JPH039363B2 - - Google Patents

Info

Publication number
JPH039363B2
JPH039363B2 JP18004282A JP18004282A JPH039363B2 JP H039363 B2 JPH039363 B2 JP H039363B2 JP 18004282 A JP18004282 A JP 18004282A JP 18004282 A JP18004282 A JP 18004282A JP H039363 B2 JPH039363 B2 JP H039363B2
Authority
JP
Japan
Prior art keywords
burner
furnace
combustion
main burner
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18004282A
Other languages
Japanese (ja)
Other versions
JPS5971905A (en
Inventor
Shigeki Morita
Tadahisa Masai
Toshio Uemura
Hitoshi Migaki
Kiichi Itagaki
Fumio Koda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP18004282A priority Critical patent/JPS5971905A/en
Publication of JPS5971905A publication Critical patent/JPS5971905A/en
Publication of JPH039363B2 publication Critical patent/JPH039363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/24Disposition of burners to obtain a loop flame

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 本発明は、特にボイラ等の堅型火炉燃焼方法に
於いて、燃焼排ガス中の未燃分及び窒素酸化物
(以下NOXと称す)を低減し、更にボイラ製造費
低減に適するボイラの燃焼方法に関するものであ
る。
Detailed Description of the Invention The present invention reduces unburned matter and nitrogen oxides (hereinafter referred to as NOX) in combustion exhaust gas, particularly in a vertical furnace combustion method such as a boiler, and further reduces boiler manufacturing costs. This relates to a boiler combustion method suitable for

従来事業用大容量ボイラの殆んどのものは堅型
火炉を有している。第1図に従来最も良く用いら
れている燃焼方式の1つである対向壁面燃焼にお
ける一般的なバーナ配置及び火炉内における火炎
噴流の形状を模式的に示す。
Most conventional large-capacity commercial boilers have a vertical furnace. FIG. 1 schematically shows the general burner arrangement and the shape of the flame jet in the furnace in opposed wall combustion, which is one of the conventionally most commonly used combustion methods.

各々の火炎1は、浮力により火炉中心近傍に至
る間に上方にわん曲し、一体となりながら上昇す
る。このため、上部に設置したバーナからの投入
燃料程、火炉内滞留時間が短かく、供給される燃
料の性状、空気比等の変化によつて必要な火炉高
さの増大を余儀なくされていた。
Each flame 1 curves upward while reaching the vicinity of the furnace center due to buoyancy, and rises as one. For this reason, the residence time in the furnace is shorter as the fuel is inputted from the burner installed at the top, making it necessary to increase the height of the furnace due to changes in the properties of the supplied fuel, air ratio, etc.

特に微粉炭を燃料とする場合には、石炭中の揮
発分の少ないものにおいては、必要燃焼物を大き
くとることが要求されることから、その減少によ
り上記火炉高さ増大の必要性が大となる。
Particularly when using pulverized coal as fuel, the amount of combustible material required for coal with a low volatile content is required to be large. Become.

又、多くのボイラは、NOX低減のために二段
燃焼を行う。すなわち、バーナ領域における燃焼
用空気を必要量より少なく供給し第一段の燃焼を
行う。この燃焼は不完全燃焼であり、未燃分を有
する。当該未燃分を、バーナ上方火炉内位置に空
気(アフターエア2)を供給することにより燃焼
させ第二段の燃焼を行う。本燃焼法により、バー
ナ領域における燃焼が活発・高温となることを抑
え、NOX低減を図ることができる。
Additionally, many boilers use two-stage combustion to reduce NOx. That is, the first stage combustion is performed by supplying a smaller amount of combustion air than necessary in the burner region. This combustion is incomplete combustion and contains unburned matter. The unburned matter is combusted by supplying air (after air 2) to a position in the furnace above the burner to perform second-stage combustion. This combustion method suppresses active combustion and high temperatures in the burner region, thereby reducing NOx.

第2図は、NOXの効果的な低減を図るための
他の燃焼方法について示したものである。
FIG. 2 shows another combustion method for effectively reducing NOX.

主バーナ20の上部に空気比<<1なる燃料過
剰大なるPバーナ30を設け、これを燃焼させる
ことにより、以下の反応を進行させ、総合的に
NOX低減を図る燃焼方法である。
A large P burner 30 with an air ratio of << 1 and a large excess of fuel is provided above the main burner 20, and by burning this, the following reactions proceed, and the overall
This is a combustion method that aims to reduce NOx.

