CN111039954A - Novel organic material and application thereof in device - Google Patents

Novel organic material and application thereof in device Download PDF

Info

Publication number
CN111039954A
CN111039954A CN201911194868.9A CN201911194868A CN111039954A CN 111039954 A CN111039954 A CN 111039954A CN 201911194868 A CN201911194868 A CN 201911194868A CN 111039954 A CN111039954 A CN 111039954A
Authority
CN
China
Prior art keywords
compound
percent
novel organic
group
organic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911194868.9A
Other languages
Chinese (zh)
Inventor
段陆萌
范洪涛
黄春雪
杭德余
梁现丽
李仲庆
曹占广
刘阳
班全志
李继响
罗忠林
呼建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Yanhua Jilian Optoelectronic Technology Co ltd
Original Assignee
Beijing Yanhua Jilian Optoelectronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yanhua Jilian Optoelectronic Technology Co ltd filed Critical Beijing Yanhua Jilian Optoelectronic Technology Co ltd
Priority to CN201911194868.9A priority Critical patent/CN111039954A/en
Publication of CN111039954A publication Critical patent/CN111039954A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/06Peri-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Abstract

The invention relates to a novel organic material which has any one structure shown in general formulas I to III. The novel organic material provided by the invention takes forced-occupied ton and occupied ton as a parent nucleus, and the compound has a wider band gap, a high T1 energy level and a proper Highest Occupied Molecular Orbital (HOMO) energy level. The compound has high thermal stability, is not easy to decompose in the sublimation process, has higher glass transition temperature, and can maintain the phase stability of a formed film. The invention further ensures that the luminescent material is not easy to crystallize and quench and has good film-forming property by introducing the group with larger steric hindrance. The novel organic material provided by the invention is preferably used as an electron transport material of an electron transport layer in an organic electroluminescent device.

