JPH0392747A - Acoustic density meter - Google Patents

Acoustic density meter

Info

Publication number
JPH0392747A
JPH0392747A JP22840089A JP22840089A JPH0392747A JP H0392747 A JPH0392747 A JP H0392747A JP 22840089 A JP22840089 A JP 22840089A JP 22840089 A JP22840089 A JP 22840089A JP H0392747 A JPH0392747 A JP H0392747A
Authority
JP
Japan
Prior art keywords
fluid
pressure
density
tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22840089A
Other languages
Japanese (ja)
Other versions
JP2816992B2 (en
Inventor
Ippei Torigoe
一平 鳥越
Yasushi Ishii
石井 泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22840089A priority Critical patent/JP2816992B2/en
Publication of JPH0392747A publication Critical patent/JPH0392747A/en
Application granted granted Critical
Publication of JP2816992B2 publication Critical patent/JP2816992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To make the temperature, pressure and viscosity of fluid hard to give effects and to achieve convenient handling with a simple structure by obtaining the density of the fluid in a pipe based on the pressure gradient and the acceleration of the fluid in the pipe which is measured with a detector. CONSTITUTION:The sine wave signal outputted from a sine-wave oscillator 10 is applied to a diaphragm 5 of a speaker through an amplifier 8. Thus, the fluid in a measuring pipe 2 is vibrated. The output sine wave from the oscillator 10 is inputted into a multiplier 12. The phase of the output sine wave is made to advance by 90 deg. in a phase device 11. The obtained cosine wave is inputted into a multiplier 12'. The pressure in the measuring pipe 2 is guided into a differential converter 7 through waveguides 3 and 3'. The differential pressure DELTAp between the outputs is multiplied by sinomegat and cosomegat in the multipliers 12 and 12', respectively. The (x) and (y) components Ex and Ey of the pressure gradient are inputted into a substractor 14 through LPFs 13 and 13'. The density is obtained by substraction and inputted into an indicating instrument 15.

Description

【発明の詳細な説明】 本発明は、気体および液体の密度を測定する装置、特に
被測定流体に振動的な加速度が加えられたときに発生す
る圧力勾配変動から流体の密度を測定する装置にかかわ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the density of gases and liquids, and particularly to a device for measuring the density of a fluid from pressure gradient fluctuations that occur when vibrational acceleration is applied to the fluid to be measured. Involved.

流体密度の従来の測定法には次のような方法がある。実
験室的な方法として、一定体積の被測定流体の重量を測
定する方法、浮ひょう・ガス天秤など流体による浮力を
利用する方法。プロセスラインなどにおいて密度を時々
刻々測定する目的に適した方法として、被測定流体を満
たした管や被測定流体中に浸した振動片の共振周波数が
流体密度によって変化することを利用した方法、正対す
る二つの羽根車の一方を回転させたときに他方に発生す
るトルクが羽根車のまわりの流体の密度によって変化す
ることを利用した方法、一定の高さの液柱圧を測定する
方法、ガンマ線吸収の割合が物質の密度によって変化す
ることを利用した方法などである。
Conventional methods for measuring fluid density include: Laboratory methods include methods that measure the weight of a fixed volume of the fluid to be measured, and methods that utilize the buoyancy of fluids such as floats and gas balances. A method suitable for measuring density from time to time in process lines, etc. is a method that utilizes the fact that the resonant frequency of a tube filled with the fluid to be measured or a vibrating element immersed in the fluid changes depending on the fluid density. A method that utilizes the fact that when one of two impellers is rotated, the torque generated in the other changes depending on the density of the fluid around the impeller, a method that measures the liquid column pressure at a constant height, and gamma rays. This method takes advantage of the fact that the rate of absorption changes depending on the density of the material.

本発明は、流体の密度と流体の加速度および流体中の圧
力勾配の間に成り立つ関係一運動方程式に基づき、流体
に加えられた振動的な加速度と流体中の圧力勾配変動か
ら密度を知るものである。
The present invention is based on the relationship between the density of a fluid, the acceleration of the fluid, and the pressure gradient in the fluid, and the equation of motion. be.

本発明の目的は、被測定流体の温度、圧力,粘性に影響
されにくく、構造が単純で,取り扱いの簡便な密度計を
、従来の方法と異なる新しい動作原理に基づいて実現す
ることにある。
An object of the present invention is to realize a density meter that is not easily affected by the temperature, pressure, and viscosity of the fluid to be measured, has a simple structure, and is easy to handle, based on a new operating principle different from conventional methods.

