JPH0393736A - New diolefin aromatic compound and production thereof - Google Patents

New diolefin aromatic compound and production thereof

Info

Publication number
JPH0393736A
JPH0393736A JP1229232A JP22923289A JPH0393736A JP H0393736 A JPH0393736 A JP H0393736A JP 1229232 A JP1229232 A JP 1229232A JP 22923289 A JP22923289 A JP 22923289A JP H0393736 A JPH0393736 A JP H0393736A
Authority
JP
Japan
Prior art keywords
formula
aromatic compound
group
general formula
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1229232A
Other languages
Japanese (ja)
Inventor
Hisahiro Azuma
東 久洋
Chishio Hosokawa
地潮 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP1229232A priority Critical patent/JPH0393736A/en
Publication of JPH0393736A publication Critical patent/JPH0393736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

NEW MATERIAL:A compound expressed by formula I (X<1> and X<2> are monovalent group in which one H is removed from pyrene molecule). EXAMPLE:1,4-Bis[2-(1-pyrenyl)vinyl]benzene. USE:An organic luminous material, organic coloring matter, etc. PREPARATION:A phosphorus compound expressed by formula II [Y<1> and Y<2> are diphenylphosphonium halide group expressed by formula III (X<-> is halide ion) or dialkyl phosphonate group expressed by formula IV (R is lower alkyl) is reacted with a pyrenecarbaldehyde compound expressed by formula V (X is monovalent group in which one H is removed from pyrene molecule) in the presence of a basic catalyst at ambient temperature to 100 deg.C to provide the compound expressed by formula I.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規なジオレフィン芳香族化合物及びその製
造方法に関し、より詳しく言うと、固体状態でも高い発
光性(蛍光性)を示し、且つ融点が高く、熱安定性にも
優れるなど優れた発光材料としての特性を有し、また有
機色素としても優れており、例えば、有機エレクトロル
ξネッセンス(EL)素子をはじめとする種々の有機発
光材料の利用分野、有機色素の利用分野などに有利に利
用することができる新規なジオレフィン芳香族化合物及
びその実用上有利な製造方法に関する.〔従来の技術〕 有機化合物の高い発光量子効率及び優れた或形性特に薄
膜成形性等に着目して、有機化合物のエレクトロルミネ
ッセンス(EL)を利用した素子を構成しようとする研
究は古くから行われている.例えば、h. Helfr
ishらはアントラセンの結晶を用い、青色発光を得て
いる(J. Chew. Phys.+44.2902
 (1966)) .また、VincettやBurl
o−らは、縮合多環芳香族系の材料を真空蒸着法により
薄膜化し、低電圧駆動の発光素子の製造を試みている[
Thin Solid Films. 94, 171
 (1982)) −しかし、これらにおいては、いず
れも駆動電圧が高かったり(IOOV〜数KV) 、発
光輝度、効率ともに低いものしか得られていない.比較
的最近、C. H. Tangらは、テトラフェニルブ
タジエンを発光材料として用い、1 0 0cd/rd
の輝度を得ている(特開昭59−194393号公報)
.また、蛍光性金属キレート錯体材料と正孔伝導性のジ
アミン系化合物を用い、1.000cd/n?以上の高
い発光輝度を示し、しかもIOV以下で発光する有機薄
膜エレクトロルミネッセンス素子を得ている( App
l. Phys. Lett.. 51.913(19
B?) ) , しかし、これらの素子においては、低電圧で高輝度の発
光が得られるものの、発光材料として用いている1.1
,4.4−テトラフェニル−1,3−ブタジエンや8−
ヒドロキシキノリンのアルもニウム錯体が300℃以上
の温度で容易に熱分解し、このような発光材料の熱安定
性の低さにより発光が劣化しやすく、安定なEL素子と
はならないなどの問題点がある. また、ピレンなどの蛍光性は溶液状態では大きいが固体
状履では著しく減少し、一方、レーザー色素として著名
な1,4−ジスチリルベンゼン骨格を有する0−メチル
ジスチリルベンゼンは、蛍光性が高く、EL素子の発光
材料として有望であるが、融点が173℃と低く、熱安
定性が悪いなどの欠点を有している. このように、発光性の高い物質は多いが、固体状態で高
い蛍光性を有し、且つ融点及び熱安定性が十分に高い有
機発光材料は知られておらず、また、置換基の導入など
によって分子量を増大しても、固体状態における高い蛍
光性を維持したまま融点を引き上げることは一般に難し
い.すなわち、有機EL素子をはじめとする有機発光材
料の利用分野においては、固体状態で高い発光性(蛍光
性)を示し、且つ融点が高く、熱安定性にも優れた新規
な材料の開発が切望されていた.〔発明が解決しようと
する課題〕 本発明は、前記の事情を鑑みてなされたものである. 本発明の目的は、固体状態でも高い発光性(蛍光性)を
示し、且つ融点が高く、熱安定性にも優れるなど優れた
有機発光材料としての特性を有し、また有機色素として
も優れているなど利用価値の高い新規なジオレフィン芳
香族化合物及びその実用上有利な製造方法を提供するこ
とにある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a novel diolefin aromatic compound and a method for producing the same, and more specifically, the present invention relates to a novel diolefin aromatic compound and a method for producing the same. It has excellent characteristics as a light emitting material, such as a high melting point and excellent thermal stability, and is also excellent as an organic dye. This article relates to a novel diolefin aromatic compound that can be advantageously used in the fields of materials application, organic dye application, etc., and a practically advantageous production method thereof. [Prior Art] Research has been conducted for a long time to construct devices that utilize electroluminescence (EL) of organic compounds, focusing on the high luminous quantum efficiency and excellent formability of organic compounds, especially the formability of thin films. It is being said. For example, h. Helfr
ish et al. obtained blue light emission using anthracene crystals (J. Chew. Phys. +44.2902
(1966)). Also, Vincet and Burl
o- et al. are attempting to fabricate a light-emitting device driven by low voltage by forming a thin film of a condensed polycyclic aromatic material using a vacuum evaporation method [
Thin Solid Films. 94, 171
(1982)) - However, in all of these, the driving voltage is high (IOOV to several KV), and only low luminance and low efficiency can be obtained. Relatively recently, C. H. Tang et al. used tetraphenylbutadiene as a luminescent material and
(Japanese Unexamined Patent Publication No. 194393/1983)
.. In addition, using a fluorescent metal chelate complex material and a hole-conducting diamine compound, the 1.000 cd/n? We have obtained an organic thin film electroluminescent device that exhibits high luminance as above and emits light below IOV (App
l. Phys. Lett. .. 51.913 (19
B? )) However, although these devices can produce high-brightness light at low voltage, the 1.1
, 4,4-tetraphenyl-1,3-butadiene and 8-
Problems include the fact that the aluminum complex of hydroxyquinoline easily thermally decomposes at temperatures above 300°C, and the low thermal stability of such luminescent materials causes the luminescence to deteriorate easily, making it impossible to create a stable EL device. There is. In addition, the fluorescence of pyrene is high in a solution state, but it decreases markedly in a solid state.On the other hand, 0-methyldistyrylbenzene, which has a 1,4-distyrylbenzene skeleton and is famous as a laser dye, has high fluorescence. Although it is promising as a light-emitting material for EL devices, it has drawbacks such as a low melting point of 173°C and poor thermal stability. Although there are many highly luminescent substances, there are no known organic luminescent materials that have high fluorescence in the solid state and have sufficiently high melting points and thermal stability. Even if the molecular weight is increased, it is generally difficult to raise the melting point while maintaining high fluorescence in the solid state. In other words, in the field of application of organic light-emitting materials such as organic EL devices, there is a strong need for the development of new materials that exhibit high luminescence (fluorescence) in the solid state, have a high melting point, and have excellent thermal stability. It had been. [Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances. The object of the present invention is to have excellent properties as an organic luminescent material, such as exhibiting high luminescence (fluorescence) even in a solid state, a high melting point, and excellent thermal stability, and also as an excellent organic dye. It is an object of the present invention to provide a novel diolefin aromatic compound which has high utility value, such as a diolefin aromatic compound, and a method for producing the same which is practically advantageous.