Description

Novel organic material and application thereof in device
Technical Field
The invention relates to the technical field of organic electroluminescent display, in particular to a novel organic material and application thereof in devices.
Background
The application of the organic electroluminescent (OLED) material in the fields of information display materials, organic optoelectronic materials and the like has great research value and good application prospect. With the development of multimedia information technology, the requirements for the performance of flat panel display devices are higher and higher. The main display technologies at present are plasma display devices, field emission display devices, and organic electroluminescent display devices (OLEDs). The OLED has a series of advantages of self luminescence, low-voltage direct current driving, full curing, wide viewing angle, rich colors and the like, and compared with a liquid crystal display device, the OLED does not need a backlight source, has a wider viewing angle and low power consumption, has the response speed 1000 times that of the liquid crystal display device, and has a wider application prospect.
At present, the commonly used electron transport materials such as AlQ3 have low electron mobility, so that the working voltage of the device is higher, and the power consumption is serious; some electron transport materials such as LG201 are not high in triplet level, and when a phosphorescent light emitting material is used as a light emitting layer, an exciton blocking layer needs to be added, otherwise efficiency is reduced, and some materials such as Bephen are easily crystallized, resulting in a reduction in lifetime. Therefore, the stable and efficient electron transport material is developed, so that the driving voltage is reduced, the luminous efficiency of the device is improved, the service life of the device is prolonged, and the method has important practical application value.
Disclosure of Invention
The invention aims to provide an OLED electron transport material which can reduce the driving voltage, improve the luminous efficiency of a device and prolong the service life of the device, and an OLED element which uses the material and has high efficiency.
Specifically, the invention provides a novel organic material, which has any one structure shown in general formulas I to III:
Figure BDA0002294440830000011
in the general formulas I to III, R1By substitution of H atoms at any one or two positions on the phenyl ring in which it is located, R2By substitution of H atoms in any one, two or three positions of the phenyl ring in which they are located, R3By substitution of H atoms in any one, two or three positions of the phenyl ring in which they are located, R4Substituted with H atoms at any one, two or three positions on the phenyl ring on which it is located.
The R is1、R2、R3、R4Each independently represents-H, -F, -Cl, -Br, -I, -n (Ar), -C (═ O) Ar, -P (═ O) Ar, -S (═ O)2Ar、-OAr、-SAr、-CN、-NO2An alkyl group having 1 to 40 carbon atoms, an alkoxy group having 1 to 40 carbon atoms or a sulfoalkoxy group having 1 to 40 carbon atoms.
The alkyl group having 1 to 40 carbon atoms may be a straight-chain alkyl group having 1 to 40 carbon atoms, a branched-chain alkyl group having 3 to 40 carbon atoms, or a cyclic alkyl group having 3 to 40 carbon atoms.
The alkoxy group having 1 to 40 carbon atoms may be a linear alkoxy group having 1 to 40 carbon atoms, a branched alkoxy group having 3 to 40 carbon atoms, or a cyclic alkoxy group having 3 to 40 carbon atoms.
The thioalkoxy group having 1 to 40 carbon atoms may be a linear thioalkoxy group having 1 to 40 carbon atoms, a branched thioalkoxy group having 3 to 40 carbon atoms, or a cyclic thioalkoxy group having 3 to 40 carbon atoms.
The R is1、R2、R3、R4The groups represented by each may be different, any two of them may be the same and different from the remaining two, any three of them may be the same and different from the remaining one, or four of them may be the same.
As a specific embodiment of the present invention, R is1、R2、R3、R4All represent H atoms.
In the general formulas I to III of the present invention for Ar1、Ar2The respective substitution positions are preferably selected to enhance the overall performance of the compound.
Specifically, the method comprises the following steps:
in the general formula II, Ar1、Ar2The respective specific substitution positions are preferably as shown in the general formulae II-1 to II-3.
Figure BDA0002294440830000021
In the general formula III, Ar1、Ar2The respective specific substitution positions are preferably as shown in the general formulae III-1 to III-6.
Figure BDA0002294440830000031
As a specific embodiment of the present invention, the novel organic material has a structure represented by the general formula II-1.
As a specific embodiment of the present invention, the novel organic material has a structure represented by the general formula II-1'.
Figure BDA0002294440830000032
Ar of the invention1、Ar2Each independently represents a neutral aromatic group having a benzene ring and/or an aromatic heterocyclic ring or represents an H atom, and Ar1、Ar2Not H atoms at the same time.
Specifically, Ar is1、Ar2Can independently represent neutral aromatic groups containing n benzene rings and/or aromatic heterocyclic rings, and n represents an integer of 1-6. The neutral aromatic group may be selected from substituted or unsubstituted monocyclic aromatic hydrocarbons, substituted or unsubstituted polyphenolic aliphatic hydrocarbons, substituted or unsubstituted biphenyl-type aromatic hydrocarbons, or substituted or unsubstituted fused ring aromatic hydrocarbons.
Preferably, Ar is1、Ar2Each independently selected from the group consisting of:
Figure BDA0002294440830000033
Figure BDA0002294440830000041
more preferably, Ar is1、Ar2Each independently selected from the group consisting of:
Figure BDA0002294440830000042
Figure BDA0002294440830000051
ar is1、Ar2The substituents represented by each may be the same or different.
In each of the above-mentioned substituent groups,
Figure BDA0002294440830000052
or "- - -" represents a substituted position.
As a specific embodiment of the present invention, the novel organic material is selected from the following compounds represented by II-1-1 to II-1-108:
Figure BDA0002294440830000053
Figure BDA0002294440830000061
Figure BDA0002294440830000071
Figure BDA0002294440830000081
Figure BDA0002294440830000091
Figure BDA0002294440830000101
Figure BDA0002294440830000111
Figure BDA0002294440830000121
Figure BDA0002294440830000131
the invention also provides a preparation method of the novel organic material.
