JPH0394842A - Cation-exchange carbon body and its production - Google Patents

Cation-exchange carbon body and its production

Info

Publication number
JPH0394842A
JPH0394842A JP1229859A JP22985989A JPH0394842A JP H0394842 A JPH0394842 A JP H0394842A JP 1229859 A JP1229859 A JP 1229859A JP 22985989 A JP22985989 A JP 22985989A JP H0394842 A JPH0394842 A JP H0394842A
Authority
JP
Japan
Prior art keywords
cation
precursor
carbon body
resin
polycarbodiimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1229859A
Other languages
Japanese (ja)
Inventor
Kazuo Saito
一夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP1229859A priority Critical patent/JPH0394842A/en
Publication of JPH0394842A publication Critical patent/JPH0394842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain the cation-exchange carbon body with the material not deteriorated before an exchange group is introduced by heating polycarbodiimide resin to obtain a carbonized precursor, sulfating and oxidizing the precursor. CONSTITUTION:The polycarbodiimide resin contg. the homopolymer or copolymer consisting of at least one kind of repeating unit shown by the formula (-R-N=C=N-)n is produced from an org diisocyanate. The resin is dissolved in a solvent (e.g. tetrachloroethylene), and the soln. is formed into a desired shape such as film. The formed resin is heated at 500-1500 deg.C in vacuum or in an inert gas atmosphere to obtain a high strength carbonized precursor. The precursor is heated in concd. sulfuric acid or fuming sulfuric acid, sulfated and oxidized to obtain a cation-exchange body. The material is not deteriorated by this method before an exchange group is introduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリカルボジイミド樹脂を涼科として得られる
カチオン交換炭素体及びその製造力法に関するものであ
る. (従来の技術及び発明が解決しようヒする問題点) 従来より、石炭、木炭、炭素黒、炭素繊維等の炭素資材
料を硫酸で加熱処理すると、カチオン交換体となるこヒ
が知られている. 一方、フィルム状の炭素質材料としては、黒鉛フィルム
が作られていて、これを前記ヒ同様に処理すれば、カチ
オン交換体ヒなることるは容易に予想されるが、殆どl
. O O%の炭素よりなる黒鉛は、硫酸ヒ加熱処理す
るε、交換基が十分に導入される以前に材科目体が劣化
してしまうという欠点があった. 即ち、上記の事実から、特にカチオン交換炭素体の材料
ヒしては、100%炭素の材料よりも、或る程度水素原
子を含有する炭素質のものが適当な材料であると思われ
るのである.以上のようなここから、カチオン交換炭素
体作成のための材料として、適当量の水素原子を含む炭
素質フィルムの開発、提供が待たれていた. (問題点を解決するための手段) 本発明は、上述した従来技術の難点を解消するためにな
されたもので、本発明のカチオン交換炭素体は、ポリカ
ルボジイミド樹脂を加熱処理して得られる炭素化プレカ
ーサーを、硫酸化及び酸化して得られることを特徴とす
るものであり、又2その製造方法は、ポリカルボジイミ
ド樹脂を加熱処理して炭素化プレカーサーとなし、該炭
素化プレカーサーを硫酸化及び酸化することを特徴ヒす
るものである. 即ち、本発明の発明者らは、ポリ力ルポジイミド樹脂を
、例えば真空中或は不活性気体雰囲気中で500乃至1
、500℃に加熱処理するヒ強度の高い炭素化プレカー
サーになるここ、及び、この炭素化プレカーサーを、例
えば濃硫酸や発煙硫酸中で100乃至250℃の温度に
加熱して硫酸化及び酸化すると、カチオン交換炭素体に
なることを見出して本発明を完成した. 以下本発明について更に詳細に説明する.本発明におい
て使用きれるポリカルボジイミド樹脂それ自体は、既知
のもの或は既知のものと同様にして製造するここができ
るものであって[米国特許第2.941,966号明細
書:特公昭47−33297号公報: J.Org.C
hem.,28、2069−2075(1963) :
 Chemical RevNew. 1981.Vo
l.81,No.4.61.9−621等今照]、例え
ば、有機ジイソシアネ一トの脱二酸化炭素を伴う縮合反
応により容易に製造することができる. このポリカルボジイミド樹脂の製造に使用される有機ジ
イソシアネートは、脂肪系、脂環式系、芳香族系、芳香
一脂肪族系等いずれのタイプのものであってもよく、こ
れらは単独で用いても、又、2種以上組合せて用いて共
重合体としてもよい. 而して、本発明の方法において使用されるポリ力ルポジ
イミド樹脂には、式 (−R−N=C=N−),1  (1)で示される少な
くとも1種の繰り返し単位からむる単独共重合体又は共
重合体が包含され、又,上記式(1)における有機ジイ
ソシアネート残基Rとしては、数あるものの中でもとり
わけ芳香族ジイソシアネート残基が好適である[ここで
有機ジイソシアネート残基とは、有機ジイソシアネート
分子から2つのイソシアネート基(NCO)を除いた残
りの部分をいう〕. 又、ポリカルボジイミド化のための触媒については、特
に制限がな《、従来より使用きれている1−フェニル−
2−ホスホレンー1−オキシド、3−メチル−2−ホス
ホレン−1−オキシド、1−エトルー3−メチル−2−
ホスホレン−1−オキシド、1−エチル−2−ホスホレ
ン−1−オキシド、或はこれらの3−ホスホレン異性体
等のホスホレンオキシドを例示するこヒができる. このようにして得られるポリ力ルポジイミド樹脂の具体
例ヒしては次のものを挙げるこヒができる. (本頁以下余白) 上記各式において、重合度nは!ロー10, 000の
範囲内、好ましくは50−5, 000の範囲である.
尚、前記ポリ力ルポジイミド樹脂の端末は、モノイソシ
アネート等を用いて封止されていてもよく、以上説明し
たポリカルボジイミド樹脂は、溶液のままの状態で、或
は、溶液から沈殿させた粉末として得ることができる. 次に、このよう番こして得たポリ力ルポジイミド樹脂を
フィルム状等の所望の形状に成形する.成形するには、
例えば、ポリカルホジイミド樹脂を重合終了後の溶液の
まま、或は一旦粉末として得てから、溶媒に溶解した溶
液ヒし、この溶液を、例えば平滑なガラス板上等にキャ
ストした後、.溶媒を除去する方法等を採ればよい.こ
の溶媒としては、テトラクロロエチレン、Eリクロロエ
チレン、テトラヒドロフラン、ジオキサン、モノクロロ
ベンゼン、ジクロロベンゼン、ジメチルホルムアミド、
N−メチル−2−ビロリドン、ジメチルアセトアミド、