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記問題点を解決すべく鋭意研究を重ね
た結果、特定の構造を有する新規な芳香族化合物が、前
記目的を満足する優れた有機発光材料となり、有機色素
などとしても好適に利用することができることを見出し
、また、その新規な芳香族化合物の製造方法について種
々検討を重ねた結果、特定の化合物同士を反応させる方
法が実用上特に有利であることを見出し、本発明を完成
するに至った. すなわち、本発明の第1の発明は、次の一般式!’ −
CH=lJ@CH鴬Cl−X冨    (1)(但し、
式(1)中のX′及びX−は、各々独立に、ピレン分子
から水素原子をF個除去してなる一価の基を表す.) で表される新規なジオレフィン芳香族化合物よりなるも
のであり、 本発明の第2の発明は、第1の発明であるジオレフィン
芳香族化合物の好適な製造方法に関する発明であり、次
の一般式 (但し、式(If)中のYl及びY怠は、各々独立に、
次の一般式 −p”ヘ○)s Z−      ( II a )(
但し、式(IIa)中の2−は、ハロゲンイオンを表す
.) テ表サれるジフェニルホスホニウムハライド基又は次の
一般式 −PO(OR)z              ( I
I b )(但し、式(Ilb)中のRは、低級アルキ
ル基を表す.) で表されるジアルキルホスホネート基を表す。〕で表さ
れるリン化合物と、次の一般式 X−CIO                ( I[
l )(但し、式(I[[)中のXは、ピレン分子から
水素原子を1個除去してなる一価の基を表す.)で表さ
れるピレンカルボキシアルデヒド化合物とを反応させる
ことを特徴とする次の一般式xI−cu=co@co−
co−xz    ( 1 :+(但し、式CI)中の
X一及びXtは、各々独立に、ビレン分子から水素原子
を1個除去してなる一価の基を表す.) で表されるジオレフィン芳香族化合物の製造方法を提供
するものである. 前記式El)で表されるジオレフィン芳香族化合物は、
l分子中に2つの鎖状のビニレン(−CB・CH−)単
位を有し、このビニレン単位の幾何異性によって、4通
りの組み合わせすなわち、シスーシス、トランスーシス
、シスートランス及びトランスートランス組み合わせが
あるが、本発明のジオレフィン芳香族化合物は、それら
のいずれのものであってもよく、それらの任意の割合の
混合物であってもよい.特に好ましくは全てトランス体
のものである.また、式(1)中のx1及びXNは、そ
れぞれ、前記したようにビレン分子から水素原子を1個
除去してなる一価の基を表し、具体的には、ピレンー1
−イル基すなわち ピレンー2−イル基すなわち 及びピレンー4−イル基すなわち のいずれでもよい.式(1)中のχ1及びX2は、互い
に同一の基であってもよく、あるいは相違した基であっ
てもよいので、式CI)で表されるジオレフィン芳香族
化合物中のX′及びχ2の組み合わせとしては、9通り
の組み合わせがあり、前記ビニレン単位の異性体因子及
び分子全体の対称性因子を考慮すると、本発明のジオレ
フィン芳香族化合物には、同位元素等の置換や修飾を行
わない場合、合計18個の異性体が存在する.本発明に
おける前記ジオレフィン芳香族化合物は、これらのいず
れの単独のジオレフィン芳香族化合物であってもよく、
あるいはこれらのうちの任意の二種以上の任意の割合の
混合物であってもよい.特に好ましくは全てトランス体
のものである. 前記式(1)で表されるジオレフィン芳香族化合物の製
造方法としては、特に制限はなく、各種の有機合成手法
等を用いて種々の方法によって製造することができるが
、通常第2の発明の製造方法によって有利に製造するこ
とができる.以下に、第2の発明の製造方法について詳
細に説明する。
The present inventors have conducted extensive research to solve the above problems, and as a result, a novel aromatic compound having a specific structure has become an excellent organic light-emitting material that satisfies the above objectives, and is suitable as an organic dye. As a result of various studies on the production method of the new aromatic compound, it was discovered that a method of reacting specific compounds with each other is particularly advantageous in practice, and the present invention has been developed. It has been completed. That is, the first invention of the present invention is based on the following general formula! ' −
CH=lJ@CH鴬Cl−X冨 (1) (However,
X' and X- in formula (1) each independently represent a monovalent group obtained by removing F hydrogen atoms from a pyrene molecule. ) The second invention of the present invention is an invention relating to a preferred method for producing the diolefin aromatic compound, which is the first invention, and comprises the following: General formula (However, Yl and Y in formula (If) are each independently,
The following general formula -p''he○)s Z- (II a) (
However, 2- in formula (IIa) represents a halogen ion. ) Diphenylphosphonium halide group represented by the formula or the following general formula -PO(OR)z (I
I b ) (However, R in formula (Ilb) represents a lower alkyl group.) It represents a dialkylphosphonate group represented by the following formula. ] and the following general formula X-CIO (I[
l) (However, X in the formula (I[[) represents a monovalent group obtained by removing one hydrogen atom from a pyrene molecule.) The following general formula xI-cu=co@co-
co-xz (1:+ (However, X1 and Xt in formula CI each independently represent a monovalent group obtained by removing one hydrogen atom from a birene molecule.) The present invention provides a method for producing olefin aromatic compounds. The diolefin aromatic compound represented by the formula El) is
It has two linear vinylene (-CB/CH-) units in its molecule, and there are four combinations depending on the geometric isomerism of the vinylene units: cis-cis, trans-cis, cis-trans, and trans-trans combinations. , the diolefin aromatic compound of the present invention may be any of them, or a mixture thereof in any proportion. Particularly preferred are all trans isomers. In addition, x1 and XN in formula (1) each represent a monovalent group obtained by removing one hydrogen atom from a birene molecule as described above, and specifically, x1 and
-yl group, ie, pyren-2-yl group, or pyren-4-yl group. χ1 and X2 in formula (1) may be the same group or different groups, so X' and χ2 in the diolefin aromatic compound represented by formula CI) There are nine combinations, and considering the isomer factor of the vinylene unit and the symmetry factor of the entire molecule, the diolefin aromatic compound of the present invention can be substituted with isotopes or modified. If not, a total of 18 isomers are present. The diolefin aromatic compound in the present invention may be any one of these diolefin aromatic compounds alone,
Alternatively, it may be a mixture of any two or more of these in any proportion. Particularly preferred are all trans isomers. There are no particular limitations on the method for producing the diolefin aromatic compound represented by the formula (1), and it can be produced by various methods using various organic synthesis techniques. It can be advantageously manufactured using the manufacturing method of Below, the manufacturing method of the second invention will be explained in detail.