以下、実施例に対応した第1図を用いて、本発明の構成
について説明する。第1図において、1は密度ρの被測
定流体の流れる管、2け、1に接続され被測定流体が満
たされた測定管である。
Hereinafter, the configuration of the present invention will be explained using FIG. 1 corresponding to an embodiment. In FIG. 1, 1 is a pipe through which a fluid to be measured having a density ρ flows, and 2 is a measurement pipe connected to 1 and filled with the fluid to be measured.

3および3゜は、間隔Lだけ隔てて洞定管2に接続され
た導圧管で、差圧変換器7に圧力を導く。
3 and 3° are pressure guide pipes connected to the sinusoidal tube 2 at a distance L, and guide pressure to the differential pressure converter 7.

4は測定管2の端につながり管1に接続する背管である
。5は測定管2に固定されたスビーカで、増幅器8によ
って駆動され、2の中の流体を振動させる。背管4は、
スビーカ5の振動膜の前後の圧力をほぼ等しくする為に
設けられたちので、管1内の圧力がほぼ大気圧に等しい
様な場合には、必ずしも設ける必要はない。また、測定
管2の上流側で1に接続して6構わない。差圧検出器7
は、後に説明するように、測定管2のなかの圧力勾配を
検出するために用いられている。6はスビーカ5の振動
板の振動速度を検出する速度ビックアップ、9は引き算
器、lOは一定周波数の正弦波sinωtを出力ずる正
弦波発振器である。
4 is a back pipe connected to the end of the measuring pipe 2 and connected to the pipe 1; Reference numeral 5 denotes a vibrator fixed to the measuring tube 2, which is driven by an amplifier 8 to vibrate the fluid inside the tube. The back tube 4 is
Since it is provided to make the pressures before and after the vibrating membrane of the speaker 5 approximately equal, it is not necessarily necessary to provide it when the pressure inside the tube 1 is approximately equal to atmospheric pressure. Alternatively, 6 may be connected to 1 on the upstream side of the measurement tube 2. Differential pressure detector 7
is used to detect the pressure gradient in the measuring tube 2, as will be explained later. Reference numeral 6 denotes a speed pickup for detecting the vibration speed of the diaphragm of the speaker 5, 9 a subtracter, and lO a sine wave oscillator that outputs a sine wave sinωt of a constant frequency.

5、6、8および9は速度サーボ系を構成しており、ス
ビーカ5の振動板は、正弦波発振器10の出力信号si
nωtと同相同波形で一定振幅の速度で振動する。発振
器10の周波数を、被測定流体の振動による音の波長が
測定管2の全長より十分長くなるような低い周波数にす
ると、2のなかの流体は一体となって管軸方向に振動し
、その振動速度Uも、sinωtと同相同波形で一定振
幅の信号U。sinωtとなる。11は移相器で、IO
の出力信号の位相を90”進めて、COSωtを出力ず
る。12および12゛は乗算器、13および13 はロ
ーバスフィルタである。差圧変換器7の出力信号は、乗
算器12によって正弦波発振器10の出力信号sinω
tと乗算され、l2の出力はローパスフィルタ13によ
って平滑されて信号E.どなる。同し様に、差圧変換器
7の出力信号と移相器1]の出力信号COSωtとは、
12゜によって乗算され、13゜によって平滑されて信
号Eyとなる。要するに、12、+2’.l3、13゛
は同期整流回路を構成していて、差圧変換器7の出力信
号のうちの、sinωtと同相の成分の大きさを表わす
信号E.およびCOSωtと同相の成分の大きさを表わ
す信号E,を出力するとと6に、雑音成分を除く役割を
果たしている。14は引き算器、15は指示計器である
5, 6, 8 and 9 constitute a speed servo system, and the diaphragm of the speaker 5 receives the output signal si of the sine wave oscillator 10.
It vibrates at a constant amplitude speed with the same waveform as nωt. When the frequency of the oscillator 10 is set to a low frequency such that the wavelength of the sound caused by the vibration of the fluid to be measured is sufficiently longer than the entire length of the measuring tube 2, the fluid in the measuring tube 2 vibrates as a unit in the tube axis direction. The vibration velocity U is also a signal U with a constant amplitude and the same waveform as sinωt. It becomes sinωt. 11 is a phase shifter, IO
The phase of the output signal of the differential pressure converter 7 is advanced by 90'' to output COSωt. 12 and 12' are multipliers, and 13 and 13 are low-pass filters. Output signal sinω of oscillator 10
The output of l2 is smoothed by a low-pass filter 13 to produce a signal E.t. bawl. Similarly, the output signal of the differential pressure converter 7 and the output signal COSωt of the phase shifter 1 are as follows:
The signal Ey is multiplied by 12° and smoothed by 13°. In short, 12, +2'. 13 and 13' constitute a synchronous rectifier circuit, and output a signal E.13, which represents the magnitude of the component in phase with sinωt of the output signal of the differential pressure converter 7. The output of the signal E, which represents the magnitude of the component in phase with COSωt, plays the role of removing noise components. 14 is a subtracter, and 15 is an indicator.