ジメチルスルフオキシド等を使用することができる.. 又、粉末の場合は、圧縮成形、ロール成形、射出成形,
トランスファー戊形等によってもよい.これらにより成
形体として厚み0. 1mm−3mm程度のものを容易
に得ることができる.そして、上記のような方法で製造
成形したポリカルボジイミド樹脂を加熱して、炭素化プ
レカーサ〜とする.この場合の加熱条件としては、既に
説明したように、真空中或は窒素ガス等の不活性気体雰
囲気中で、500乃至l.500″CMいう温度範囲を
例示することができる. 最後に、上記のようにして得られた炭素化プレカーサー
を、硫酸化及び酸化することにより、本発明カチオン交
換炭素体が得られるここになるが、この硫酸化及び酸化
の工程は、例えば硫酸や発煙硫酸中で上記炭素化プレカ
ーサーを加熱すれば良い. (実施例) 以下に本発明の実施例について述べる.A.ポリカルボ
ジイミド樹脂フイルムの製造2.1−1−リレンジイソ
シアネート/2,6トリレンミンイソシアネート(80
/20)の混合物54gを、テトラクロ口エチレン50
0m1中で、カルボジイミド化触媒(1−フ山ニルー3
−メチルホスフォレン才キサイド)0412ge共に、
120℃で4時間反応さセ、ポリカルボジイミド溶液を
得た.この溶液から乾式法により厚さ100μmのポリ
力ルポジイミドフィルムを得た. D,炭素化処理 上記ポリカルボジイミドフィルムを、室素気流中で所定
温度まで、5℃/分の昇温速度で加熱し、炭素化プレカ
ーサーを得た. 以下に、処理番号と処理温度を示す. B−1     500℃ B−2     700℃ 13 − 3     9 0 0℃ B−4   1,000℃ B−5   1.500℃ B−6     未処理 B−7  2。000℃ C.カチオン交換炭素体化 上記の炭素化プレカーサーを、硫酸中で所定温度に加熱
した後、脱塩水で十分洗浄し、0.1%カセイソーダ溶
液を加えて、交換基をNa形にし、次いで4%塩酸溶液
でIJ形にし、脱塩水で十分洗浄し2た.24時間放置
した後、上澄液中に塩素イオンが認められなくなった時
点で洗浄を終了した, このようにして得られたカチオン交換炭素体につき、以
下の事項を測定した. 総交換容盟の測定: 風乾した試料1gをO.INカセイソ ーダ溶液100mlに入れ、48時間以上放置して、完
全にイオン交換を行なわせた.この上澄液中から20r
nLをビベットで取り、0。IN塩酸溶液で滴定した.
(指示薬:メチルレッド) 滴定値と、試料の絶乾量から総交換容量(m.eq/g
)を算出した. 強酸交換容量の測定: 風乾した試料1gを4%塩化ナLリウム溶液XOOrr
hlに入れ、48時間以上放置し、完全にイオン交換を
行なわせた.この上澄液20mlを、0.INカセイソ
ーダ溶液で滴定した(指示薬;メチルレツドーメチレン
ブルー混合)n この滴定値ヒ試料の絶乾盟から強酸交換容it (+n
eq/g)を算出した.弱酸交襖容ffi: 総交換容量と強酸交換容量との差を弱酸交換容t,?t
,た. 結果を以−:・の表1に示す. D.ポリカルポジイミド樹脂フィルムの製造メチレンジ
フ品ニルジイソシアネート50gを、テトラクロロエチ
レン820ml中で、カルボジイミド化触媒(1−フェ
ニル−3−メチルホスフォレン才キサイド)0.13g
と共に、120℃で6時間反応させた.この溶液な室温
に冷却するこヒにより、ポリカルボジイミドが沈殿した
. この沈殿物を濾過し、l00℃で4時間乾燥し、ポリ力
ルポジイミド粉末を得た.この粉末を、プレス温度18
0℃、プレス圧s o kg/cm”でプレス成形し、
厚さ100μmのポリカルボジイミドフイルムを作成し
た. 作成したフイルムをBa同様な方法で炭素化した. 以下に、処理番号と処理温度を示す. D−6    500℃ D−7    700℃ D−8  1,000℃ D−9  2,000℃ 得られたフイルムなCと同様な方法でカチオン交換炭素
フイルム化した. 結果を以下の表2に示す. (本頁以下余白) (発明の効果) 以上のように、本発明はポリ力ルポジイミド樹脂を加熱
処理した炭素化プレヵーサーを使用しているから、本来
的に高い強度を具えており、しかも、或る程度の水素原
子を含んでいるため、硫酸化及び酸化により、劣化する
ことなしに交換基が十分に導入され、優れたカチオン交
換能を有しているものである.
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a cation-exchange carbon body obtained from a polycarbodiimide resin and a method for producing the same. (Problems to be solved by conventional technology and invention) It has been known that when carbon materials such as coal, charcoal, carbon black, and carbon fiber are heat-treated with sulfuric acid, they become cation exchangers. .. On the other hand, as a film-like carbonaceous material, a graphite film is made, and if it is treated in the same manner as above, it is easily expected that it will become a cation exchanger.
.. Graphite, which is composed of O O% carbon, has the disadvantage that when heat treated with sulfuric acid arsenic, the material body deteriorates before sufficient exchange groups are introduced. In other words, from the above facts, it seems that carbonaceous materials containing a certain amount of hydrogen atoms are more appropriate materials than 100% carbon materials, especially for cation-exchanged carbon bodies. .. Based on the above, the development and provision of a carbonaceous film containing an appropriate amount of hydrogen atoms as a material for creating cation-exchanged carbon bodies has been awaited. (Means for Solving the Problems) The present invention has been made to solve the above-mentioned difficulties of the prior art. It is characterized in that it is obtained by sulfating and oxidizing a carbonized precursor, and its manufacturing method includes heating a polycarbodiimide resin to form a carbonized precursor, and sulfating and oxidizing the carbonized precursor. It is characterized by its ability to oxidize. That is, the inventors of the present invention have prepared a polypropodiimide resin in a vacuum or in an inert gas atmosphere at a temperature of 500 to 1