前記式(Ila)で表されるジフェニルホスホニウムハ
ライド基中のZ−としては、F− 、CI−Br− 、
及びI−を挙げることができる.これらの中でも、特に
CI−が好ましい. 前記式(nb)で表されるジアルキルホスホネート基中
のRは、低級アルキル基であり、この低級アルキル基と
は、炭素数1〜6の直鎖状又は分岐状の、あるいは環構
造を有するアルキル基、シクロアルキル基又は芳香族系
アルキル基を表す.これらの中でも、炭素数l〜4のア
ルキル基が好ましく、特にメチル基及びエチル基などが
好ましい。なお、式(flb)中の2つのRは、互いに
同一の基であってもよく、あるいは相違した基であって
もよい. 前記式(II)で表されるリン化合物において、Y′及
びY2は、それぞれ、前記ジフェ・ニルホスホニウムハ
ライド基又は前記ジアルキルホスホネート基のいずれか
であり、これらは互いに同一の碁であってもよく、ある
いは相違した基であってもよいが、通常は合威操作の容
易性等から、Y1とY2が共にジフェニルホスホニウム
ハライド基であるビスホスホニウム型のリン化合物かあ
るいは共にジアルキルホスホネート基であるビスホスホ
ネート型のリン化合物、特に同一の基であるものが好適
に使用することができる.なお、これらのリン化合物は
、1種単独で使用してもよいし、必要に応じて、2種以
上を併用してもよい。
Z- in the diphenylphosphonium halide group represented by the formula (Ila) is F-, CI-Br-,
and I-. Among these, CI- is particularly preferred. R in the dialkylphosphonate group represented by the above formula (nb) is a lower alkyl group, and this lower alkyl group is an alkyl group having a linear or branched or ring structure having 1 to 6 carbon atoms. group, cycloalkyl group, or aromatic alkyl group. Among these, alkyl groups having 1 to 4 carbon atoms are preferred, and methyl groups and ethyl groups are particularly preferred. Note that the two R's in formula (flb) may be the same group or may be different groups. In the phosphorus compound represented by the formula (II), Y' and Y2 are each the diphenylphosphonium halide group or the dialkylphosphonate group, and these may be the same as each other. , or different groups may be used, but from the viewpoint of ease of synthesis, a bisphosphonium-type phosphorus compound in which Y1 and Y2 are both diphenylphosphonium halide groups, or a bisphosphonate-type phosphorus compound in which both Y1 and Y2 are dialkylphosphonate groups. Phosphorus compounds, especially those having the same group, can be suitably used. Note that these phosphorus compounds may be used alone or in combination of two or more, if necessary.