θ1j定管2のなかの流体が速度Uで管軸方向に運動し
ているとき、次の運動方程式が成り立つ。
θ1j When the fluid in the fixed tube 2 is moving in the tube axis direction at a speed U, the following equation of motion holds true.

p − a u/a t=−a p/a x    (
 1 )ここでLは時間を、pは圧力を、Xは管軸方向
の距離を表わす。上述のように14”luo S ] 
nωtであるから、流体の加速度a u / a tは
ωuocosωtに等しい。一方、振動速度の周波数は
、波長が測定管2の全長より十分長くなるような低い周
波数であるから、2のなかの軸方向圧力勾配はいたる所
で等しい。従って、測定管2のなかで距離上だけ隔てて
測定した差圧を△pとすると、 a p / a x−△p/t          (
2)が成り立ち、差圧△pは、圧力勾配δp / a 
xに比例ずる。(1)(2)式より Δp−−ρtωuocosωt    (3)であり、
差圧△pは余弦波信号になる。従って信号Eyは△pの
振幅に比例した信号となり、tとωUOの大きさが一定
であるから、E yG:i:流体の密度ρの大きさを表
わす信号になる。他方、信号E9はゼロである。第1図
において、Eyを指示計器に直接入力するのでなく、信
号E.を引き去ったのちに指示計器に入力しているのは
、粘性の大きな流体の密度も正確に測定できるようにす
るためである。
p − a u/a t=-a p/a x (
1) Here, L represents time, p represents pressure, and X represents distance in the tube axis direction. 14”luo S as mentioned above]
Since nωt, the fluid acceleration a u /at is equal to ωuocosωt. On the other hand, since the frequency of the vibration velocity is such a low frequency that the wavelength is sufficiently longer than the entire length of the measuring tube 2, the axial pressure gradient within the measuring tube 2 is equal everywhere. Therefore, if the differential pressure measured at a distance within the measuring tube 2 is △p, then a p / a x - △p/t (
2) holds, and the differential pressure △p is the pressure gradient δp / a
Proportional to x. From equations (1) and (2), Δp−−ρtωuocosωt (3),
The differential pressure Δp becomes a cosine wave signal. Therefore, the signal Ey becomes a signal proportional to the amplitude of Δp, and since the magnitudes of t and ωUO are constant, the signal Ey becomes a signal representing the magnitude of the fluid density ρ. On the other hand, signal E9 is zero. In FIG. 1, instead of inputting Ey directly to the indicating instrument, the signal E. The reason why it is input to the indicator after it is removed is to enable accurate measurement of the density of highly viscous fluids.

