のシステム構戊図、第4図は本発明に使用す
る金属水素化物のサイクル線図を示す特性図てある。
t20) (21)・・・第1金属水素化物収納容器、
(22) (23)・・・第2金属水素化物収納容器、
(24)・・・加熱部5(30)・・冷却部、(28)
・・蓄熱槽、(27) (33)・・・切IQ手段、(
37)・・・ガスー水熱交換器、(38)・・第l冷凍
機、(42)・・第2冷凍機。Figure 1 is a system configuration diagram of a conventional low temperature generator;
The figure is a characteristic diagram illustrating a cycle diagram of a metal hydride used in a conventional example, Figure 3i2l is a system configuration diagram of a low temperature generator showing an embodiment of the present invention, and Figure 4 is a characteristic diagram illustrating a cycle diagram of a metal hydride used in the present invention. There is a characteristic diagram showing a cycle diagram of a hydride. t20) (21)...first metal hydride storage container,
(22) (23)...Second metal hydride storage container,
(24)... Heating section 5 (30)... Cooling section, (28)
... Heat storage tank, (27) (33) ... Cut-off IQ means, (
37)...Gas-water heat exchanger, (38)...1st refrigerator, (42)...2nd refrigerator.
Claims (1)
、冷却源で冷却される第1金属水素化物収納容器A 平衡水素圧力が低い第2の金属水素化物を収納し、加熱
源で加熱される第2金属水素化物収納容器Bと、 蓄熱槽を有した熱媒体循環路により相互に接続される第
1の金属水素化物を収納した第1金属水素化物収納容器
C及び第2の金属水素化物を収納した第2金属水素化物
収納容器Dと 冷却器を有する水素導管により前記収納容器A及びCに
接続される第1の冷凍機と、 同じく冷却器を有する水素導管により前記収納容器B及
びDに接続される第2の冷凍機と、前記収納容器A及び
Cと前記収納容器B及びDを前記冷却源と加熱源に対し
て交互に切換える切換手段、とにより構成されることを
特徴とする金属水素化物を用いた低温発生装置。(1) A first metal hydride storage container A that stores a first metal hydride with a high equilibrium hydrogen pressure and is cooled by a cooling source.A first metal hydride storage container A that stores a second metal hydride with a low equilibrium hydrogen pressure and is cooled with a heating source. A second metal hydride storage container B to be heated, and a first metal hydride storage container C containing a first metal hydride and a second metal interconnected by a heat medium circulation path having a heat storage tank. A second metal hydride storage container D containing a hydride, a first refrigerator connected to the storage containers A and C by a hydrogen conduit having a cooler, and a first refrigerator connected to the storage container B by a hydrogen conduit also having a cooler. and a second refrigerator connected to D and a switching means for alternately switching the storage containers A and C and the storage containers B and D to the cooling source and the heating source. A low-temperature generator using metal hydrides.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22993889A JPH0395365A (en) | 1989-09-05 | 1989-09-05 | Low temperature generator using metallic hydride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22993889A JPH0395365A (en) | 1989-09-05 | 1989-09-05 | Low temperature generator using metallic hydride |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0395365A true JPH0395365A (en) | 1991-04-19 |
Family
ID=16900075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22993889A Pending JPH0395365A (en) | 1989-09-05 | 1989-09-05 | Low temperature generator using metallic hydride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0395365A (en) |
-
1989
- 1989-09-05 JP JP22993889A patent/JPH0395365A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0810093B2 (en) | Control method for air conditioning system using metal hydride | |
EP0343650A1 (en) | Heat accumulation system | |
JP5730028B2 (en) | Heat source system | |
JP2001349638A (en) | Cogeneration system using waste heat gas of micro gas turbine | |
US5351493A (en) | Thermally driven refrigeration system utilizing metal hydrides | |
JPH0395365A (en) | Low temperature generator using metallic hydride | |
RU2131987C1 (en) | Hear-transfer apparatus using stirling-cycle principle | |
US6393845B1 (en) | Pulse tube refrigerator | |
JP3126086B2 (en) | Compression metal hydride heat pump | |
JP2004251557A (en) | Refrigeration device using carbon dioxide as refrigerant | |
JPH109709A (en) | Metal hydride adsorption type thermally driven refrigerating machine | |
JPH0354326A (en) | Surplus power utilizing system | |
JPH11324794A (en) | Prime mover exhaust heat utilization system | |
JPH085173A (en) | Pulse tube refrigerator | |
JPH06147686A (en) | Low temperature generator using metal hydride | |
JP3059964B1 (en) | Solar powered refrigerator and its operation method | |
JP4546188B2 (en) | Waste heat utilization air conditioning system | |
JPH02301606A (en) | Cogeneration system | |
JPH0399169A (en) | Thermal driving type cold heat device utilizing metallic hydride | |
JPH0774710B2 (en) | Refrigerating and cooling system by combining Peltier element and hydrogen storage alloy | |
JP3863670B2 (en) | Air conditioner with ice storage tank | |
JP2647972B2 (en) | Heat utilization equipment | |
JPH04295108A (en) | Exhaust heat recovering power generataing device | |
JPS638391B2 (en) | ||
JPS58102052A (en) | Heat pump type water heating equipment |