When in formula I Ar1、Ar2The radicals being identical, i.e. Ar1、Ar2When all Ar is contained, the method for synthesizing the compound shown in the general formula I comprises the following steps: taking a compound P-I as a raw material, and carrying out a coupling reaction with Ar to obtain a compound I;
the reaction process is as follows:
Figure BDA0002294440830000132
when in formula I Ar1、Ar2When the groups are different, the method for synthesizing the compound shown in the general formula I comprises the following steps: taking a compound P-I' as a raw material, and sequentially reacting with Ar1、Ar2Carrying out coupling reaction to obtain a compound I;
the reaction process is as follows:
Figure BDA0002294440830000133
when in formula II Ar1、Ar2The radicals being identical, i.e. Ar1、Ar2When both are Ar, the method for synthesizing the compound shown in the general formula II comprises the following steps: taking a compound P-II as a raw material, and carrying out a coupling reaction with Ar to obtain a compound II;
the reaction process is as follows:
Figure BDA0002294440830000134
Figure BDA0002294440830000141
when in formula II Ar1、Ar2When the groups are different, the method for synthesizing the compound shown in the general formula II comprises the following steps: taking a compound P-II 'as a raw material, and reacting the compound P-II' with Ar in sequence1、Ar2Carrying out coupling reaction to obtain a compound II;
the reaction process is as follows:
Figure BDA0002294440830000142
when in formula III Ar1、Ar2The radicals being identical, i.e. Ar1、Ar2When both are Ar, the method for synthesizing the compound shown in the general formula III comprises the following steps: with the compound P-III is taken as a raw material, and is subjected to coupling reaction with Ar to obtain a compound III;
the reaction process is as follows:
Figure BDA0002294440830000143
when in formula III Ar1、Ar2When the groups are different, the method for synthesizing the compound shown in the general formula III comprises the following steps: taking a compound P-III 'as a raw material, and reacting the compound P-III' with Ar in sequence1、Ar2Carrying out coupling reaction to obtain a compound III;
the reaction process is as follows:
Figure BDA0002294440830000144
the above steps can be carried out by a person skilled in the art by known and conventional means, such as selecting a suitable catalyst, solvent, determining a suitable reaction temperature, time, etc.
In the above process for preparing a compound represented by any one of the general formulae I to III, when Ar is Ar1、Ar2The radicals being identical, i.e. Ar1、Ar2When both are Ar, as a preferred embodiment of the present invention, the method comprises: and (2) taking xylene as a reaction solvent, cuprous chloride as a catalyst, potassium hydroxide as an alkali, controlling the temperature to be 75-85 ℃ under the protection of nitrogen, and performing a coupling reaction on the raw materials and Ar to obtain the target compound.
In the above process for preparing a compound represented by any one of the general formulae I to III, when Ar is Ar1、Ar2When the groups are different, as a preferred embodiment of the present invention, the method comprises: firstly, dimethylbenzene is used as a reaction solvent, cuprous chloride is used as a catalyst, potassium hydroxide is used as alkali, nitrogen is used for protection, the temperature is controlled to be 75-85 ℃, and the raw material and Ar are mixed1Coupling reaction is carried out to obtain an intermediate product; and then taking toluene as a solvent, palladium acetate and tri-tert-butylphosphine as catalysts, potassium tert-butoxide as an alkali, protecting with nitrogen, controlling the temperature to be 90-120 ℃, and reacting the intermediate product and Ar2Coupling reaction is carried out to obtain the targetA compound is provided.
The starting materials for the solvents, catalysts, bases, etc., used in the present invention can be synthesized by published commercial routes or methods known in the art.
The invention also protects the application of the novel organic material in an organic electroluminescent device. Preferably, the novel organic material is used as an electron transport material in an electron transport layer.
The invention also discloses an organic electroluminescent device, and an electron transport layer of the organic electroluminescent device contains the novel organic material. Specifically, the organic electroluminescent device protected by the invention sequentially comprises a transparent substrate, an anode layer, a hole transport layer, an electroluminescent layer, an electron transport layer, an electron injection layer and a cathode layer which are made of the novel organic material.
The novel organic material provided by the invention takes forced-occupied ton and occupied ton as a parent nucleus, and the compound has a wider band gap, a high T1 energy level and a proper Highest Occupied Molecular Orbital (HOMO) energy level. The compound has high thermal stability and is not easy to decompose in the sublimation process. And has higher glass transition temperature, and can maintain the phase stability of the formed film. By introducing a group with larger steric hindrance, the luminescent material is further difficult to crystallize and quench and has good film-forming property.
Detailed Description
The following examples are intended to illustrate the invention but are not intended to limit the scope of the invention.
According to some embodiments of the present invention, the preferred solvent for preparing the organic electroluminescent device according to the present invention is selected from toluene, DMF or a mixture of these solvents. The reagents are analytically pure reagents, and the intermediate is purchased from an online shopping mall or is custom-synthesized from outsourcing companies.
Example 1
Figure BDA0002294440830000161
Synthesis of (Compound II-1-1)
The synthetic route is as follows:
Figure BDA0002294440830000162
synthesis of Compound II-1-1
A1 liter three-necked flask was equipped with a magnetic stirrer, and after nitrogen substitution, 40.07g (0.378mol) of sodium carbonate, 25.62g (purity 99%, 0.21mol) of phenylboronic acid and 100ml of toluene were sequentially added. After nitrogen replacement, 0.5g of Pd132 was added in this order. After the addition, the temperature was raised to 80 ℃. Dropwise addition was started in a solution consisting of 53.6g of compound P1 (purity 99%, 0.1mol) and 100ml of toluene, the temperature being controlled at 75-90 ℃. Cooling to room temperature, adding 100ml deionized water for hydrolysis, stirring for 10 min, filtering, and boiling the filter cake with DMF for several times to obtain 42.93g of light yellow solid with purity of 99% and yield of 81%.
Product MS (m/e): 530; elemental analysis (C)32H18O4S2): theoretical value C: 72.43 percent; h: 3.42 percent; o: 12.06 percent; s: 12.09%; found value C: 72.42 percent; h: 3.43 percent; o: 12.06 percent; s: 12.09 percent.