これらの式(1)で表されるリン化合物は、例えば、対
応するキシリレンジハライド化合物すなわち (但し、式中のzl及びz2は、各々独立に、フッ素原
子、塩素原子、臭素原子又はヨウ素原子、好ましくは塩
素原子を表す.) で表される化合物と亜リン酸トリアルキル又はトリフェ
ニルホスフィンとを直接あるいはトルエン、キシレン、
テトラヒドロフラン、N,N−ジメチルホルムアミド等
の溶媒中で加熱することにより容易に製造することがで
きる.ここで、亜リン酸トリアルキルにおけるアルキル
基は、通常、前記Rと同様の基である. こうして得られた一般式〔■〕で表されるリン応の化学
量論に従って、前者1モル当たり後者を2モル又は2モ
ル付近の割合とするのが好適である.)で、塩基性触媒
の存在下、室温から100℃程度の温度で反応させるこ
とにより、所望の一般式(1)で表されるジオレフィン
ン芳香族化合物を得ることができる. なお、前記一般式(III)中のXは、前記x1又はX
2と同様の基であり、このピレンカルボキシアルデヒド
化合物は、1種単独で使用してもよいし、必要に応じて
、2種以上を併用してもよい.また、前記塩基性触媒反
応としては、各種のものを使用することができるが、具
体的には例えば、苛性ソーダ等の塩基性ソーダ、苛性カ
リ等の塩基性カリ、ナトリウムアミド、水素化ナトリウ
ム、ナトリウムメチラート、カリウムーt−ブトキシド
、リチウムエトキシド等のアルコラートなどを挙げるこ
とができる. これらは、l種単独で使用してもよいし、2種以上を併
用してもよい。
These phosphorus compounds represented by formula (1) are, for example, corresponding xylylene dihalide compounds (wherein zl and z2 each independently represent a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, (preferably represents a chlorine atom.) and trialkyl phosphite or triphenylphosphine directly or in combination with toluene, xylene,
It can be easily produced by heating in a solvent such as tetrahydrofuran or N,N-dimethylformamide. Here, the alkyl group in trialkyl phosphite is usually the same group as R above. According to the stoichiometry of the phosphorus reaction represented by the general formula [■] thus obtained, it is preferable to set the ratio of the latter to 2 moles or around 2 moles per 1 mole of the former. ) in the presence of a basic catalyst at a temperature from room temperature to about 100°C, the desired diolefin aromatic compound represented by general formula (1) can be obtained. In addition, X in the general formula (III) is the x1 or X
This pyrenecarboxaldehyde compound may be used alone, or two or more types may be used in combination as necessary. In addition, as the basic catalytic reaction, various types can be used, and specifically, for example, basic soda such as caustic soda, basic potash such as caustic potash, sodium amide, sodium hydride, sodium methane, etc. Examples include alcoholates such as alcoholates, potassium t-butoxide, and lithium ethoxide. These may be used alone or in combination of two or more.

