JPH0393143A - Elementary analyzer for minute quantity of microwave plasma - Google Patents

Elementary analyzer for minute quantity of microwave plasma

Info

Publication number
JPH0393143A
JPH0393143A JP1227358A JP22735889A JPH0393143A JP H0393143 A JPH0393143 A JP H0393143A JP 1227358 A JP1227358 A JP 1227358A JP 22735889 A JP22735889 A JP 22735889A JP H0393143 A JPH0393143 A JP H0393143A
Authority
JP
Japan
Prior art keywords
plasma
microwave
cylindrical conductor
conductor
microwave plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227358A
Other languages
Japanese (ja)
Inventor
Yukio Okamoto
幸雄 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1227358A priority Critical patent/JPH0393143A/en
Publication of JPH0393143A publication Critical patent/JPH0393143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To improve the ratio of a signal to noise so as to enhance detection sensitivity by coaxially connecting a microwave unit to a plasma sampling system using a cylindrical conductor in such a manner that the central axes thereof accord with each other. CONSTITUTION:A microwave circuit 10 and a plasma sampling cone 31 are coaxially connected by a cylindrical conductor 20 in such a manner that the central axes thereof accord with each other. Namely, the cylindrical conductor 20 is activated to prevent microwave power supplied from the tip ends of a discharge tube 16 and outer conductor 13 from leaking into the atmosphere from a space between the cone 31 and the conductor 20. Even a fine signal can be accurately detected if the microwave power is large, thereby enhancing detection sensitivity of an analyzer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体や生体などの分野で用いられる極微量
元素の分析のためのマイクロ波プラズマ極微量元素分析
装置の、特に,プラズマ発生のためのマイクロ波のリー
クの阻止とプラズマ中に発生する異常電圧の防止に関す
る. 〔従来の技術〕 従来の代表的な大気圧マイクロ波プラズマを用いた極微
量元素分析装置はスペクトロケミカアクタ,42B,5
 (1987年)第705頁から第712頁(とくに、
第707頁のFig.2参照)において論じられている
.第2図にその概略構造を示す.ここで.10はT M
,、。共鳴キャビティなどから成るマイクロ波立体回路
部,16は石英などから或る放電管であり.30はプラ
ズマサンプリング系で、31はサンプリングコーン,3
4は前記サンプリングコーンの取付け基板である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a microwave plasma trace element analyzer for analyzing trace elements used in the fields of semiconductors, living organisms, etc. Regarding prevention of microwave leakage and prevention of abnormal voltage generated in plasma. [Prior art] A typical conventional ultratrace element analyzer using atmospheric pressure microwave plasma is Spectrochemika Acta, 42B, 5.
(1987) pp. 705 to 712 (especially
Fig. on page 707. 2). Figure 2 shows its schematic structure. here. 10 is T M
,,. The microwave three-dimensional circuit section consists of a resonant cavity, etc., and 16 is a discharge tube made of quartz or the like. 30 is a plasma sampling system, 31 is a sampling cone, 3
4 is a mounting board for the sampling cone.

50はイオン引出系であり,51はスキーマ、52は前
記スキーマの取付け基板,53はイオン引出し電極であ
る。また.60は石英管である。
50 is an ion extraction system, 51 is a schema, 52 is a mounting substrate for the schema, and 53 is an ion extraction electrode. Also. 60 is a quartz tube.