Example 2
Figure BDA0002294440830000163
Synthesis of (Compound II-1-6)
The synthetic route is as follows:
Figure BDA0002294440830000164
synthesis of Compound II-1-6
A1 liter three-necked flask was equipped with magnetic stirring, and after nitrogen substitution, 40.28g (0.38mol) of sodium carbonate, 41.58g (99% purity, 0.21mol) of 4-biphenylboronic acid and 100ml of toluene were sequentially added. After nitrogen replacement, 0.5g of Pd132 was added in this order. After the addition, the temperature was raised to 80 ℃. Dropwise addition was started in a solution consisting of 53.6g of compound P1 (purity 99%, 0.1mol) and 100ml of toluene, the temperature being controlled at 75-90 ℃. Cooling to room temperature, adding 100ml deionized water for hydrolysis, stirring for 10 min, filtering, and boiling the filter cake with DMF for several times to obtain 54.56g of light yellow solid with purity of 99% and yield of 80%.
Product MS (m/e): 682; elemental analysis (C)44H26O4S2): theoretical value C: 77.40 percent; h: 8.84 percent; o: 9.37 percent; s: 9.39 percent; found value C: 77.39 percent; h: 8.85 percent; o: 9.37 percent; s: 9.39 percent.
Example 3
Figure BDA0002294440830000171
Synthesis of (Compound II-1-11)
The synthetic route is as follows:
Figure BDA0002294440830000172
synthesis of Compound II-1-11
A1 liter three-necked flask was equipped with magnetic stirring, and after nitrogen substitution, 40.07g (0.378mol) of sodium carbonate, 42.84g (purity 99%, 0.21mol) of 4-cyclohexylphenyl) boronic acid and 100ml of toluene were sequentially added. After nitrogen replacement, 0.5g of Pd132 was added in this order. After the addition, the temperature was raised to 80 ℃. Dropwise addition was started in a solution consisting of 53.6g of compound P1 (purity 99%, 0.1mol) and 100ml of toluene, the temperature being controlled at 75-90 ℃. Cooling to room temperature, adding 100ml deionized water for hydrolysis, stirring for 10 min, filtering, and boiling the filter cake with DMF for several times to obtain 55.52g of light yellow solid with purity of 99% and yield of 80%.
Product MS (m/e): 694; elemental analysis (C)44H38O4S2): theoretical value C: 76.05 percent; h: 5.51 percent; o: 9.21 percent; s: 9.23 percent; found value C: 76.04 percent; h: 5.52 percent; o: 9.21 percent; s: 9.23 percent.
Example 4
Figure BDA0002294440830000181
Synthesis of (Compound II-1-14)
The synthetic route is as follows:
Figure BDA0002294440830000182
synthesis of Compound II-1-14
A1 liter three-necked flask was equipped with a magnetic stirrer, and after nitrogen substitution, 40.28g (0.38mol) of sodium carbonate, 47.88g (99% purity, 0.21mol) of dibenzothiophene-2-boronic acid and 100ml of toluene were sequentially added. After nitrogen replacement, 0.5g of Pd132 was added in this order. After the addition, the temperature was raised to 80 ℃. Dropwise addition was started in a solution consisting of 53.6g of compound P1 (purity 99%, 0.1mol) and 100ml of toluene, the temperature being controlled at 75-90 ℃. Cooling to room temperature, adding 100ml deionized water for hydrolysis, stirring for 10 min, filtering, and boiling the filter cake with DMF for several times to obtain 59.36g of light yellow solid with purity of 99% and yield of 80%.
Product MS (m/e): 742; elemental analysis (C)44H22O4S4): theoretical value C: 71.14 percent; h: 2.98 percent; o: 8.61 percent; s: 17.26 percent; found value C: 71.13 percent; h: 2.99 percent; o: 8.61 percent; s: 17.26 percent.
Example 5
Figure BDA0002294440830000183
Synthesis of (Compound II-1-16)
The synthetic route is as follows:
Figure BDA0002294440830000184
synthesis of Compound II-1-29
A1 liter three-necked flask was equipped with magnetic stirring, and after nitrogen substitution, 40.07g (0.378mol) of sodium carbonate, 49.98g (purity 99%, 0.21mol) of 9, 9-dimethyl-9H-fluoren-3-yl) boronic acid and 100ml of toluene were added in this order. After nitrogen replacement, 0.5g of Pd132 was added in this order. After the addition, the temperature was raised to 80 ℃. Dropwise addition was started in a solution consisting of 53.6g of compound P1 (purity 99%, 0.1mol) and 100ml of toluene, the temperature being controlled at 75-90 ℃. Cooling to room temperature, adding 100ml deionized water for hydrolysis, stirring for 10 min, filtering, and boiling the filter cake with DMF for several times to obtain 61.72g of light yellow solid with purity of 99% and yield of 81%.
Product MS (m/e): 762; elemental analysis (C)50H34O4S2): theoretical value C: 78.71 percent; h: 4.49 percent; o: 8.39 percent; s: 8.41 percent; found value C: 78.70 percent; h: 4.50 percent; o: 8.39 percent; s: 8.41 percent.
Example 6
Figure BDA0002294440830000191
Synthesis of (Compound II-1-18)
The synthetic route is as follows:
Figure BDA0002294440830000192
synthesis of Compound II-1-18
A1 liter three-necked flask was equipped with a magnetic stirrer, and after nitrogen substitution, 40.07g (0.378mol) of sodium carbonate, 75.6g (purity 99%, 0.21mol) of 9, 9' -spirobifluorene-3-boronic acid and 100ml of toluene were sequentially added. After nitrogen replacement, 0.5g of Pd132 was added in this order. After the addition, the temperature was raised to 80 ℃. Dropwise addition was started in a solution consisting of 53.6g of compound P1 (purity 99%, 0.1mol) and 100ml of toluene, the temperature being controlled at 75-90 ℃. Cooling to room temperature, adding 100ml deionized water for hydrolysis, stirring for 10 min, filtering, and boiling the filter cake with DMF for several times to obtain 78.47g of light yellow solid with purity of 99% and yield of 78%.
Product MS (m/e): 1006; elemental analysis (C)70H38O4S2): theoretical value C: 83.48 percent; h: 3.80 percent; o: 6.35 percent; s: 6.37 percent; found value C: 83.47 percent; h: 3.81 percent; o: 6.35 percent; s: 6.37 percent.
Example 7
Figure BDA0002294440830000201
Synthesis of (Compound II-1-41)
The synthetic route is as follows:
Figure BDA0002294440830000202
synthesis of Compound II-1-41-1
A1 liter three-necked flask was equipped with magnetic stirring, and after nitrogen substitution, 20.03g (0.19mol) of sodium carbonate, 13.42g (purity 99%, 0.11mol) of phenylboronic acid and 100ml of toluene were sequentially added. After nitrogen replacement again, 0.25g of Pd132 was added in this order. After the addition, the temperature was raised to 80 ℃. Dropwise addition was started in a solution consisting of 53.6g of compound P1 (purity 99%, 0.1mol) and 100ml of toluene, the temperature being controlled at 75-90 ℃. Cooling to room temperature, adding 100ml deionized water for hydrolysis, stirring for 10 min, filtering, and repeatedly boiling the filter cake with DMF for several times to obtain 26.65g of light yellow solid with purity of 99% and yield of 50%.
Synthesis of Compound II-1-41