・HC+NO→・XN+NO ― ― ― → N2 (・HCは・CHetcの燃料炭化水素の分解・部
分酸化に依つて生ずる燃焼中間生成物(ラジカ
ル)、・XNはNO還元反応の途中に生ずるラジカ
ルであり、NHetcを示す。) この方法はNOx低減に対し顕著な効果が期待
されるが以下のような欠点がある。
・HC+NO→・XN+NO ― ― ― → N 2 (・HC is a combustion intermediate product (radical) generated by the decomposition/partial oxidation of fuel hydrocarbons of ・CH etc.・XN is a radical generated during the NO reduction reaction (NH etc. ) Although this method is expected to have a significant effect on NOx reduction, it has the following drawbacks.

最も滞留時間の短かい最上部バーナが最も空
気比小なるPバーナであるため未燃分が急増す
る可能性が大である。
Since the top burner with the shortest residence time is the P burner with the smallest air ratio, there is a high possibility that the amount of unburned matter will increase rapidly.

又、未燃分を減少させるためには、アフター
エア量の増大と共に火炉高さの増大が必要とさ
れた。
Furthermore, in order to reduce the amount of unburned matter, it was necessary to increase the amount of after air and increase the height of the furnace.

主バーナ20の燃焼により最も燃焼ガス上昇
流速が大である位置は主バーナの上部付近であ
る。該位置にPバーナ30があるため、主バー
ナからの火炎にPバーナ燃焼ガスを混合するた
めには、Pバーナからの噴射燃料が、火炉中心
部に到達するに必要な推進力が相当量必要とさ
れる。
The position where the upward flow rate of combustion gas is highest due to combustion in the main burner 20 is near the top of the main burner. Since the P burner 30 is located at this position, in order to mix the P burner combustion gas with the flame from the main burner, a considerable amount of propulsive force is required for the injected fuel from the P burner to reach the center of the furnace. It is said that

脱硝領域は主バーナ火炎の互いに衝突する領
域であることが理想であるにもかかわらず、P
バーナ火炎の設置位置は必ずしも最適位置とさ
れていない。
Although the denitrification region is ideally the region where the main burner flames collide with each other, P
The installation position of the burner flame is not necessarily the optimum position.

更に、主バーナ火炎噴流根元部とPバーナ火
炎噴流根元部の位置が接近しているため各噴流
間に於て、干渉現象が生じ、主バーナ中に比較
的多量に供給される空気をPバーナ噴流が取込
むため、本来空気不足の程度の大きいことを前
提とするPバーナの空気比(A/F)が大きく
なり脱硝効果を下げる結果となつていた。
Furthermore, since the base of the main burner flame jet and the base of the P burner flame jet are close to each other, an interference phenomenon occurs between the jets, and a relatively large amount of air supplied into the main burner is transferred to the P burner. Since the jet stream takes in the air, the air ratio (A/F) of the P burner, which is originally based on the assumption that the degree of air shortage is large, increases, resulting in a decrease in the denitrification effect.

本発明の目的は、上記した従来技術の欠点をな
くし、排ガス中の未燃分を増大させることなく低
減し、更に火炉の小型化を達成することができる
燃焼方法を提供することにある。
An object of the present invention is to provide a combustion method that eliminates the drawbacks of the prior art described above, reduces unburned content in exhaust gas without increasing it, and can further downsize the furnace.

次に第3図以下、図面に示された一実施例によ
り本発明を詳細に説明する。
Next, from FIG. 3 onwards, the present invention will be explained in detail with reference to an embodiment shown in the drawings.

第3図に示されるごとく、火炉内に下向きに主
バーナ20が火炎噴射され、その後再び上昇し、
その軌跡がU字型となる、いわゆるU字型バーニ
ングの型態をとる。該主バーナ火炎の空気比は1
以下、望ましくは0.9〜0.98に調整される。
As shown in FIG. 3, the main burner 20 is injected with flame downward into the furnace, and then rises again.
The trajectory is U-shaped, so-called U-shaped burning. The air ratio of the main burner flame is 1
Hereinafter, it is preferably adjusted to 0.9 to 0.98.

空気比0.98より大では、主バーナ火炎からの
NOX生成が顕著に増大する可能性があり、一方
0.9未満では、局所領域(例えば、各バーナ間、
水壁近傍)に於て主バーナ火炎の一部より未燃分
が発生、増加するため共に好ましくない。
At air ratios greater than 0.98, the main burner flame
NOX production can be significantly increased, while
Below 0.9, local areas (e.g. between each burner,
Both are unfavorable because unburned matter is generated and increases from a part of the main burner flame (near the water wall).

但し、主バーナによる燃焼効率を高め、若しく
はNOx発生量を一層下げる必要のある場合には、
空気比をそれぞれ0.98より大、若しくは0.9未満
とすることもある。
However, if it is necessary to increase the combustion efficiency of the main burner or further reduce the amount of NOx generated,
The air ratio may be greater than 0.98 or less than 0.9, respectively.

