JPH0394044A - Intermetallic compound precipitation strengthened-type high strength powder high cr steel - Google Patents

Intermetallic compound precipitation strengthened-type high strength powder high cr steel

Info

Publication number
JPH0394044A
JPH0394044A JP23004289A JP23004289A JPH0394044A JP H0394044 A JPH0394044 A JP H0394044A JP 23004289 A JP23004289 A JP 23004289A JP 23004289 A JP23004289 A JP 23004289A JP H0394044 A JPH0394044 A JP H0394044A
Authority
JP
Japan
Prior art keywords
steel
intermetallic compound
strength powder
high strength
compound precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23004289A
Other languages
Japanese (ja)
Inventor
Masayuki Fujiwara
優行 藤原
Toshio Nishida
俊夫 西田
Moriyasu Tokiwai
守泰 常磐井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Kobe Steel Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Kobe Steel Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP23004289A priority Critical patent/JPH0394044A/en
Publication of JPH0394044A publication Critical patent/JPH0394044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the high strength powder high Cr steel excellent in ductility and toughness by preparing an intermetallic compound precipitation strengthened-type high strength powder high Cr steel contg. specified ratios of C, Cr, Mo and Ni and having a ferrite single phase structure. CONSTITUTION:An intermetallic compound precipitation strengthened-type high strength powder high Cr steel contg., by weight, <=0.03% C and 9 to 18% Cr, furthermore contg. 6 to 15% Mo, moreover contg., at need, <=2% Ni and the balance Fe with inevitable impurities and having a ferrite single phase structure is prepd. In this way, the high strength powder high Cr steel showing excellent capacity as the one for a fast return reactor fuel cladding pipe or the like can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、高強度.延性及び靭性に優れ、特に高速炉燃
料被覆管用に適ずる金属間化合物析出強化型高強度粉末
高Cr鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Fields] The present invention is applicable to high strength. The present invention relates to an intermetallic compound precipitation-strengthened high-strength powder high-Cr steel that has excellent ductility and toughness and is particularly suitable for fast reactor fuel cladding tubes.

[従来の技術及び 発明が解決しようとする課題] 実用111]の高速炉では、経済性向上のため、炉心燃
料の取り替え期間をできるたり長く延はずことか望まれ
ており、この燃料の長寿命化のためには、長期間の使用
に耐える燃料被覆管材料の開発が要望されている。
[Problems to be Solved by Prior Art and Inventions] In the fast reactors of Practical 111, it is desired to extend the replacement period of core fuel as long as possible in order to improve economic efficiency, and it is desirable to extend the replacement period of core fuel as much as possible. To achieve this goal, there is a need to develop fuel cladding materials that can withstand long-term use.

般的に、燃料″$.覆管の寿命は主にクリープ強度と中
性子照射に対する耐スエリング性とによって支配される
ものである。開発初期の高速炉の場合、燃料被覆利料と
して316ステンレス鋼等のオーステナイト系鋼か使用
されていたが、オーステナイト系鋼は優れたクリープ強
度を存ずるもののスエリングか大きいため、これを用い
て燃判の長寿命化を図ることは困難である。
Generally, the life of fuel cladding is mainly controlled by creep strength and swelling resistance against neutron irradiation.In the case of fast reactors in the early stages of development, 316 stainless steel etc. are used as fuel cladding material. Austenitic steels have been used in the past, but although austenitic steels have excellent creep strength, they swell to a large extent, making it difficult to use them to extend the lifespan of firewood.

方、フェライト系鋼は、オーステナイ1一系鋼に比へ、
スエリングか著しく小さいため、長寿命用の被覆材料と
してイ〒望視されている。しかし、一般にフエライ1・
系鋼(1オーステナイ1・系鋼j:りもクリープ強度か
低いので、この点を改善することがフェライト系鋼を燃
料被覆管材料として実用化し、燃料の長寿命化を図る上
での重要課題となっている。
On the other hand, ferritic steel is compared to austenite 11 steel,
Because of its extremely low swelling, it is viewed as a desirable coating material for long life. However, in general,
Since ferritic steel (1 Austenite 1/Series J) has a low creep strength, improving this point is an important issue in commercializing ferritic steel as a fuel cladding material and extending the life of the fuel. It becomes.