A1 liter three-necked flask was equipped with magnetic stirring, and after nitrogen substitution, 20.03g (0.19mol) of sodium carbonate, 26.18g (purity 99%, 0.11mol) of (9, 9-dimethyl-9H-fluoren-3-yl) boronic acid and 100ml of toluene were sequentially added. After nitrogen replacement again, 0.25g of Pd132 was added in this order. After the addition, the temperature was raised to 80 ℃. A solution of 53.3g of Compound II-1-41-1 (purity 99%, 0.1mol) and 100ml of toluene was added dropwise thereto, the temperature was controlled at 75-90 ℃. Cooling to room temperature, adding 100ml deionized water for hydrolysis, stirring for 10 min, filtering, and boiling the filter cake with DMF for several times to obtain 53.62g of light yellow solid with purity of 99% and yield of 83%.
Product MS (m/e): 646; elemental analysis (C)41H26O4S2): theoretical value C: 76.14 percent; h: 4.05 percent; o: 9.89 percent; s: 9.92 percent; found value C: 76.13 percent; h: 4.06 percent; o: 9.89 percent; s: 9.92 percent.
Example 8
Figure BDA0002294440830000203
Synthesis of (Compound II-1-91)
The synthetic route is as follows:
Figure BDA0002294440830000211
synthesis of Compound II-1-91-1
A1L three-necked flask is stirred by magnetic force, and after nitrogen replacement, 20.03g (0.19mol) of sodium carbonate, 25.08g (purity 99%, 0.11mol) of benzothiophene-2-boronic acid and 100ml of toluene are added in sequence. After nitrogen replacement, 0.25g of Pd132 was added in this order. After the addition, the temperature was raised to 80 ℃. Dropwise addition was started in a solution consisting of 53.6g of compound P1 (purity 99%, 0.1mol) and 100ml of toluene, the temperature being controlled at 75-90 ℃. Cooling to room temperature, adding 100ml deionized water for hydrolysis, stirring for 10 min, filtering, and boiling the filter cake with DMF for several times to obtain 31.31g of light yellow solid with purity of 99% and yield of 49%.
Synthesis of Compound II-1-91
A1 liter three-necked flask was equipped with magnetic stirring, and after nitrogen substitution, 20.03g (0.19mol) of sodium carbonate, 26.18g (purity 99%, 0.11mol) of (9, 9-dimethyl-9H-fluoren-3-yl) boronic acid and 100ml of toluene were sequentially added. After nitrogen replacement again, 0.25g of Pd132 was added in this order. After the addition, the temperature was raised to 80 ℃. A solution of 63.9g of Compound II-1-91-1 (purity 99%, 0.1mol) and 100ml of toluene was added dropwise thereto, and the temperature was controlled at 75-90 ℃. Cooling to room temperature, adding 100ml deionized water for hydrolysis, stirring for 10 min, filtering, and boiling the filter cake with DMF for several times to obtain 59.41g of light yellow solid with purity of 99% and yield of 79%.
Product MS (m/e): 752; elemental analysis (C)47H28O4S3): theoretical value C: 74.98 percent; h: 3.75 percent; o: 8.50 percent; s: 12.78 percent; found value C: 74.97 percent; h: 3.76 percent; o: 8.50 percent; s: 12.78 percent.
According to the technical schemes of the examples 1 to 8, the compounds shown in II-1-1 to II-1-108 can be synthesized only by simply replacing the corresponding raw materials without changing any substantial operation.
Preparation of device examples
(1) Carrying out ultrasonic treatment on the glass plate coated with the ITO transparent conductive layer in a commercial cleaning agent, washing the glass plate in deionized water, ultrasonically removing oil in an acetone-ethanol mixed solvent (the volume ratio is 1: 1), baking the glass plate in a clean environment until the water is completely removed, cleaning the glass plate by using ultraviolet light and ozone, and bombarding the surface by using low-energy cationic beams;
(2) placing the glass substrate with the anode in a vacuum chamber, and vacuumizing to 1 × 10-5~9×10-3PP1, evaporating HATCN as a first hole injection layer on the anode layer film in vacuum, wherein the evaporation rate is 0.1nm/s, and the total evaporation film thickness is 1 nm; then evaporating a second hole injection layer HT01 at the evaporation rate of 0.1nm/s and the thickness of 40 nm;
Figure BDA0002294440830000221
(3) evaporating and plating a layer of NPB (nitrogen-phosphorus) on the hole injection layer film to form a hole transport layer, wherein the evaporation rate is 0.1nm/s, and the evaporation film thickness is 20 nm;
Figure BDA0002294440830000222
(4) EML is evaporated on the hole transport layer in vacuum and used as a light emitting layer of the device, the EML comprises a main material and a dye material, the evaporation rate of the main material PRH01 is adjusted to be 0.1nm/s by using a multi-source co-evaporation method, and the dye material Ir (piq)2The acac concentration is 5%, and the total film thickness of evaporation plating is 30 nm;
Figure BDA0002294440830000223
(5) continuously evaporating a layer of the compound II-1-1 provided in the embodiment 1 on the organic light-emitting layer to be used as an electron transport layer of the device, wherein the evaporation rate is 0.1nm/s, and the evaporation film thickness is 30 nm;
(6) continuously evaporating a layer of LiF on the electron transport layer to be used as an electron injection layer of the device, wherein the thickness of the evaporated film is 0.5 nm;
(7) continuously evaporating a layer of Al on the electron injection layer to be used as a cathode of the device, wherein the thickness of the evaporated film is 150 nm; the OLED device provided by the invention is obtained and is marked as OLED-1.
According to the same procedure as above, the compound II-1-1 in the step (5) is replaced with the compound obtained in the example 2-8, and devices OLED-2-OLED-8 are obtained.
According to the same procedure as above, compound II-1-1 in step (5) was replaced with a comparative compound (structure shown below), to give a comparative device OLED-9.
Figure BDA0002294440830000224
Comparative Compound 1
The results of the performance tests of the devices OLED-1 to OLED-9 are shown in Table 1.
Table 1: performance test results of OLED-1 to OLED-9
Figure BDA0002294440830000231
From the above results, it can be seen that the current efficiencies of the devices OLED-1 to OLED-8 prepared by using the novel organic material provided by the present invention are higher, and the operating voltage is significantly lower than that of the device OLED-9 using the comparative compound 1 as an electron transport material under the same brightness condition.
Although the invention has been described in detail hereinabove by way of general description, specific embodiments and experiments, it will be apparent to those skilled in the art that many modifications and improvements can be made thereto based on the invention. Accordingly, such modifications and improvements are intended to be within the scope of the invention as claimed.