次に、流体の粘性が大きく、その影響が現われた場合に
ついて述べる。いま測定管2が円断面の管であるとして
説明すると、粘性の影響があるときの差圧△pは、運動
方程式から △p=−pLω(1+y)LIoCOS(dtptωy
uosinωt   (4) f旦しγ= (2 μ/ρω)  l / 2  / 
aμは粘性係数、aは管2の内半径 と求められる。すなわち、△pに振動速度に比例する成
分(sin(JJtの成分)が現われるとともに、加速
度に比例する成分(cosωtの成分)が粘性のない場
合よりも増大する。(4)式から分かるように、信号E
yは粘性がない場合の(1+γ)(gの大きさになり、
信号E.は、粘性がない場合のEyのγ倍の信号となる
。それゆえ、引き算器14によって、EyからE.を引
き去ることで、粘性が大きい流体の場合にも正しい密度
を測定することができる。測定管2が円断面でなくても
、(4)式と同様の関係式が成り立つから(γの大きさ
は異なる)、同様の構成で密度測定が可能である。なお
(4)式からわかるように、測定管2の半径aを大きく
し、正弦波発振器10の角周波数ωを大きくすると、粘
性の影響は小さくなる。適当なaとωを選択すれば、特
に粘性の大きい流体の場合を除いて、粘性の影響はほと
んど無視しつる。この場合には、信号E,を指示計器1
5に直接人力して、密度計を構成できる。
Next, we will discuss the case where the viscosity of the fluid is high and its influence appears. Now, assuming that the measurement tube 2 is a tube with a circular cross section, the differential pressure △p when there is an influence of viscosity is expressed as △p=-pLω(1+y)LIoCOS(dtptωy) from the equation of motion.
uosinωt (4) ftanshiγ= (2 μ/ρω) l / 2 /
aμ is the viscosity coefficient, and a is the inner radius of the tube 2. That is, a component proportional to the vibration speed (sin (JJt component)) appears in Δp, and a component proportional to acceleration (cosωt component) increases compared to the case without viscosity.As can be seen from equation (4), , signal E
y is the size of (1+γ)(g when there is no viscosity,
Signal E. is a signal that is γ times Ey when there is no viscosity. Therefore, by the subtractor 14, E. By subtracting , the correct density can be measured even for fluids with high viscosity. Even if the measurement tube 2 does not have a circular cross section, the same relational expression as equation (4) holds true (the magnitude of γ is different), so density measurement can be performed with the same configuration. Note that as can be seen from equation (4), when the radius a of the measuring tube 2 is increased and the angular frequency ω of the sine wave oscillator 10 is increased, the influence of viscosity becomes smaller. If appropriate a and ω are selected, the influence of viscosity can be almost ignored, except in the case of fluids with particularly high viscosity. In this case, the signal E, is transmitted to the indicating instrument 1.
The density meter can be configured by direct manual input to 5.

第1図の実施例の場合、測定管2の形状が単純であるか
ら、本管lを流れる流体の密度が変化した場合に6、測
定管内の流体は比較的短時間の間に入れ換わって、本管
内の流体と同じ密度になる。しかし、その所要時間は、
本管1の中の流れの速度などによって変化する。この欠
点を解決したのが第2図の実施例である。第2図におい
て、16はザンブリングボンプで、一定体積の流体を、
本管1から測定管2をとおして吸入し、背管4をとおし
てlへ吐出する。これによって、本管内の流体密度が変
化したときに、一定の短い時間の間に測定管内の流体密
度が本管内の密度と等しくなる。ここでポンプとして、
脈動的に流体を吸入・吐出する型のものを使用する。す
ると測定管2内の流体の管軸方向速度ちまた脈動し、流
体は振動的な加速度を受ける。例えば、ルーツブロワを
一定速度で回転させてやると、測定管2のなかの流速は
脈動し、しかも脈動波形はルーツブロワの形状と回転速
度によって決まる。すなわち本実施例では、被測定流体
のザンプリングと、被測定流体に加速度を加えることを
、一つのサンプリングポンプによって行っているのであ
る。l7は→ノ゛ンブリングボンブを駆動する電源であ
る。サンブノングボンブは、脈動による被測定流体中の
音の波長がτJ!II定管2の全長に比べて十分長くな
る条件で駆動されている。18は圧力変換器で、導圧管
3により導かれた測定管2内の圧力を検出している。測
定管2のなかには、流体の脈動にともなって軸方向圧力
勾配の変動が発生するが、脈動の周波数が低いから、圧
力勾配は2のなかのいたる所で等しい。一方、測定管2
が本管1と接続ずる管端では、圧力は一定である。従っ
て、管端からt゜だけ離れた点の圧力変動を圧力変換器
によって測定することは、測定管2内の圧力勾配の変動
を測定するのに等しい。なお、圧力検出器18は、測定
管2ではなく、背管4に取り付けても構わない。ただし
、この場合は信号の極性が反転する.19は同期信号発
生装置で、流体の加速度波形の基本波と同相で一定振幅
の正弦波を出力する。12は乗算器、l3はローバスフ
ィルタ、15は指示計器である。
In the case of the embodiment shown in FIG. 1, since the shape of the measuring tube 2 is simple, when the density of the fluid flowing through the main tube l changes6, the fluid in the measuring tube is replaced in a relatively short period of time. , has the same density as the fluid in the mains. However, the time required is
It changes depending on the speed of the flow inside the main pipe 1, etc. The embodiment shown in FIG. 2 solves this drawback. In Fig. 2, 16 is a zumbling bomb that pumps a certain volume of fluid.
It is inhaled from the main pipe 1 through the measuring pipe 2 and discharged through the back pipe 4 to l. Thereby, when the fluid density in the main pipe changes, the fluid density in the measuring pipe becomes equal to the density in the main pipe within a certain short period of time. Here, as a pump,
Use a type that sucks in and discharges fluid in a pulsating manner. Then, the velocity of the fluid in the measurement tube 2 in the tube axis direction also pulsates, and the fluid is subjected to vibrational acceleration. For example, when a Roots blower is rotated at a constant speed, the flow velocity in the measuring tube 2 pulsates, and the pulsation waveform is determined by the shape and rotational speed of the Roots blower. That is, in this embodiment, sampling of the fluid to be measured and application of acceleration to the fluid to be measured are performed by one sampling pump. 17 is a power source that drives the →nombling bomb. The wavelength of the sound in the measured fluid due to pulsation is τJ! It is driven under the condition that it is sufficiently long compared to the entire length of the II fixed tube 2. A pressure transducer 18 detects the pressure inside the measuring tube 2 guided by the pressure guiding tube 3. Fluctuations in the axial pressure gradient occur in the measurement tube 2 due to the pulsation of the fluid, but since the frequency of the pulsation is low, the pressure gradient is equal throughout the measurement tube 2. On the other hand, measurement tube 2
At the end of the pipe where it connects with main pipe 1, the pressure is constant. Measuring the pressure fluctuation at a point t° from the tube end with a pressure transducer is therefore equivalent to measuring the pressure gradient fluctuation in the measuring tube 2. Note that the pressure detector 18 may be attached to the back tube 4 instead of the measurement tube 2. However, in this case, the polarity of the signal is reversed. Reference numeral 19 denotes a synchronization signal generator, which outputs a sine wave of constant amplitude and in phase with the fundamental wave of the acceleration waveform of the fluid. 12 is a multiplier, l3 is a low-pass filter, and 15 is an indicator.