従来より、フェライト系鋼のクリープ強度を改善する方
法として、■炭窒化物による析出強化法、■金属間化合
物による析出強化法、■酸化物粒子を予め分散させるこ
とによる強化法、或はこれらの■ないし■を組み合わせ
る強化法などが検討されている。このうち、■による金
属間化合物析出強化鋼は、■による炭窒化物析出強化型
鋼に比べて優れたクリープ破断強度が得られ、また、析
出物を固溶したままで加工できるので、■による酸化物
分散強化型鋼に比べて加工性に優れ、溶接性も優れてい
るなどの特徴を有している。しかし、このタイプの材料
は使用中に金属間化合物が析出して延性,靭性を劣化さ
せるという欠点がある。
Conventionally, methods for improving the creep strength of ferritic steel include: ■ Precipitation strengthening method using carbonitrides, ■ Precipitation strengthening method using intermetallic compounds, ■ Strengthening method by predispersing oxide particles, or these methods. Strengthening methods that combine ■ or ■ are being considered. Among these, intermetallic precipitation strengthened steel produced by ■ has superior creep rupture strength compared to carbonitride precipitation strengthened steel produced by It has features such as superior workability and weldability compared to dispersion strengthened steel. However, this type of material has the disadvantage that intermetallic compounds precipitate during use, deteriorating ductility and toughness.

また、通常の溶解.鍛造工程で製造する材料(以下、イ
ンゴット材と呼ぶ)では、結晶粒が大きく延性,靭性が
悪い。延性.靭性改善のためNiを2%以上加えると照
射中に部分的にオーステナイトを形成してスエリングを
起こす。そこで、合金粉末を固化成型した材料(以下P
/M材と呼ぶ)を用いると結晶粒が細かくなり、Niを
多量に加えなくても延性,靭性が改善される。
Also, normal dissolution. Materials manufactured in the forging process (hereinafter referred to as ingot materials) have large crystal grains and poor ductility and toughness. Ductility. When 2% or more of Ni is added to improve toughness, austenite is partially formed during irradiation, causing swelling. Therefore, we developed a material made by solidifying and molding alloy powder (hereinafter referred to as P
/M material), the crystal grains become finer and the ductility and toughness are improved without adding a large amount of Ni.

本発明は、上記案件の係わるフェライト鋼の欠点を解消
し、使用中の脆化を軽減することができ、しかもクリー
プ破断強度が優れていると共に加工性.溶接性に優れて
いる金属間化合物析出強化型鋼を提供することを目的と
するものである。
The present invention eliminates the drawbacks of the ferritic steel involved in the above-mentioned case, can reduce embrittlement during use, has excellent creep rupture strength, and has excellent workability. The object of the present invention is to provide an intermetallic compound precipitation-strengthened steel that has excellent weldability.

[訓題を解決するための手段] 上記目的を達成することのできた本発明に係る高強度粉
末高Cr#4の構成は、C≦0.03%及びCr:9 
〜18%含有し、さらに、Mo:6〜15%.Ni≦2
%.残部がFe及び不可避不純物からなり、組織がフェ
ライト単層の金属間化合物析出強化型鋼よりなるところ
に要旨を有するものである。
[Means for solving the problem] The composition of the high-strength powder high Cr #4 according to the present invention that can achieve the above object is as follows: C≦0.03% and Cr:9
~18%, and further contains Mo: 6~15%. Ni≦2
%. The main feature is that the remainder consists of Fe and unavoidable impurities, and the structure is an intermetallic compound precipitation strengthened steel with a single layer of ferrite.

[作用コ 本発明は、まず、先の提案に係わる耐熱鋼がフェライト
鋼であり、使用中に金属間化合物の析出が生ずることを
利用して、合金粉末を固化成型し結晶粒を微細化し、延
性,靭性を向上することを試みた。
[Function] The present invention first takes advantage of the fact that the heat-resistant steel according to the above proposal is a ferritic steel, and precipitation of intermetallic compounds occurs during use, and solidifies and molds the alloy powder to refine the crystal grains. An attempt was made to improve ductility and toughness.