Claims (10)

1. A novel organic material having any one of the structures represented by general formulae I to III:
Figure FDA0002294440820000011
the R is1、R2、R3、R4Each independently represents-H, -F, -Cl, -Br, -I, -n (Ar), -C (═ O) Ar, -P (═ O) Ar, -S (═ O)2Ar、-OAr、-SAr、-CN、-NO2An alkyl group having 1 to 40 carbon atoms, an alkoxy group having 1 to 40 carbon atoms or a sulfoalkoxy group having 1 to 40 carbon atoms;
ar is1、Ar2Each independently represents a compound having a benzene ring and/or an aromatic heterocyclic ringOr represents a H atom, Ar1、Ar2May be the same or different, and Ar1、Ar2Not H atoms at the same time.
2. The material according to claim 1, having any one of the structures represented by general formulas II-1 to II-3 and III-1 to III-6:
Figure FDA0002294440820000012
Figure FDA0002294440820000021
3. the material of claim 2, having a structure according to formula II-1.
4. A material according to any one of claims 1 to 3, wherein R is1、R2、R3、R4All represent H atoms.
5. The material of claim 1, having a structure according to formula II-1':
Figure FDA0002294440820000022
6. a material according to any one of claims 1 to 5, wherein Ar is Ar1、Ar2Each independently represents a neutral aromatic group containing n benzene rings and/or aromatic heterocyclic rings, and n represents an integer of 1-6; the neutral aromatic group is selected from substituted or unsubstituted monocyclic aromatic hydrocarbon, substituted or unsubstituted polyphenyl aliphatic hydrocarbon, substituted or unsubstituted biphenyl aromatic hydrocarbon and substituted or unsubstituted polycyclic aromatic hydrocarbon;
preferably, Ar is1、Ar2Each independently selected from the group consisting of:
Figure FDA0002294440820000023
Figure FDA0002294440820000031
more preferably, Ar is1、Ar2Each independently selected from the group consisting of:
Figure FDA0002294440820000032
Figure FDA0002294440820000041
7. the material according to claim 1, characterized in that it is selected from compounds of the following specific structure:
Figure FDA0002294440820000042
Figure FDA0002294440820000051
Figure FDA0002294440820000061
Figure FDA0002294440820000071
Figure FDA0002294440820000081
Figure FDA0002294440820000091
Figure FDA0002294440820000101
Figure FDA0002294440820000111
Figure FDA0002294440820000121
8. use of the novel organic material of any one of claims 1 to 7 in an organic electroluminescent device; preferably, the material is used as an electron transport material in an electron transport layer.
9. An organic electroluminescent device, characterized in that an electron transport layer thereof contains the novel organic material according to any one of claims 1 to 7.
10. An organic electroluminescent device, comprising, from bottom to top, a transparent substrate, an anode layer, a hole transport layer, an electroluminescent layer, an electron transport layer, an electron injection layer and a cathode layer, which are formed from the novel organic material according to any one of claims 1 to 7.
CN201911194868.9A 2019-11-28 2019-11-28 Novel organic material and application thereof in device Pending CN111039954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911194868.9A CN111039954A (en) 2019-11-28 2019-11-28 Novel organic material and application thereof in device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911194868.9A CN111039954A (en) 2019-11-28 2019-11-28 Novel organic material and application thereof in device