該主バーナ20設置位置より下方から複数個の
Pバーナ30が主バーナ20によるU字型火炎の
中心近傍に向かい火炎噴射される。
A plurality of P burners 30 are injected with flame toward the center of the U-shaped flame produced by the main burner 20 from below the main burner 20 installation position.

第4−1図に示すごとくボイラ側壁よりPバー
ナ30−1を噴射することも考えられる。
It is also possible to inject the P burner 30-1 from the boiler side wall as shown in FIG. 4-1.

この場合において、前後壁及び左右側壁のPバ
ーナ取付位置を上下にずらし、又は噴射角度を変
えることにより、各Pバーナは主バーナ火炎噴流
の上下半分ずつと混合することになる。
In this case, by vertically shifting the mounting positions of the P burners on the front and rear walls and the left and right side walls, or by changing the injection angle, each P burner mixes with the upper and lower halves of the main burner flame jet.

第4−1は、主バーナ火炎の上部と左右側壁の
Pバーナ30−1が、下部と前後壁のPバーナ3
0が混合する状態を示す。
No. 4-1, the P burner 30-1 on the upper part of the main burner flame and the left and right side walls is replaced by the P burner 30-1 on the lower part and the front and rear walls.
0 indicates a mixed state.

本実施例により、混合効率が増大し脱硝領域が
広がり、より有効に還元脱硝反応を進行させるこ
とができる。更に、第4−2図に示すごとく主バ
ーナ火炎噴流形状に応じて、少なくとも1つの壁
面に取付けられた複数個のPバーナを、その取付
け位置が三角形状となるように配することによ
り、一層混合効率は増大する。
According to this embodiment, the mixing efficiency is increased, the denitrification area is expanded, and the reductive denitrification reaction can proceed more effectively. Furthermore, as shown in Fig. 4-2, a plurality of P burners attached to at least one wall surface are arranged so that their attachment positions are triangular, depending on the shape of the main burner flame jet. Mixing efficiency increases.

第5図は、主バーナ、Pバーナに関し、他の実
施例を示す。火炉の燃焼条件等により、主バーナ
の下方向角度を大きく取り得ない場合には、Pバ
ーナ火炎を水平方向に対し上向きに火炎噴射させ
ることにより有効な脱硝領域を設けることが可能
となる。
FIG. 5 shows another embodiment regarding the main burner and P burner. If the main burner cannot have a large downward angle due to the combustion conditions of the furnace, an effective denitrification region can be provided by injecting the P burner flame upward with respect to the horizontal direction.

第6図は、本発明の他の実施例を示すもので、
ホツパ部3の燃焼の改善及び強還元性ガスのホツ
パ水壁への直接接触を防止するために少量の空気
又はガス50をホツパ部3より供給することとし
たものである。
FIG. 6 shows another embodiment of the present invention,
A small amount of air or gas 50 is supplied from the hopper section 3 in order to improve combustion in the hopper section 3 and prevent direct contact of strongly reducing gas with the hopper water wall.

本発明の他の実施例として、以下のものが挙げ
られる。
Other embodiments of the invention include the following.

火炉内に、サンプリングプローグを設け、吸引
ガス性状及びチヤー性状を分析し、その結果を入
力電気信号処理することにより 最適なるPバーナ、主バーナ燃料量及び空気
比の調整 最適なるアフターエアの調整 主バーナ及びPバーナの少なくとも一方の火
炎噴射方向を変更可能なるように取付け、最適
角度に制御運転をすることにより燃焼させる。
A sampling probe is installed in the furnace to analyze the properties of the suction gas and chirar, and the results are processed as input electrical signals to optimize the P burner, main burner fuel amount, and air ratio, and to adjust the optimal after air. At least one of the burner and the P burner is installed so that the direction of flame injection can be changed, and combustion is performed by controlling the direction to an optimum angle.

本発明により、主バーナ火炎の接する範囲に脱
硝領域を設けることができ、脱硝効果が増大す
る。
According to the present invention, a denitrification region can be provided in the area in contact with the main burner flame, thereby increasing the denitrification effect.

本発明の他の効果は、空気比が小さく調整され
ているPバーナが主バーナの下部に取付けられて
いるため Pバーナによる燃焼の燃焼領域が増大し、未
燃分の減少に寄与し、又ボイラの小型化も実現
する。
Another effect of the present invention is that since the P burner, whose air ratio is adjusted to be small, is installed below the main burner, the combustion area for combustion by the P burner increases, contributing to the reduction of unburned matter, and The boiler can also be made smaller.

主バーナとPバーナが離れているため主バー
ナ、Pバーナ間における干渉を防ぎ、脱硝効果
の減少を防ぐ。
Since the main burner and P burner are separated, interference between the main burner and P burner is prevented, and a reduction in the denitrification effect is prevented.