この従来装置においては,前記放電管16中に、前記キ
ャビティ(マイクロ波立体回路)10に供給したマイク
ロ波電力(360W)によって、プラズマを発生させる
。このとき前記放電管16中には分析すべき試料を導入
し、前記放電管16中に発生したプラズマによって解離
・励起・イオン化させる。このイオン化により得られた
試料イオンは前記サンプリングコーン31およびスキー
マ51に設けたオリフイスを通って引き出され、前記イ
オン引き出し電極53に印加した負電圧によって加速さ
れ、マスフィルタによって質量分析される。なお、大気
中からプラズマ中へのN2の混入を低減するために、前
記マイクロ波立体回路10と前記プラズマサンプリング
コーン31との間には石英管60が設けられ、大気側か
らプラズマを遮蔽している。
In this conventional device, plasma is generated in the discharge tube 16 by microwave power (360 W) supplied to the cavity (microwave three-dimensional circuit) 10. At this time, a sample to be analyzed is introduced into the discharge tube 16, and is dissociated, excited, and ionized by the plasma generated in the discharge tube 16. The sample ions obtained by this ionization are extracted through an orifice provided in the sampling cone 31 and the schema 51, accelerated by a negative voltage applied to the ion extraction electrode 53, and subjected to mass analysis by a mass filter. In addition, in order to reduce the mixing of N2 from the atmosphere into the plasma, a quartz tube 60 is provided between the microwave three-dimensional circuit 10 and the plasma sampling cone 31 to shield the plasma from the atmosphere side. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は,前記キャビティ10と前記サンプリン
グコーン31との間の空間からマイクロ波がリークする
点については配慮がされておらず、電波障害のみならず
、信号対雑音比が小さくなり極微量元素を高感度で検出
できないという問題があった。
The above-mentioned conventional technology does not take into consideration the leakage of microwaves from the space between the cavity 10 and the sampling cone 31, which not only causes radio wave interference but also reduces the signal-to-noise ratio, resulting in extremely small amounts of trace elements. There was a problem that it could not be detected with high sensitivity.

さらに、溶液試料を直接高感度で分析するためにマイク
ロ波電力を400W以上にすると、前記キャビティ10
と前記サンプリングコーン31との間に高周波電界が発
生し、プラズマ中のイオンのエネルギー分布f (E)
が異常になり、安定に高感度で極微量元素を検出できな
いなどの問題もあった・ 本発明の目的は、上記諸問題を解決することにある。
Furthermore, when the microwave power is increased to 400 W or more in order to directly analyze a solution sample with high sensitivity, the cavity 10
A high frequency electric field is generated between the sampling cone 31 and the ion energy distribution f (E) in the plasma.
There were also problems such as abnormalities and the inability to stably and sensitively detect trace elements.The purpose of the present invention is to solve the above-mentioned problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達或するために,第1図に示すように、マイ
クロ波立体回路部10(偏平導波管11,内導体12ク
,外導体13などから成る)とプラズマサンプリングコ
ーン31とを円筒状導体20(21〜25で構成)で中
心軸が一致するよう同心状に接続したものである。
In order to achieve the above purpose, as shown in FIG. The conductors 20 (composed of 21 to 25) are concentrically connected so that their central axes coincide.

また、前記マイクロ波立体回路10の先端部(前記外導
体13の先端部)と前記プラズマサンプリングコーン3
1との間のギャップdが任意に設定できるように,前記
円筒状導体20を、例えば第1図に示すように部分22
と24に分割し,両円筒状導体部分22と24のはめ合
わせで前記ギャップdを設定した後,高周波電流に対し
ても完全に導通するよう、例えばネジ23などで両部分
間を固定できるようにした。
Further, the tip of the microwave three-dimensional circuit 10 (the tip of the outer conductor 13) and the plasma sampling cone 3
For example, as shown in FIG.
After dividing the cylindrical conductor parts 22 and 24 into 24 parts and setting the gap d by fitting the two cylindrical conductor parts 22 and 24, the two parts can be fixed with, for example, screws 23 so as to be completely conductive even to high frequency current. I made it.

〔作用〕[Effect]

前記円筒状導体20は前記放電管16の先端部および前
記外導体13の先端部から放射されるマイクロ波電力が
前記プラズマサンプリングコーン31との間の空間から
大気中にリークするのを遮蔽するように動作する。それ
によって,マイクロ波電力が大きくなっても(400W
以上)極微小の信号でも正確に検出でき、分析装置の検
出感度を大幅に向上させることができる。
The cylindrical conductor 20 is designed to shield microwave power radiated from the tip of the discharge tube 16 and the outer conductor 13 from leaking into the atmosphere from the space between it and the plasma sampling cone 31. works. As a result, even if the microwave power becomes large (400W
Above) Even extremely small signals can be detected accurately, and the detection sensitivity of the analyzer can be greatly improved.