前記反応に使用する前記溶媒としては、各種のものを使
用することができるが、具体的には例えば、メタノール
、エタノール、イソプロパノール、ブタノール、2−メ
トキシエタノール等のアルコール又はフェノール類、1
.2−ジメトキシエタン、ビス(2−メトキシエチル)
エーテル、ジオキサン、テトラヒドロフラン等のエーテ
ル類、トルエン、キシレン等の芳香族炭化水素溶媒、ジ
メチルスルホキシド、N,N−ジメチルホルムアξド、
N−メチルビロリドン、1.3−ジメチルー2−イミダ
ゾリジノン等の不活性極性溶媒などを挙げることができ
る.なお、これらは1種単独で使用してもよいし、2種
以上を混合溶媒等として併用してもよい. 反応温度は、反応原料及び生或物の使用する塩基性触媒
に対する安定性、原料或分(一般式〔■〕及び(I[[
)の化合物)の反応性、前記塩基性触媒の活性及び縮合
剤としての反応性、使用する触媒の種類等に応じて好適
な範囲が異なるので、場合に応じて適宜選定するのが望
ましい.例えば、極性溶媒を使用する場合には、通常、
室温〜l00℃、好ましくは室温〜60゜Cの範囲内の
温度に選定するのが適当である.しかし、反応時間の短
縮を意図したりあるいは活性の低い触媒(縮合剤)を用
いる場合には、さらに高い温度で反応を行う方が効率が
よい場合がある. 以上のようにして合成された本発明のジオレフィン芳香
族化合物は、常法の分離、精製手法等の後処理等を適宜
利用して所望の純度の混合物又は単独化合物として回収
することができる.例えば以上のようにして得られた本
発明のジオレフィン芳香族化合物は、固体状態でも高い
発光性(蛍光性及びエレクトロル竃ネッセンス)を示し
、且つ融点が高く(例えば337℃など)、熱安定性に
も優れ、また薄膜化等の威形性にも優れなど耐熱有機発
光材料(有機蛍光体又は有機エレクトロルξネッセンス
素子用発光材料)等としての優れた特性を有し、そのほ
か耐熱性有機色素としての特性等にも優れた利用価値の
高い化合物であり、例えば、有機エレクトロルミネッセ
ンス(EL)素子5をはじめとする種々の有機発光材料
の利用分野、有機色素の利用分野などに有利に利用する
ことができる. なお、本発明のジオレフィン芳香族化合物を発光材料や
色素又はそれらの成分として用いて所望の有機エレクト
ロル主ネッセンス素子などの成形品として仕上げるに際
しては、公知の薄膜化手法等の各種の方法を適宜利用す
ることができる.〔実施例〕 以下に、本発明を実施例及び参考例によりさらに詳細に
説明するが、本発明はこれらの実施例及び参考例に制限
されるものではない. 実施例l p−ヰシレンービス(トリフェニルホスホニウムクロリ
ド) 10.0g(14.0ξリモル)と、1−ビレン力ルバ
ルデヒド6.6g(28.5ミリモル)を200dの無
水エタノールに溶解した.これにナトリウムエトキシド
2.7g(39.0ミリモル)を室温にて加えた.10
時間還流攪拌を行った後、100mの水で希釈し、沈澱
物を濾過し、濾査を水及びメタノールで洗い、黄色粉末
を得た.融点は179.0〜181.0℃であった.こ
れをトルエン及び少量のヨウ素を加え再結晶して、黄橙
色板状結晶3.5g(収率47%)を得た.融点は33
7℃であった。この結晶の元素分析の結果はその理論値
とともに第1表に示す. また、この結晶の赤外線吸収スペクトル(Kbr錠剤法
)を測定したところ9753−’にトランスオレフィン
のC−H面外変角振動に基づく吸収が認められた.この
赤外吸収スペクトルを第1図に示す.さらに、この結晶
の質量分析(MS)を行ったところm / z = 5
 3 1. 0のピークが観測された.この結果は第2
図に示す. 以上の分析結果等より得られた黄橙色板状結晶はトラン
ス型の1.4−ビス(2−(1−ピレニル)ビニル〕ベ
ンゼンであることを確認した.参考例1 25mX75醜×1.1■のガラス基板上にITOを蒸
着法にて1 0 0 nmの厚さで製膜したものを透明
支持基板とした.この透明支持基板を市販の蒸着装置(
日本真空技術■製)の基板ホルダーに固定しモリブデン
製の抵抗加熱ボートにN, N−ジフェニルーN,N’
−ビス−(3−メチルフェニル)−(1.1’−ビフェ
ニル)−4.4一ジアξン(TPDA)を200■入れ
、また別のモリプヂン製ボートにトランス−1.4−ビ
ス(2− (1−ビレニル)ビニル〕ベンゼン(BPV
B)を200g入レテ真空槽をIXIO−’Paまで減
圧した。
Various solvents can be used as the solvent used in the reaction, and specifically, alcohols such as methanol, ethanol, isopropanol, butanol, 2-methoxyethanol, or phenols;
.. 2-dimethoxyethane, bis(2-methoxyethyl)
Ethers such as ether, dioxane and tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, dimethyl sulfoxide, N,N-dimethylformamide,
Examples include inert polar solvents such as N-methylpyrrolidone and 1,3-dimethyl-2-imidazolidinone. Incidentally, these may be used alone, or two or more may be used in combination as a mixed solvent. The reaction temperature is determined by the stability of the reaction raw materials and raw materials against the basic catalyst used, the raw materials (general formula [■]) and (I[[
Since the preferred range differs depending on the reactivity of the compound), the activity of the basic catalyst and reactivity as a condensing agent, the type of catalyst used, etc., it is desirable to select it appropriately depending on the case. For example, when using polar solvents, typically
It is appropriate to select a temperature within the range of room temperature to 100°C, preferably room temperature to 60°C. However, if the intention is to shorten the reaction time or to use a catalyst (condensing agent) with low activity, it may be more efficient to carry out the reaction at a higher temperature. The diolefin aromatic compound of the present invention synthesized as described above can be recovered as a mixture or a single compound of desired purity by appropriately using conventional separation methods, purification techniques, and other post-treatments. For example, the diolefin aromatic compound of the present invention obtained as described above exhibits high luminescence (fluorescence and electroluminescence) even in the solid state, has a high melting point (for example, 337°C), and is thermally stable. It has excellent properties as a heat-resistant organic light-emitting material (organic phosphor or light-emitting material for organic electroluminescence devices), such as excellent properties such as excellent properties such as excellent physical properties such as thin film formation, etc. It is a highly useful compound with excellent properties as a pigment, and can be advantageously used in various fields of application of organic light-emitting materials, including organic electroluminescence (EL) elements 5, and fields of application of organic dyes. can do. In addition, when finishing a molded product such as a desired organic electroluminescence element using the diolefin aromatic compound of the present invention as a luminescent material, a pigment, or a component thereof, various methods such as known thinning methods may be used. It can be used as appropriate. [Examples] The present invention will be explained in more detail below using Examples and Reference Examples, but the present invention is not limited to these Examples and Reference Examples. Example 1 10.0 g (14.0 mmol) of p-cylene bis(triphenylphosphonium chloride) and 6.6 g (28.5 mmol) of 1-bilene bis(triphenylphosphonium chloride) were dissolved in 200 d of absolute ethanol. 2.7 g (39.0 mmol) of sodium ethoxide was added to this at room temperature. 10
After stirring under reflux for an hour, it was diluted with 100 m of water, the precipitate was filtered, and the filter was washed with water and methanol to obtain a yellow powder. The melting point was 179.0-181.0°C. This was recrystallized by adding toluene and a small amount of iodine to obtain 3.5 g of yellow-orange plate-like crystals (yield: 47%). Melting point is 33
The temperature was 7°C. The results of elemental analysis of this crystal are shown in Table 1 along with the theoretical values. In addition, when the infrared absorption spectrum (Kbr tablet method) of this crystal was measured, absorption based on the C-H out-of-plane bending vibration of the trans-olefin was observed at 9753-'. This infrared absorption spectrum is shown in Figure 1. Furthermore, when mass spectrometry (MS) was performed on this crystal, m / z = 5
3 1. A peak of 0 was observed. This result is the second
It is shown in the figure. The yellow-orange plate-like crystals obtained from the above analysis results were confirmed to be trans-type 1,4-bis(2-(1-pyrenyl)vinyl)benzene.Reference Example 1 25m x 75ugly x 1.1 A transparent support substrate was obtained by forming a film of ITO to a thickness of 100 nm on the glass substrate (2) by vapor deposition method.This transparent support substrate was coated with a commercial vapor deposition apparatus (
N, N-diphenyl N, N' was fixed to a substrate holder manufactured by Japan Vacuum Technology ■ and placed on a resistance heating boat made of molybdenum.
-Bis-(3-methylphenyl)-(1.1'-biphenyl)-4.4-diane (TPDA) was put in 200 μg, and trans-1.4-bis(2 - (1-Vyrenyl)vinyl]benzene (BPV
A Lette vacuum tank containing 200 g of B) was depressurized to IXIO-'Pa.