Publications (1)

Publication Number Publication Date
CN111039954A true CN111039954A (en) 2020-04-21

Family

ID=70233998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911194868.9A Pending CN111039954A (en) 2019-11-28 2019-11-28 Novel organic material and application thereof in device

Country Status (1)

Country Link
CN (1) CN111039954A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635420A (en) * 2020-07-10 2020-09-08 北京燕化集联光电技术有限公司 Novel polyheterocyclic compound and application thereof
CN111635421A (en) * 2020-07-10 2020-09-08 北京燕化集联光电技术有限公司 Organic material with multi-heterocyclic structure and application thereof
CN111662308A (en) * 2020-07-10 2020-09-15 北京燕化集联光电技术有限公司 SO (SO)2Compound with multi-heterocyclic structure and application thereof
CN111662309A (en) * 2020-07-10 2020-09-15 北京燕化集联光电技术有限公司 Compound with multi-heterocyclic structure and application thereof
CN111662298A (en) * 2020-07-10 2020-09-15 北京燕化集联光电技术有限公司 Novel compound containing multiple heterocyclic rings and application thereof in organic electroluminescent device
CN111689989A (en) * 2020-07-10 2020-09-22 北京燕化集联光电技术有限公司 Novel SO-containing2Polyheterocyclic compounds and uses thereof
CN111689985A (en) * 2020-07-10 2020-09-22 北京燕化集联光电技术有限公司 Containing SO2Compound with multi-heterocyclic structure and application thereof
CN111689984A (en) * 2020-07-10 2020-09-22 北京燕化集联光电技术有限公司 Compound containing multi-heterocyclic structure and application thereof
CN111689971A (en) * 2020-07-10 2020-09-22 北京燕化集联光电技术有限公司 Multi-heterocyclic compound and application thereof
CN111747970A (en) * 2020-07-10 2020-10-09 北京燕化集联光电技术有限公司 Containing SO2Polyheterocyclic compounds and their use
CN111763210A (en) * 2020-07-10 2020-10-13 北京燕化集联光电技术有限公司 Compound containing multi-heterocyclic structure and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101490208A (en) * 2006-07-28 2009-07-22 默克专利有限公司 Novel materials for organic electroluminescent devices
JP2012012495A (en) * 2010-06-30 2012-01-19 Nippon Zeon Co Ltd Polymerizable compound, polymerizable composition, polymer and semiconductor device
CN103087065A (en) * 2011-11-03 2013-05-08 三星显示有限公司 Ovel Heterocyclic Compound, Organic Light-emitting Device Including The Same And Flat Panel Display Device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101490208A (en) * 2006-07-28 2009-07-22 默克专利有限公司 Novel materials for organic electroluminescent devices
JP2012012495A (en) * 2010-06-30 2012-01-19 Nippon Zeon Co Ltd Polymerizable compound, polymerizable composition, polymer and semiconductor device
CN103087065A (en) * 2011-11-03 2013-05-08 三星显示有限公司 Ovel Heterocyclic Compound, Organic Light-emitting Device Including The Same And Flat Panel Display Device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635420A (en) * 2020-07-10 2020-09-08 北京燕化集联光电技术有限公司 Novel polyheterocyclic compound and application thereof
CN111635421A (en) * 2020-07-10 2020-09-08 北京燕化集联光电技术有限公司 Organic material with multi-heterocyclic structure and application thereof
CN111662308A (en) * 2020-07-10 2020-09-15 北京燕化集联光电技术有限公司 SO (SO)2Compound with multi-heterocyclic structure and application thereof
CN111662309A (en) * 2020-07-10 2020-09-15 北京燕化集联光电技术有限公司 Compound with multi-heterocyclic structure and application thereof
CN111662298A (en) * 2020-07-10 2020-09-15 北京燕化集联光电技术有限公司 Novel compound containing multiple heterocyclic rings and application thereof in organic electroluminescent device
CN111689989A (en) * 2020-07-10 2020-09-22 北京燕化集联光电技术有限公司 Novel SO-containing2Polyheterocyclic compounds and uses thereof
CN111689985A (en) * 2020-07-10 2020-09-22 北京燕化集联光电技术有限公司 Containing SO2Compound with multi-heterocyclic structure and application thereof
CN111689984A (en) * 2020-07-10 2020-09-22 北京燕化集联光电技术有限公司 Compound containing multi-heterocyclic structure and application thereof
CN111689971A (en) * 2020-07-10 2020-09-22 北京燕化集联光电技术有限公司 Multi-heterocyclic compound and application thereof
CN111747970A (en) * 2020-07-10 2020-10-09 北京燕化集联光电技术有限公司 Containing SO2Polyheterocyclic compounds and their use
CN111763210A (en) * 2020-07-10 2020-10-13 北京燕化集联光电技术有限公司 Compound containing multi-heterocyclic structure and application
CN111635421B (en) * 2020-07-10 2021-07-09 北京燕化集联光电技术有限公司 Organic material with multi-heterocyclic structure and application thereof
CN111662298B (en) * 2020-07-10 2021-08-10 北京燕化集联光电技术有限公司 Compound containing multiple heterocyclic rings and application thereof in organic electroluminescent device
CN111763210B (en) * 2020-07-10 2021-11-02 北京燕化集联光电技术有限公司 Compound containing multi-heterocyclic structure and application
CN111689971B (en) * 2020-07-10 2021-11-02 北京燕化集联光电技术有限公司 Multi-heterocyclic compound and application thereof
CN111689989B (en) * 2020-07-10 2021-11-02 北京燕化集联光电技术有限公司 Containing SO2Polyheterocyclic compounds and uses thereof
CN111662309B (en) * 2020-07-10 2021-11-09 北京燕化集联光电技术有限公司 Compound with multi-heterocyclic structure and application thereof
CN111689984B (en) * 2020-07-10 2021-11-09 北京燕化集联光电技术有限公司 Compound containing multi-heterocyclic structure and application thereof
CN111747970B (en) * 2020-07-10 2021-11-16 北京燕化集联光电技术有限公司 Containing SO2Polyheterocyclic compounds and their use
CN111689985B (en) * 2020-07-10 2021-11-16 北京燕化集联光电技术有限公司 Containing SO2Compound with multi-heterocyclic structure and application thereof
CN111662308B (en) * 2020-07-10 2021-11-16 北京燕化集联光电技术有限公司 SO (SO)2Compound with multi-heterocyclic structure and application thereof