This becomes a carbonized precursor with high strength when heated to 500°C, and when this carbonized precursor is heated to a temperature of 100 to 250°C in concentrated sulfuric acid or fuming sulfuric acid, for example, to sulfate and oxidize, The present invention was completed by discovering that it can become a cation-exchanged carbon body. The present invention will be explained in more detail below. The polycarbodiimide resin itself that can be used in the present invention is a known one or one that can be produced in a similar manner to a known one [U.S. Pat. Publication No. 33297: J. Org. C
hem. , 28, 2069-2075 (1963):
Chemical RevNew. 1981. Vo
l. 81, No. 4.61.9-621 etc.], for example, can be easily produced by a condensation reaction of an organic diisocyanate with removal of carbon dioxide. The organic diisocyanate used in the production of this polycarbodiimide resin may be of any type, such as aliphatic, alicyclic, aromatic, or mono-aromatic, and these may be used alone. Alternatively, two or more types may be used in combination to form a copolymer. Therefore, the polylupodiimide resin used in the method of the present invention includes a homopolymer comprising at least one repeating unit represented by the formula (-R-N=C=N-), 1 (1). Aromatic diisocyanate residues are particularly suitable as the organic diisocyanate residue R in the above formula (1). [Here, the organic diisocyanate residue refers to Refers to the remaining portion after removing two isocyanate groups (NCO) from a diisocyanate molecule]. In addition, there are no particular restrictions on the catalyst for polycarbodiimidation, and 1-phenyl-
2-phospholene-1-oxide, 3-methyl-2-phospholene-1-oxide, 1-ethru-3-methyl-2-
Examples include phospholene oxides such as phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, and 3-phospholene isomers thereof. Specific examples of the polypropylene resin obtained in this manner are as follows. (Margin below this page) In each of the above formulas, the degree of polymerization n is! Low in the range of 10,000, preferably in the range of 50-5,000.
Note that the terminals of the polycarbodiimide resin may be sealed using monoisocyanate or the like, and the polycarbodiimide resin described above can be used as a solution or as a powder precipitated from the solution. Obtainable. Next, the polypropylene resin obtained by straining in this manner is molded into a desired shape such as a film. To form,
For example, a polycarphodiimide resin may be obtained as a solution after completion of polymerization or as a powder, and then dissolved in a solvent, and this solution is cast, for example, on a smooth glass plate. Any method that removes the solvent may be used. Examples of the solvent include tetrachloroethylene, E-lichloroethylene, tetrahydrofuran, dioxane, monochlorobenzene, dichlorobenzene, dimethylformamide,
N-methyl-2-pyrrolidone, dimethylacetamide,
Dimethyl sulfoxide etc. can be used. .. In addition, in the case of powder, compression molding, roll molding, injection molding,
It is also possible to use a transfer method, etc. With these, the thickness of the molded product is 0. You can easily obtain one with a size of about 1mm to 3mm. The polycarbodiimide resin produced and molded by the method described above is then heated to form a carbonized precursor. In this case, the heating conditions are as described above, in a vacuum or in an inert gas atmosphere such as nitrogen gas, at a heating temperature of 500 l. For example, a temperature range of 500''CM can be exemplified.Finally, the cation-exchanged carbon body of the present invention can be obtained by sulfating and oxidizing the carbonized precursor obtained as described above. The sulfation and oxidation steps may be carried out by heating the carbonized precursor in, for example, sulfuric acid or fuming sulfuric acid. (Example) Examples of the present invention will be described below. A. Production of polycarbodiimide resin film 2 .1-1-lylene diisocyanate/2,6 tolylenmine isocyanate (80