その後TPDAの入った前記ボートを215〜220℃
まで加熱し、TPDAを蒸着速度0. 1〜0.3nm
/秒で透明支持基板上に蒸着して、膜厚60nmの正孔
注入輸送層を製膜させた.この時の基板温度は室温であ
った.これを真空槽より取り出すことなく、正孔注入輸
送層の上に、も−51つのボートよりBPVBを発光層
として厚さ60nmとなるように積層蒸着した.蒸着条
件はボート温度が350〜355℃で蒸着速度は0.1
〜0.3nm/秒、基板温度は室温であった.これを真
空槽より取り出し、上記発光層の上にステンレススチー
ル製のマスクを設置し、再び基板ホルダーに固定した. 次にモリブテン製の抵抗加熱ポートにマグネシウムリボ
ン1gを入れ、もう1つのモリブデン製の抵抗加熱ボー
トにインジウム500■を入れて、その後真空槽を2X
10−’Paまで減圧してから、抵抗加熱法によりイン
ジウムを0.1nnn/秒の蒸着速度で、同時に抵抗加
熱法によりモリブテンボートからマグネシウムを1.7
〜2.8nm/秒の蒸着速度で蒸着し始めた.またボー
トの温度はインジ゛ウムの場合800℃程度、マグネシ
ウムの場合500℃程度であった.上記条件でマグネシ
ウムとインジウムの混合金属電極を発光層の上に100
nm積層蒸着し対向電極とした. この素子にITO電極を陽極、マグネシウムとインジウ
ムの混合金属電極を陰極として、直流12vを印加する
と電流が20mA/C4流れ、黄緑色発光を得た.発光
波長域は分光測定より450〜6 2 0 nmであっ
た.ピーク波長は5 3 0 nmであり、発光輝度は
50cd/ryfであり、いずれも良好な値を示した. 〔発明の効果〕 本発明によると、固体状態でも高い発光性(蛍光性及び
エレクトロルξネッセンス)を示し、且つ融点が高く、
熱安定性にも優れ、また薄膜化等の成形性にも優れなど
有機発光材料(有機蛍光体又は有機エレクトロルξネッ
センス素子用発光材料)等としての優れた特性を有し、
そのほか有機色素としての特性等にも優れた利用価値の
高い化合物であり、例えば、有機エレクトロルミネッセ
ンス(EL)素子をはじめとする種々の有機発光材料の
利用分野、有機色素の利用分野などに有利に利用するこ
とができる新規なジオレフィン芳香族化合物及びその実
用上有利な製造方法を提供することができる.
After that, the boat containing TPDA was heated to 215-220℃.
TPDA is heated to a deposition rate of 0. 1-0.3nm
A hole injecting and transporting layer with a thickness of 60 nm was formed by vapor deposition on a transparent support substrate at a rate of 100 nm/sec. The substrate temperature at this time was room temperature. Without taking it out of the vacuum chamber, BPVB was deposited as a light-emitting layer on the hole injection transport layer using a single boat to a thickness of 60 nm. The deposition conditions were a boat temperature of 350 to 355°C and a deposition rate of 0.1.
~0.3 nm/sec, and the substrate temperature was room temperature. This was taken out of the vacuum chamber, a stainless steel mask was placed on top of the light emitting layer, and it was fixed to the substrate holder again. Next, put 1g of magnesium ribbon into the molybdenum resistance heating port, put indium 500cm into the other molybdenum resistance heating boat, and then turn the vacuum chamber 2X.
After reducing the pressure to 10-'Pa, indium was deposited at a rate of 0.1 nnn/sec by resistance heating, and at the same time magnesium was deposited at 1.7 mm from a molybdenum boat by resistance heating.
Deposition started at a deposition rate of ~2.8 nm/sec. The temperature of the boat was approximately 800°C for indium and 500°C for magnesium. Under the above conditions, a mixed metal electrode of magnesium and indium was placed on the light emitting layer for 100 m
A stack of nanometers was deposited and used as a counter electrode. When a direct current of 12 V was applied to this device using an ITO electrode as an anode and a mixed metal electrode of magnesium and indium as a cathode, a current of 20 mA/C4 flowed and yellow-green light was emitted. The emission wavelength range was 450 to 620 nm based on spectroscopic measurements. The peak wavelength was 530 nm, and the luminance was 50 cd/ryf, both of which showed good values. [Effects of the Invention] According to the present invention, it exhibits high luminescence (fluorescence and electroluminescence) even in a solid state, and has a high melting point.
It has excellent properties as an organic light-emitting material (organic phosphor or light-emitting material for organic electroluminescence devices), such as excellent thermal stability and excellent formability such as thin film formation.
In addition, it is a highly useful compound that has excellent properties as an organic dye, and is advantageous in the fields of application of various organic light-emitting materials, including organic electroluminescence (EL) devices, and the field of application of organic dyes. It is possible to provide a novel diolefin aromatic compound that can be used and a method for producing the same that is practically advantageous.