Similar Documents

Publication Publication Date Title
CN111039954A (en) Novel organic material and application thereof in device
CN109694328B (en) Triarylamine compound, preparation method thereof and application thereof in organic electroluminescent device
CN110563746B (en) Novel SO2 spiro-structure-containing compound and application thereof in OLED (organic light emitting diode) device
CN110467626B (en) Novel spiro-structure compound and application thereof in OLED (organic light emitting diode) device
CN111825671A (en) Compound containing carbazole ring and application thereof
CN114560870B (en) Sulfur-containing polycyclic aromatic compound and application thereof
WO2012081541A1 (en) 1, 2, 4, 5-substituted phenyl derivative, production method for same, and organic electroluminescent element
CN110003020A (en) A kind of electroluminescent organic material and the preparation method and application thereof fluorene structured with spiral shell two
CN110903296B (en) OLED material and application thereof in device
CN110511234B (en) Novel heterocyclic spiro-structure compound and application thereof in OLED (organic light emitting diode) device
CN110551132A (en) ketone-containing compound and application thereof in organic electroluminescent device
CN111004253B (en) OLED material and application thereof
CN110551112A (en) Dicyano pyrazine-containing compound and application thereof in organic electroluminescent device
CN111004248B (en) Novel organic material and application thereof
CN111116602B (en) OLED material and application thereof in organic electroluminescent device
CN111004249B (en) OLED material and application thereof
CN111087407A (en) OLED material and application thereof
CN110511232B (en) Electron transport material and application thereof in device
CN110467625B (en) OLED bipolar main body material and application thereof in device
CN110903302A (en) Xanthene OLED material and synthetic method and application thereof
CN110511231B (en) Bipolar host material and application thereof in device
CN109678730A (en) A kind of organic electroluminescent cavitation material and its preparation and application
CN111039953A (en) Xanthene organic material and application thereof in devices
CN111004254A (en) Organic electroluminescent material and application thereof
CN111039955A (en) OLED material and application thereof in organic electroluminescent device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200421