第1.2図として、1020℃で溶体化IA埋したイン
ゴット材およびP/M材金属組織を示す図面代用光学顕
微鏡写真を示す。この図からも明らかである様に、P/
M材はインゴット材に比べて結晶粒が著しく微細化して
いるのがわかる。延性,靭性の改善はMo,Ti,P,
Mn,Niの偏析とも考えられるが,EPMAによる分
析結果から、Mo,Ti,P,Mn,Niの偏析は認め
られず、延性,靭性の改善は結晶粒の微細化によるもの
と考えられる。
FIG. 1.2 shows an optical micrograph as a substitute for a drawing showing the metal structure of an ingot material and a P/M material embedded in solution IA at 1020°C. As is clear from this figure, P/
It can be seen that the crystal grains of the M material are significantly finer than those of the ingot material. Improvement of ductility and toughness is achieved by Mo, Ti, P,
Although it may be thought that segregation of Mn and Ni occurs, the analysis results by EPMA show that no segregation of Mo, Ti, P, Mn, and Ni is observed, and it is considered that the improvement in ductility and toughness is due to the refinement of crystal grains.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

C : Cは低いほどフェライトの靭性を良好にするので、C量
は可能な限り低い方がよい。また、C量が0.03%を
超えると衝撃値,伸び及び絞りが著しく低下するので、
C量の上限は0.03%とする。
C: The lower the C content, the better the toughness of the ferrite, so the lower the C content, the better. In addition, if the C content exceeds 0.03%, the impact value, elongation, and area of area will decrease significantly.
The upper limit of the amount of C is 0.03%.

Cr: 燃料被覆管の製造中もしくは組立時に錆が発生しないこ
とはメンテナンス上重要な問題であり、そのためには、
Crfifが多いほど錆発生が低減される。またCr量
の増加はFe2Moの固溶限を下げるため、析出するF
e2Moの量が増加し、クリープ破断強度が改善される
。Crの耐食性を考慮して、Cr量の下限は9%とする
。一方、Cr量が多すぎるとMoの固溶限も大幅に低下
するため、偏析しやすくなる。
Cr: Preventing rust from occurring during the manufacturing or assembly of fuel cladding tubes is an important maintenance issue, and for this purpose,
The more Crfif there is, the more rust generation is reduced. In addition, an increase in the amount of Cr lowers the solid solubility limit of Fe2Mo, so the precipitated F
The amount of e2Mo increases and the creep rupture strength is improved. Considering the corrosion resistance of Cr, the lower limit of the Cr content is set to 9%. On the other hand, if the amount of Cr is too large, the solid solubility limit of Mo will also be significantly lowered, making it easier to segregate.

M O : Moを添加すると、Fe2MOの析出によるクリープ破
断強度が著しく増大する。しかしMoを多く添加すると
靭性が低下し、たとえP/M材でも脆化するので、その
上限を15%とする。
M O: When Mo is added, the creep rupture strength due to the precipitation of Fe2MO increases significantly. However, if a large amount of Mo is added, the toughness decreases and even P/M material becomes brittle, so the upper limit is set at 15%.

方、Mo量6%以下では、十分な強度が得難いので、こ
れを下限とする。
On the other hand, if the Mo content is 6% or less, it is difficult to obtain sufficient strength, so this is set as the lower limit.

Ni: Niは延性,靭性の改善に効果を示すが、2%をI11
4えるNiの添力lは、高温,照射中に部分的にオース
テナイトを生成しスエリングを起こすのでNiの添加愈
は2%以一トとする。
Ni: Ni is effective in improving ductility and toughness, but 2% is
Since the addition of Ni (1) causes swelling due to partial formation of austenite during high temperature and irradiation, the addition amount of Ni is set to 2% or more.

なお、以上の元素を必須元素とするが、通常、高Cr鋼
に不純物として含まれる他の元素も不純物範囲内で許容
される。例えば、Ti.Nbなとの1%以下での含有は
、Cの固定または結晶粒の微細化のために利用されてい
るが、これも本発明の木質を侵ずものではない。
Although the above elements are essential elements, other elements normally contained as impurities in high Cr steel are also allowed within the impurity range. For example, Ti. The content of Nb or the like in an amount of 1% or less is used for fixing C or refining crystal grains, but this does not affect the wood quality of the present invention.

[実施例] 又殿里よ 12%Cr,8%Mo,0.01%Cの組成の鋼を押出
カプセルに充填し、脱気,密封処理を行なった後、11
00℃で30φの棒材に押し出ず。その後、1050℃
で熱間圧延を行ない、厚さ10mmの板材にし、102
0℃水冷にて溶体化処理を行なう。この材料と同じ成分
のインゴット材を作り延性,靭性の比較をシャルビー衝
撃試験と引張試験で行なった。結果はP/M材の遷移温
度が33℃,インゴット材の遷移i品度が99℃であり
、P/MオAの方が靭性は明らかに良好である。
[Example] After filling an extruded capsule with steel having a composition of 12% Cr, 8% Mo, and 0.01% C, and performing deaeration and sealing treatment,
It did not extrude into a 30φ bar at 00℃. After that, 1050℃
Hot rolled at 10mm to make a plate with a thickness of 10mm.
Solution treatment is performed with water cooling at 0°C. An ingot material with the same composition as this material was made and its ductility and toughness were compared using Charby impact tests and tensile tests. The results show that the transition temperature of the P/M material is 33°C, and the transition i quality of the ingot material is 99°C, and the toughness of P/M or A is clearly better.