Claims (2)

【特許請求の範囲】[Claims] 1.次の一般式 ▲数式、化学式、表等があります▼  〔 I 〕 (但し、式〔 I 〕中のX^1及びX^2は、各々独立
に、ビレン分子から水素原子を1個除去してなる一価の
基を表す。) で表される新規なジオレフィン芳香族化合物。
1. The following general formula ▲ includes mathematical formulas, chemical formulas, tables, etc. ▼ [I] (However, in the formula [I], X^1 and X^2 each independently remove one hydrogen atom from the birene molecule A novel diolefin aromatic compound represented by:
2.次の一般式 ▲数式、化学式、表等があります▼  〔II〕 (但し、式〔II〕中のY^1及びY^2は、各々独立に
、次の一般式 ▲数式、化学式、表等があります▼  〔IIa〕 (但し、式〔IIa〕中のZ^−は、ハロゲンイオンを職
す。) で表されるジフェニルホスホニウムハライド基又は次の
一般式 −PO(OR)_2  〔IIb〕 (但し、式〔IIb〕中のRは、低級アルキル基を表す。 ) で表されるジアルキルホスホネート基を表す。 で表されるリン化合物と、次の一般式 X−CHO  〔III〕 (但し、式〔III〕中のXは、ピレン分子から水素原子
を1個除去してなる一価の基を表す。 で表されるピレンカルバルデヒド化合物とを反応させる
ことを特徴とする次の一般式 ▲数式、化学式、表等があります▼  〔 I 〕 (但し、式〔 I 〕中のX^1及びX^2は、各々独立
に、ピレン分子から水素原子を1個除去してなる一価の
基を表す。) で表されるジオレフィン芳香族化合物の製造方法。
2. The following general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [II] (However, Y^1 and Y^2 in formula [II] are each independently the following general formula ▲ Numerical formulas, chemical formulas, tables, etc. There is a diphenylphosphonium halide group represented by ▼ [IIa] (however, Z^- in formula [IIa] represents a halogen ion) or the following general formula -PO(OR)_2 [IIb] ( However, R in formula [IIb] represents a lower alkyl group.) represents a dialkylphosphonate group represented by X in [III] represents a monovalent group obtained by removing one hydrogen atom from a pyrene molecule. , chemical formulas, tables, etc.▼ [I] (However, X^1 and X^2 in formula [I] each independently represent a monovalent group obtained by removing one hydrogen atom from a pyrene molecule. A method for producing a diolefin aromatic compound represented by
JP1229232A 1989-09-06 1989-09-06 New diolefin aromatic compound and production thereof Pending JPH0393736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1229232A JPH0393736A (en) 1989-09-06 1989-09-06 New diolefin aromatic compound and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229232A JPH0393736A (en) 1989-09-06 1989-09-06 New diolefin aromatic compound and production thereof