さらに、前記円筒状導休20は、前記内外導体12.1
3などから或るマイクロ波立体回路部10のプラズマ発
生部と前記プラズマサンプリングコーン31などから或
るプラズマサンプリング系30とを直流的のみならず高
周波的にも軸対称に同電位になるように動作する。それ
によって、プラズマ中に異常な電位が発生しなく異常な
素反応も生じないようになり(イオンのエネルギー分布
f (E)が異常にならない)、高感度で正確に定量分
析ができる。
Further, the cylindrical conductor 20 is arranged on the inner and outer conductors 12.1.
3, etc., and a certain plasma sampling system 30 from the plasma sampling cone 31, etc., are operated so as to be axially symmetrical and at the same potential not only in terms of DC but also in terms of high frequency. do. As a result, no abnormal potential is generated in the plasma, and no abnormal elementary reactions occur (the ion energy distribution f (E) does not become abnormal), allowing highly sensitive and accurate quantitative analysis.

〔実施例〕〔Example〕

以下、本発明の一実施例を第l図により説明する。ここ
で、10はマイクロ波プラズマを発生するための立体回
路部で、大電力(400W以上)で溶液試料を直接高感
度で分析できるように、例えば,特願昭63−3938
4号出願や特願平01−038219号出願に示したよ
うに、偏平導波管11,内導体12,外導体13,通風
口14,冷却ガス導入系15,放電管l6および試料導
入管17などから成る.20は本発明によるCuなどか
ら成る円筒状導体部で、円筒状導体部分(I)21と円
筒状導体部分(II) 24とで構成され、これらは各
々前記プラズマサンプリング系30と前記マイクロ波立
体回路部10とに電気的・機械的に軸対称に固定され,
さらに,これらは重複部(はめ合わせ部)を有するとと
もに、例えばビス23などで複数の個所で電気的および
機械的に接続・固定できるようになっている.接続・固
定の方法は上記に限定するものではない。また,前記円
筒状導体部分(1)と(II)の少なくとも一方には,
等間隔に複数個の通風口22と25を設ける.30はプ
ラズマサンプリング系で,サンプリングコーン31とこ
れを冷却するための冷却板32およびこれらを取付ける
真空容器34などから構成されている。前記サンプリン
グコーン31と前記真空容器34はSUSから、また前
記冷却板32はCuなどから成る。なお、前記冷却板3
2と前記真空容器34には冷却水通路33および35を
設けるとよい.イオン引出し電極41,イオン加速電極
42およびこれらを取ける基板43から成るイオン引出
し系40は,特M昭63−283602号および特願平
01−23835号出願に詳述した通りである。そして
,これらによって生威された試料イオンはマスフィルタ
で質量分析される. なお、前記マイクロ波立体回路部10や前記プラズマサ
ンプリング系30および前記イオン引出し系40の構成
や形状は上述したものに限定するものではない. さらに,上記説明は質的分析装置についてであったが、
発光分光装置はじめ、真空紫外光源やプラズマプロセシ
ングにおけるプラズマ源として応用する場合にも,前記
立体回路部10と前記真空容器34とを例えば前記プラ
ズマサンプリングコーン3lなどを介して前記円筒状導
体20で接続することによる効果は、基本的に同じであ
る.このとき,前記プラズマサンプリングコーン31の
形状などは目的に応じて変形するとよい.また,前記ギ
ャップdが一定でよいならば、前記円筒状導体部分(1
)と(II)とは一体で形威してもよい(その場合には
、ビス2−3などは不要である). 〔発明の効果〕 本発明によれば,前記円筒状導体20で前記マイクロ波
立体部10と前記プラズマサンプリング系30とを中心
軸が一致するように同軸的に接続することにより、プラ
ズマ発生のためのマイクロ波のリークを大電力(4 0
 0W以上)でも阻止での きtで、信号対雑音比が向上し、検出感度が向上する効
果があり,また安全衛生上の問題もなくなる効果がある
An embodiment of the present invention will be described below with reference to FIG. Here, 10 is a three-dimensional circuit section for generating microwave plasma, which can be used to directly analyze a solution sample with high sensitivity using large power (400 W or more).
As shown in Application No. 4 and Japanese Patent Application No. 01-038219, a flat waveguide 11, an inner conductor 12, an outer conductor 13, a ventilation port 14, a cooling gas introduction system 15, a discharge tube 16, and a sample introduction tube 17 It consists of etc. Reference numeral 20 denotes a cylindrical conductor portion made of Cu or the like according to the present invention, and is composed of a cylindrical conductor portion (I) 21 and a cylindrical conductor portion (II) 24, which are connected to the plasma sampling system 30 and the microwave stereo, respectively. It is electrically and mechanically fixed to the circuit part 10 axially symmetrically,
Furthermore, these have overlapping parts (fitting parts) and can be electrically and mechanically connected and fixed at multiple locations using screws 23, for example. The connection/fixing method is not limited to the above. Further, at least one of the cylindrical conductor portions (1) and (II) includes:
A plurality of ventilation holes 22 and 25 are provided at equal intervals. Reference numeral 30 denotes a plasma sampling system, which includes a sampling cone 31, a cooling plate 32 for cooling the cone, a vacuum vessel 34 to which these are attached, and the like. The sampling cone 31 and the vacuum container 34 are made of SUS, and the cooling plate 32 is made of Cu or the like. Note that the cooling plate 3
2 and the vacuum vessel 34 are preferably provided with cooling water passages 33 and 35. The ion extraction system 40 comprising the ion extraction electrode 41, the ion accelerating electrode 42, and the substrate 43 to which they can be attached is as detailed in Japanese Patent Application No. 63-283602 and Japanese Patent Application No. 01-23835. The sample ions generated by these are then subjected to mass analysis using a mass filter. Note that the configurations and shapes of the microwave three-dimensional circuit section 10, the plasma sampling system 30, and the ion extraction system 40 are not limited to those described above. Furthermore, although the above explanation was about a qualitative analysis device,
When applied to an emission spectrometer, a vacuum ultraviolet light source, or a plasma source in plasma processing, the three-dimensional circuit section 10 and the vacuum container 34 are connected by the cylindrical conductor 20, for example, via the plasma sampling cone 3l. The effect of doing so is basically the same. At this time, the shape of the plasma sampling cone 31 may be modified depending on the purpose. Moreover, if the gap d is constant, the cylindrical conductor portion (1
) and (II) may be used as one unit (in that case, screws 2-3 etc. are not required). [Effects of the Invention] According to the present invention, by coaxially connecting the microwave three-dimensional section 10 and the plasma sampling system 30 with the cylindrical conductor 20 so that their central axes coincide, plasma generation can be achieved. Microwave leakage of large power (4 0
0 W or more), the signal-to-noise ratio is improved, the detection sensitivity is improved, and safety and health problems are eliminated.