実施例2 12%C rにMOを3% 7%,8%.10%添加し
たインゴット利と、12Cr%にMOを7%,8%,1
2%,15%添加したP/M材を作製し、引張試験を行
なった。引張試験で得た伸びの結果を第3図に示す。M
O量6%以上では明らかにP/M材の方が延性に優れて
いることがわかる。
Example 2 12% Cr with 3% MO, 7%, 8%. Ingot yield with 10% addition and 12Cr% with MO of 7%, 8%, 1
P/M materials containing 2% and 15% were prepared and subjected to a tensile test. Figure 3 shows the elongation results obtained in the tensile test. M
It can be seen that the P/M material clearly has superior ductility when the O content is 6% or more.

実』0』互 12%Cr,x%Mo,0.01%Cr,2.0%Ni
の組威の合金粉末を上記の方法て作製し、クリープ破断
強度を行なった。第4図に650℃,1000時間クリ
ープ破断強度の結果を示す。
12%Cr, x%Mo, 0.01%Cr, 2.0%Ni
An alloy powder with the same composition was prepared using the above method, and its creep rupture strength was measured. Figure 4 shows the results of creep rupture strength at 650°C for 1000 hours.

Moiが6%以上では十分なクリープ破断強度を有して
いるのがわかる。
It can be seen that when Moi is 6% or more, sufficient creep rupture strength is obtained.

実施例4 12%Cr,7%Mo,Q.Ql%C,x%Ni(0<
x<2)の組成のインゴット材を作製し、シャルビー衝
撃試験を行なった結果を第5図に示ず。Ni量と共に遷
移温度が低下しておりNiにより靭性が改善されている
のがわかる。この傾向はP/M材に対してもいえる。1
2%Cr,8%Mo,0.01%C,2.0%及びO%
Niの組成のP/M材を作製し、シャルビー衝撃試験を
行なった結果を第6図に示す。N1により、靭性が改善
されることがわかる。
Example 4 12%Cr, 7%Mo, Q. Ql%C, x%Ni(0<
An ingot material having a composition of x<2) was prepared and subjected to a Charby impact test. The results are not shown in FIG. It can be seen that the transition temperature decreases with the amount of Ni, and the toughness is improved by Ni. This tendency also applies to P/M materials. 1
2%Cr, 8%Mo, 0.01%C, 2.0% and O%
A P/M material having a composition of Ni was prepared and subjected to a Charby impact test. The results are shown in FIG. It can be seen that N1 improves toughness.