Publications (1)

Publication Number Publication Date
JPH0393736A true JPH0393736A (en) 1991-04-18

Family

ID=16888903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229232A Pending JPH0393736A (en) 1989-09-06 1989-09-06 New diolefin aromatic compound and production thereof

Country Status (1)

Country Link
JP (1) JPH0393736A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264805B1 (en) 1994-12-13 2001-07-24 The Trustees Of Princeton University Method of fabricating transparent contacts for organic devices
US6358631B1 (en) 1994-12-13 2002-03-19 The Trustees Of Princeton University Mixed vapor deposited films for electroluminescent devices
US6365270B2 (en) 1994-12-13 2002-04-02 The Trustees Of Princeton University Organic light emitting devices
US6548956B2 (en) 1994-12-13 2003-04-15 The Trustees Of Princeton University Transparent contacts for organic devices

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264805B1 (en) 1994-12-13 2001-07-24 The Trustees Of Princeton University Method of fabricating transparent contacts for organic devices
US6358631B1 (en) 1994-12-13 2002-03-19 The Trustees Of Princeton University Mixed vapor deposited films for electroluminescent devices
US6365270B2 (en) 1994-12-13 2002-04-02 The Trustees Of Princeton University Organic light emitting devices
US6548956B2 (en) 1994-12-13 2003-04-15 The Trustees Of Princeton University Transparent contacts for organic devices
US6596134B2 (en) * 1994-12-13 2003-07-22 The Trustees Of Princeton University Method of fabricating transparent contacts for organic devices
US7173369B2 (en) 1994-12-13 2007-02-06 The Trustees Of Princeton University Transparent contacts for organic devices
US7714504B2 (en) 1994-12-13 2010-05-11 The Trustees Of Princeton University Multicolor organic electroluminescent device formed of vertically stacked light emitting devices

Similar Documents

Publication Publication Date Title
CN100438123C (en) Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such
JP5812583B2 (en) Triazine derivative, method for producing the same, and organic electroluminescent device comprising the same
TWI404789B (en) Organic light field light emitting element material and organic electric field light emitting element
TW201204808A (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
US20220115603A1 (en) Organic metal compound and application thereof
JPH10509996A (en) Heterospiro compounds and their use as electroluminescent substances
CN111039954A (en) Novel organic material and application thereof in device
JP5829388B2 (en) Triazine derivative, method for producing the same, and organic electroluminescent device comprising the same
CN110563746B (en) Novel SO2 spiro-structure-containing compound and application thereof in OLED (organic light emitting diode) device
KR20040016274A (en) Luminescent spiro dimer and organic light-emitting device comprising the same
WO2006038709A1 (en) Triphenylene compounds, process for production thereof, and organic electroluminescent devices made by using the same
JP4164718B2 (en) Bis (aminostyryl) naphthalene compound and synthetic intermediate thereof, production method thereof, and organic electroluminescent device
CN110467626A (en) A kind of New-type spiro structural compounds and its application in OLED device
CN107216279B (en) Compound with dibenzosuberene as core and application thereof in organic electroluminescent device
WO2012081541A1 (en) 1, 2, 4, 5-substituted phenyl derivative, production method for same, and organic electroluminescent element
JPH0393736A (en) New diolefin aromatic compound and production thereof
JP2012126718A (en) 2,2&#39;-substituted biphenyl derivative, method for producing the same, and organic electroluminescent device comprising the same as constituent
CN109608384A (en) A kind of organic material and preparation method thereof and its application in electroluminescent device
CN109503460A (en) A kind of organic material and the preparation method and application thereof
CN108383735A (en) A kind of organic compound and its synthetic method and application
CN112479976B (en) Organic compound containing benzanthracene, preparation method and application thereof
WO2011115163A1 (en) 1,2,4,5-substituted phenyl derivative, method for producing same and organic electroluminescent element having same as constituent component
CN111116602B (en) OLED material and application thereof in organic electroluminescent device
CN109678730A (en) A kind of organic electroluminescent cavitation material and its preparation and application
CN110903296B (en) OLED material and application thereof in device