主バーナ火炎の上昇速度の小さい位置にPバ
ーナ火炎を噴射するため、主バーナ火炎との混
合に必要なPバーナの推進力は小さくて済み、
圧力損失を小さくすることができる。
Since the P burner flame is injected at a position where the rising speed of the main burner flame is low, the propulsive force of the P burner required for mixing with the main burner flame is small.
Pressure loss can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、従来の火炉燃焼法、第3
図、第4−1図、第4−2図、第5図及び第6図
は、本発明の一実施例の概略説明図である。 1……火炎、2……アフターエア、3……ホツ
パ、10……ボイラ火炉、20……主バーナ、3
0……Pバーナ、40……アフターエアポツト、
50……ホツパガス。
Figures 1 and 2 show the conventional furnace combustion method,
4-1, 4-2, 5, and 6 are schematic explanatory diagrams of an embodiment of the present invention. 1...Flame, 2...After air, 3...Hotsupa, 10...Boiler furnace, 20...Main burner, 3
0...P burner, 40...After air pot,
50... Hotupagas.

Claims (1)

【特許請求の範囲】 1 ボイラ等の火炉において、該火炉への総供給
燃料の過半数が供給される複数個の主バーナの火
炎噴射方向を水平方向に対して下向きに燃焼さ
せ、残余燃料の一部又は全部を供給する脱硝バー
ナ(以下Pバーナと称す)の一部又は全部を主バ
ーナ設置位置より火炉下側に配置し燃焼させるこ
とを特徴とする窒素酸化物を低減する火炉燃焼方
法。 2 主バーナより上方火炉内位置にアフターエア
供給手段を設けたことを特徴とする特許請求の範
囲第1項記載の窒素酸化物を低減する火炉燃焼方
法。
[Claims] 1. In a furnace such as a boiler, the flame injection direction of a plurality of main burners to which a majority of the total fuel supplied to the furnace is combusted downward with respect to the horizontal direction, and one of the remaining fuel is A furnace combustion method for reducing nitrogen oxides, characterized in that part or all of a denitrification burner (hereinafter referred to as a P burner) that supplies nitrogen oxides is placed below the main burner installation position and burned. 2. A furnace combustion method for reducing nitrogen oxides according to claim 1, characterized in that an after air supply means is provided at a position in the furnace above the main burner.
JP18004282A 1982-10-15 1982-10-15 Furnace combustion method reducing nitrogen oxide Granted JPS5971905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18004282A JPS5971905A (en) 1982-10-15 1982-10-15 Furnace combustion method reducing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18004282A JPS5971905A (en) 1982-10-15 1982-10-15 Furnace combustion method reducing nitrogen oxide

Publications (2)

Publication Number Publication Date
JPS5971905A JPS5971905A (en) 1984-04-23
JPH039363B2 true JPH039363B2 (en) 1991-02-08

Family

ID=16076461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18004282A Granted JPS5971905A (en) 1982-10-15 1982-10-15 Furnace combustion method reducing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPS5971905A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295460C (en) * 2004-07-22 2007-01-17 华中科技大学 Device and method for w shape flame boiler completely burning
JP4859798B2 (en) * 2007-09-26 2012-01-25 株式会社日立製作所 Boiler device and method for remodeling boiler device

Also Published As

Publication number Publication date
JPS5971905A (en) 1984-04-23

Similar Documents

Publication Publication Date Title
US4790743A (en) Method of reducing the nox-emissions during combustion of nitrogen-containing fuels
EP0260382B2 (en) Low NOx burner
US6189464B1 (en) Pulverized coal combustion burner and combustion method thereby
US5429060A (en) Apparatus for use in burning pulverized fuel
RU2067724C1 (en) Low-emission swirling-type furnace
EP1213534B1 (en) Combustion method in which generation of NOx, CO and dioxine are suppressed and fluidized bed incinerator therefor
JPH0783405A (en) Combination body of low nox burner and nox port
JPH039363B2 (en)
JPH08178210A (en) Burner of furnace for gyratory combustion
AU5391196A (en) Circulating fluid bed steam generator nox control
EP1467148B1 (en) Air system for a fluidized-bed boiler
JPS5960107A (en) Low nox burning device
RU2052714C1 (en) Combined furnace and its operation
KR100231975B1 (en) Two stage nozzle for reducing nox
JPH08121711A (en) Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner
EP3479021B1 (en) Bubbling fluidized bed furnace
JPH09310807A (en) Apparatus and method for firing pulverized coal
JPS599413A (en) Combustion device
JPH10205733A (en) Secondary air supply method in fluidized bed combustion furnace
RU2349835C2 (en) Method for burning of solid fuel in swirling-type furnace and swirling-type furnace for its realisation
JP2895061B2 (en) Combustion method for boiler combustion device
KR100231972B1 (en) Burner for reducing nox
JPH09126416A (en) Combustion device
JPS6350568Y2 (en)
JPH0235888B2 (en)