54 g of a mixture of /20) and 50 g of tetrachlorethylene
In 0ml, carbodiimidization catalyst (1-F Mt. Ni-3
- Methylphosphorene dioxide) 0412ge together,
After reacting at 120°C for 4 hours, a polycarbodiimide solution was obtained. From this solution, a 100 μm thick polypropylene diimide film was obtained by a dry method. D. Carbonization Treatment The above polycarbodiimide film was heated to a predetermined temperature in a room air stream at a heating rate of 5° C./min to obtain a carbonized precursor. The processing numbers and processing temperatures are shown below. B-1 500°C B-2 700°C 13-3900°C B-4 1,000°C B-5 1.500°C B-6 Untreated B-7 2.000°C C. Cation exchange carbonization The above carbonization precursor was heated to a predetermined temperature in sulfuric acid, washed thoroughly with demineralized water, added with 0.1% caustic soda solution to convert the exchange group into Na form, and then 4% hydrochloric acid It was made into an IJ shape with a solution and thoroughly washed with demineralized water. After being left for 24 hours, washing was completed when no chloride ions were observed in the supernatant. The following items were measured for the cation-exchanged carbon body thus obtained. Measurement of total exchange volume: 1 g of air-dried sample was added to O. The sample was placed in 100 ml of IN caustic soda solution and left for more than 48 hours to allow complete ion exchange. 20r from this supernatant
Take nL with bibet and 0. Titrated with IN hydrochloric acid solution.
(Indicator: Methyl Red) From the titration value and the absolute dry weight of the sample, the total exchange capacity (m.eq/g
) was calculated. Measurement of strong acid exchange capacity: 1 g of air-dried sample was added to 4% sodium chloride solution XOOrr
HL and left for over 48 hours to allow complete ion exchange. 20 ml of this supernatant was added to 0.0 ml of this supernatant liquid. Titrated with IN caustic soda solution (indicator: mixed with methyl red and methylene blue) n This titration value is the sample's bone dry to strong acid exchange capacity (+n
eq/g) was calculated. Weak acid exchange capacity ffi: The difference between the total exchange capacity and the strong acid exchange capacity is the weak acid exchange capacity t,? t
,Ta. The results are shown in Table 1 below. D. Production of polycarposiimide resin film 50 g of methylene diisocyanate was added to 0.13 g of carbodiimidization catalyst (1-phenyl-3-methylphosphorene dioxide) in 820 ml of tetrachloroethylene.
The reaction was then carried out at 120°C for 6 hours. Polycarbodiimide was precipitated by cooling this solution to room temperature. This precipitate was filtered and dried at 100°C for 4 hours to obtain polylupodiimide powder. This powder was pressed at a temperature of 18
Press molded at 0°C and press pressure s o kg/cm.
A polycarbodiimide film with a thickness of 100 μm was created. The produced film was carbonized in the same manner as Ba. The processing numbers and processing temperatures are shown below. D-6: 500°C D-7: 700°C D-8: 1,000°C D-9: 2,000°C A cation-exchanged carbon film was formed in the same manner as the obtained film C. The results are shown in Table 2 below. (Margins below this page) (Effects of the invention) As described above, since the present invention uses a carbonized precursor made by heat-treating polypropylene posiimide resin, it inherently has high strength. Because it contains a certain amount of hydrogen atoms, exchange groups can be sufficiently introduced through sulfation and oxidation without deterioration, and it has excellent cation exchange ability.