[発明の効果コ 木発明は以上の様に構成されており、CCr,Moおよ
びNiの各含有率を特定すると共に結晶組織をフェライ
ト単相に特定し、且つ粉末固化成形タイプとすることに
より、フェライト鋼の有する優れた耐スエリング性を維
持しつつ、結晶粒を微細化して延性・靭性を改善し、し
かも高強度で、高速炉燃料被覆管用等として優れた性能
を示す金属間化合物析出強化型高Cr鋼材料を提供し得
ることになった。
[Effects of the Invention] The invention is constructed as described above, and by specifying the respective contents of CCr, Mo and Ni, specifying the crystal structure as a single ferrite phase, and making it a powder solidification molding type, An intermetallic compound precipitation-strengthened type that maintains the excellent swelling resistance of ferritic steel, improves ductility and toughness by refining grains, and has high strength and excellent performance for fast reactor fuel cladding tubes, etc. It is now possible to provide high Cr steel materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図はインゴット材およびP/M材の断面金属組
織を示す図面代用顕微鏡写真、第3図は高Cr鋼のMO
含有率と伸び率の関係を示すグラフ、第4図は高Cr銅
のMO含有率とクリープ破断強度の関係を示すグラフ、
第5.6図はN1含有率と遷移温度の関係を示すグラフ
である。
Figures 1 and 2 are photomicrographs substituted for drawings showing the cross-sectional metallographic structure of ingot material and P/M material, and Figure 3 is MO of high Cr steel.
A graph showing the relationship between content and elongation rate, Figure 4 is a graph showing the relationship between MO content and creep rupture strength of high Cr copper,
Figure 5.6 is a graph showing the relationship between N1 content and transition temperature.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下同じ)、C≦0.03%及びCr
:9〜18%を含有し、更にMo:6〜15%を含有す
ると共に、残部がFe及び不可避不純物からなり、組織
がフェライト単相であることを特徴とする金属間化合物
析出強化型高強度粉末高Cr鋼。
(1) In weight% (the same applies below), C≦0.03% and Cr
: 9 to 18%, and further contains Mo: 6 to 15%, with the balance consisting of Fe and inevitable impurities, and the structure is a single ferrite phase. Powdered high Cr steel.
(2)上記(1)の鋼が他の成分としてNi≦2%を含
み、組織がフェライト単相であることを特徴とする金属
間化合物析出強化型高強度粉末高Cr鋼。
(2) An intermetallic compound precipitation-strengthened high-strength powder high-Cr steel, characterized in that the steel of (1) above contains Ni≦2% as other components and has a single-phase ferrite structure.
JP23004289A 1989-09-05 1989-09-05 Intermetallic compound precipitation strengthened-type high strength powder high cr steel Pending JPH0394044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23004289A JPH0394044A (en) 1989-09-05 1989-09-05 Intermetallic compound precipitation strengthened-type high strength powder high cr steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23004289A JPH0394044A (en) 1989-09-05 1989-09-05 Intermetallic compound precipitation strengthened-type high strength powder high cr steel

Publications (1)

Publication Number Publication Date
JPH0394044A true JPH0394044A (en) 1991-04-18

Family

ID=16901654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23004289A Pending JPH0394044A (en) 1989-09-05 1989-09-05 Intermetallic compound precipitation strengthened-type high strength powder high cr steel

Country Status (1)

Country Link
JP (1) JPH0394044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177448A (en) * 2005-12-27 2007-07-12 Chugoku Electric Power Co Inc:The Dust collector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177448A (en) * 2005-12-27 2007-07-12 Chugoku Electric Power Co Inc:The Dust collector
JP4684103B2 (en) * 2005-12-27 2011-05-18 中国電力株式会社 Dust remover

Similar Documents

Publication Publication Date Title
EP2279276B1 (en) Stainless steel product, use of the product and method of its manufacture
EP2072627B1 (en) Weldable oxidation resistant nickel-iron-chromium-aluminum alloy
AU2010291651B2 (en) Method for producing an iron-chromium alloy
GB2084187A (en) Ferritic stainless steel
US20100183475A1 (en) Chromium manganese - nitrogen bearing stainless alloy having excellent thermal neutron absorption ability
JPS58125396A (en) Austenitic welded structure
US3807991A (en) Ferritic stainless steel alloy
US4385933A (en) Highly heat resistant austenitic iron-nickel-chromium alloys which are resistant to neutron induced swelling and corrosion by liquid sodium
CN111394663A (en) Heat-resistant iron-based alloy and preparation method thereof
CA2627595C (en) Heat resistant alloy adapted to precipitate fine ti-nb-cr carbide or ti-nb-zr-cr carbide
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
KR20150080628A (en) Ferritic stainless steel
US3928085A (en) Timepiece mainspring of cobalt-nickel base alloys having high elasticity and high proportional limit
EP0769077B1 (en) Cavitation resistant fluid impellers and method of making same
EP0109221B1 (en) High-strength austenitic steel
US4751046A (en) Austenitic stainless steel with high cavitation erosion resistance
CN102586686A (en) Clean corrosion-resistant steel for ocean engineering and manufacturing method thereof
JPH0394044A (en) Intermetallic compound precipitation strengthened-type high strength powder high cr steel
JP2546549B2 (en) Method for producing B-containing austenitic stainless steel
KR100708616B1 (en) Low Activation High Chromium Ferritic Heat Resistant Steels for Fission Reactor, Fast Breed Reactor and Fusion Reactor
US5116570A (en) Stainless maraging steel having high strength, high toughness and high corrosion resistance and it&#39;s manufacturing process
US2955034A (en) Austenitic alloy steel
JPS59211553A (en) High cr steel with superior toughness and superior strength at high temperature
Klueh et al. Thermal stability of manganese-stabilized stainless steels
CN113319467B (en) Nickel-based alloy welding strip for nuclear power