さらに、前記マイクロ波立体回路部10と前記プラズマ
サンプリング系30との間に大電力(400W以上)時
に発生する異常電圧を防止でき,プラズマ中のイオンエ
ネルギー分布f (E)が異常にならず、安定かつ正確
に極微量の元素が分析できるという重要な効果がある。
Furthermore, it is possible to prevent an abnormal voltage that occurs between the microwave three-dimensional circuit section 10 and the plasma sampling system 30 at the time of high power (400 W or more), and the ion energy distribution f (E) in the plasma does not become abnormal. This method has the important effect of allowing extremely trace amounts of elements to be analyzed stably and accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は、本発明の一実施例の主要部の断面図,第2図
は従来技術の主要部の断面図である。 10・・・マイクロ波立体回路部,11・・・偏平導波
管,12・・・内導体、13・・・外導体,14・・・
通風口、l6・・・放電管、20・・・円筒状導体部、
2l・・・円筒状導体部分(I)、24・・・円筒状導
体部分(II)、23・・・ビス(固定具).22.2
5・・・通風口、30・・・プラズマサンプリング系、
31・・・プラズマサンプリングコーン、32・・・冷
却板,34・・・真空容器、41・・・イオン引出し電
極,42・・・イオン加速電極。 II  74 7 I12:AtL4*riJ ss音
p20円筒状劃キ JO デラτマサンγ■ル7“不 第2図 刹臘啜Iへ 5σ.イ1ン引飄レ不 lθ:屈更管
FIG. 1 is a cross-sectional view of the main part of an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the main part of the prior art. DESCRIPTION OF SYMBOLS 10... Microwave three-dimensional circuit part, 11... Flat waveguide, 12... Inner conductor, 13... Outer conductor, 14...
Ventilation port, l6...discharge tube, 20...cylindrical conductor part,
2l... Cylindrical conductor portion (I), 24... Cylindrical conductor portion (II), 23... Screw (fixing tool). 22.2
5... Ventilation port, 30... Plasma sampling system,
31... Plasma sampling cone, 32... Cooling plate, 34... Vacuum container, 41... Ion extraction electrode, 42... Ion accelerating electrode. II 74 7 I12: AtL4*riJ ss sound p20 cylindrical punch JO dera