Claims (1)

【特許請求の範囲】 1 ポリカルボジイミド樹脂を加熱処理して得られる炭
素化プレカーサーを、硫酸化及び酸化して得られること
を特徴とするカチオン交換炭素体。 2 ポリカルボジイミド樹脂は、一般式 (−R−N=C=N−)_n で示される少なくとも一種の繰返し単位からなる単独重
合体又は共重合体である請求項1記載のカチオン交換炭
素体。 3 一般式 (−R−N=C=N−)_n において、Rが芳香族ジイソシアネート残基であること
を特徴とする請求項2記載のカチオン交換炭素体。 4 炭素化プレカーサーは、ポリカルボジイミド樹脂を
真空中或は不活性気体雰囲気中で 500乃至1,500℃に加熱処理して得られるもので
ある請求項1記載のカチオン交換炭素体。 5 炭素化プレカーサーがフィルム状に成形されたもの
である請求項1記載のカチオン交換炭素体。 6 ポリカルボジイミド樹脂を加熱処理して炭素化プレ
カーサーとなし、該炭素化プレカーサーを硫酸化及び酸
化することを特徴とするカチオン交換炭素体の製造方法
。 7ポリカルボジイミド樹脂は、一般式 (−R−N=C=N−)_n で示される少なくとも一種の繰返し単位からなる単独重
合体又は共重合体である請求項6記載のカチオン交換炭
素体の製造方法。 8 一般式 (−R−N=C=N−)_n において、Rが芳香族ジイソシアネート残基であること
を特徴とする請求項7記載のカチオン交換炭素体の製造
方法。 9 炭素化プレカーサーは、ポリカルボジイミド樹脂を
真空中或は不活性気体雰囲気中で 500乃至1,500℃に加熱処理して得られるもので
ある請求項6記載のカチオン交換炭素体の製造方法。 10 炭素化プレカーサーがフィルム状に成形されたも
のである請求項6記載のカチオン交換炭素体の製造方法
[Scope of Claims] 1. A cation exchange carbon material obtained by sulfating and oxidizing a carbonization precursor obtained by heat treating a polycarbodiimide resin. 2. The cation exchange carbon body according to claim 1, wherein the polycarbodiimide resin is a homopolymer or copolymer consisting of at least one type of repeating unit represented by the general formula (-R-N=C=N-)_n. 3. The cation-exchanged carbon material according to claim 2, wherein in the general formula (-R-N=C=N-)_n, R is an aromatic diisocyanate residue. 4. The cation-exchanged carbon body according to claim 1, wherein the carbonized precursor is obtained by heat-treating a polycarbodiimide resin at 500 to 1,500°C in a vacuum or an inert gas atmosphere. 5. The cation exchange carbon body according to claim 1, wherein the carbonization precursor is formed into a film. 6. A method for producing a cation-exchanged carbon body, which comprises heat-treating a polycarbodiimide resin to form a carbonization precursor, and sulfating and oxidizing the carbonization precursor. 7. Production of a cation-exchanged carbon body according to claim 6, wherein the polycarbodiimide resin is a homopolymer or copolymer consisting of at least one type of repeating unit represented by the general formula (-R-N=C=N-)_n Method. 8. The method for producing a cation-exchanged carbon body according to claim 7, wherein in the general formula (-R-N=C=N-)_n, R is an aromatic diisocyanate residue. 9. The method for producing a cation-exchanged carbon body according to claim 6, wherein the carbonized precursor is obtained by heat-treating the polycarbodiimide resin at 500 to 1,500°C in a vacuum or an inert gas atmosphere. 10. The method for producing a cation-exchanged carbon body according to claim 6, wherein the carbonization precursor is formed into a film.
JP1229859A 1989-09-05 1989-09-05 Cation-exchange carbon body and its production Pending JPH0394842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1229859A JPH0394842A (en) 1989-09-05 1989-09-05 Cation-exchange carbon body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229859A JPH0394842A (en) 1989-09-05 1989-09-05 Cation-exchange carbon body and its production