Claims (1)

【特許請求の範囲】 1、マイクロ波プラズマを用いた極微量元素分析装置に
おいて、プラズマ発生部のマイクロ波立体回路部とプラ
ズマやイオンなどをサンプリングするためのサンプリン
グコーンとを中心軸が一致する円筒状導体で接続したこ
とを特徴とするマイクロ波プラズマ極微量元素分析装置
。 2、前記円筒状導体の長さが可変できることを特徴とし
た請求項1記載のマイクロ波プラズマ極微量元素分析装
置。 3、前記円筒状導体に複数個の通風口を設けたことを特
徴とする請求項1または2記載のマイクロ波プラズマ極
微量元素分析装置。
[Claims] 1. In an ultratrace element analysis device using microwave plasma, a cylinder whose central axis coincides with the microwave three-dimensional circuit section of the plasma generation section and the sampling cone for sampling plasma, ions, etc. A microwave plasma ultratrace element analysis device characterized by being connected by a shaped conductor. 2. The microwave plasma trace element analysis apparatus according to claim 1, wherein the length of the cylindrical conductor is variable. 3. The microwave plasma trace element analysis apparatus according to claim 1 or 2, wherein the cylindrical conductor is provided with a plurality of ventilation holes.
JP1227358A 1989-09-04 1989-09-04 Elementary analyzer for minute quantity of microwave plasma Pending JPH0393143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227358A JPH0393143A (en) 1989-09-04 1989-09-04 Elementary analyzer for minute quantity of microwave plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227358A JPH0393143A (en) 1989-09-04 1989-09-04 Elementary analyzer for minute quantity of microwave plasma

Publications (1)

Publication Number Publication Date
JPH0393143A true JPH0393143A (en) 1991-04-18

Family

ID=16859548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227358A Pending JPH0393143A (en) 1989-09-04 1989-09-04 Elementary analyzer for minute quantity of microwave plasma

Country Status (1)

Country Link
JP (1) JPH0393143A (en)

Similar Documents

Publication Publication Date Title
US7105808B2 (en) Plasma ion mobility spectrometer
EP3062331A2 (en) Ambient desorption, ionization, and excitation for spectrometry
DE60045470D1 (en) Dual ion conductor mass spectrometer and apparatus for using the same
JPH11133000A (en) Discharge ionizing detector
US20210050198A1 (en) Mass spectrometry method and mass spectrometer
US20070187591A1 (en) Plasma ion mobility spectrometer
JPH03214044A (en) Method of analyzing sample matter in solid state, sample holder for supporting solid sample cathode for use in generation of plasma, instrument for directly analyzing combined continuous solid sample without matrix transformation and source for con ducting mass spectrum analysis on solid sample
US6646254B2 (en) Liquid chromatograph mass spectrometer
JPH0393143A (en) Elementary analyzer for minute quantity of microwave plasma
JPH01255146A (en) Ionizing method and device for high pressure mass analysis
US5455418A (en) Micro-fourier transform ion cyclotron resonance mass spectrometer
US6822229B2 (en) Glow discharge source for elementary analysis
JP2611732B2 (en) Plasma processing equipment
US5422482A (en) Mass spectrometric apparatus
US4695724A (en) AC-modulation quadrupole mass spectrometer
JP2000164169A (en) Mass spectrometer
JP2002062278A (en) Instrument for measuring gas purity
JPS59123155A (en) Tetrode mass spectrograph
JP2003315271A (en) Plasma generating apparatus and gas analyzer using the same
Friedmann et al. Ion-cyclotron-resonance mass spectrometry with a microwave plasma source
CN110729167B (en) Ion probe
CN210897193U (en) Ion signal detection device for quadrupole rod mass analyzer
WO2022123895A1 (en) Quadrupole mass spectrometer and residual gas analysis method
JPS6155848A (en) Mass spectrograph where inductive coupling plasma is used as ion source
WO2005059539A1 (en) Ims apparatus