Publications (1)

Publication Number Publication Date
JPH0394842A true JPH0394842A (en) 1991-04-19

Family

ID=16898814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229859A Pending JPH0394842A (en) 1989-09-05 1989-09-05 Cation-exchange carbon body and its production

Country Status (1)

Country Link
JP (1) JPH0394842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153762A (en) * 2005-12-01 2007-06-21 Nippon Oil Corp Method for hydrating olefin
JP2010180074A (en) * 2009-02-03 2010-08-19 Nitto Shoji Kk Carbon shaped body and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153762A (en) * 2005-12-01 2007-06-21 Nippon Oil Corp Method for hydrating olefin
JP2010180074A (en) * 2009-02-03 2010-08-19 Nitto Shoji Kk Carbon shaped body and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US7029603B2 (en) Conductive polymeric nanocomposite materials
WO2012036034A1 (en) Amidoxime-modified polyacrylonitrile porous medium
CN109852057B (en) Preparation method of polyphenylene sulfide/graphene quantum dot composite material
CN110040732B (en) Alkali metal modified porous carbon material and preparation method and application thereof
CA2004135C (en) Thin carbon plate suitable for use as fuel cell separator
JPH02292316A (en) High-mw polycarbodiimide solution and its production
Lin et al. Direct grafting of tetraaniline via perfluorophenylazide photochemistry to create antifouling, low bio-adhesion surfaces
CN108658073A (en) A method of improving activated carbon adsorption performance
JPH0394842A (en) Cation-exchange carbon body and its production
CN114891218A (en) High-performance polyether sulfone resin and preparation method and application thereof
US5180529A (en) Process for producing a thin carbon plate
US20060125131A1 (en) Carbonaceous porous material and method of manufacturing same
JPH0354109A (en) Active carbon and production thereof
US5152941A (en) High-density vitreous carbon material and process for producing the same
CN106380601A (en) Purifying method for polyphenylene sulfide with high molecular weight
JP2805088B2 (en) Speaker diaphragm and manufacturing method thereof
CN108456421A (en) A kind of preparation method of polyimides/modified graphene oxide composite material
JPH0393106A (en) Electric conductor and its manufacture
KR102490321B1 (en) Method for preparing anion exchange membrane using anion conducting ionomer obtained via chemical modification and anion exchange membrane prepared by the same method
RU2790835C1 (en) Method for reduction of graphene oxide with iodine
JPH0232121A (en) Production of poly-p-phenylene vinylene
JPS63166436A (en) Production of metallic scavenger
JPH04268343A (en) Production of flame-resistant film and flame-resistant film produced thereby
JPH0632677A (en) Porous carbonaceous material and its production
JPS61152739A (en) Production of porous membrane of ethylene-tetrafluoroethylene copolymer