測定管2内の流速はサンプリングポンプ16の形状と運
転速度で決まるから、流体の加速度波形ちまた決まり、
その脈動の大きさは一定である。
Since the flow velocity in the measuring tube 2 is determined by the shape and operating speed of the sampling pump 16, the acceleration waveform of the fluid is also determined.
The magnitude of the pulsation is constant.

そして測定管2のなかの流体に対して、やはり運動方程
式(1)が成り立つ。従って、圧力変換器18の出力は
、加速度波形と相似の波形となり、その変動の大きさは
被測定流体の密度に比例する。同期信号発生装置19の
出力と圧力変換器18の出力を乗算して、平滑すること
によって、′圧力勾配変動の基本波成分の大きさに比例
した信号E。が得られる。圧力勾配変動の基本波の大き
さは、圧力勾配変動全体の大きさに比例するから、信号
E。は、被測定流体の密度に比例する。なおここで、同
期検波を用い圧力勾配の基本波成分から密度を求めたの
は、本管1内の流れなどに起因する雑音を除くためであ
る。信号対雑音比が比較的大きい場合には必ずしら同期
検波を行う必要はなく、圧力変換器出力をバンドバスフ
ィルタに通し、これを整流することなどによっても、密
度に比例した信号を得ることができる。また他の同期信
号発生装置により、サンプリングボンブの回転に同期し
て適当な位相で正負が反転する、±1の二値信号を発生
させて同期検波を行っ1 0 たり、加速度波形そのちのを発生させて相関検波を行っ
てもよい。
The equation of motion (1) also holds true for the fluid in the measuring tube 2. Therefore, the output of the pressure transducer 18 has a waveform similar to the acceleration waveform, and the magnitude of the fluctuation is proportional to the density of the fluid to be measured. By multiplying the output of the synchronization signal generator 19 and the output of the pressure transducer 18 and smoothing the result, a signal E which is proportional to the magnitude of the fundamental wave component of the pressure gradient fluctuation is generated. is obtained. Since the magnitude of the fundamental wave of pressure gradient fluctuation is proportional to the magnitude of the entire pressure gradient fluctuation, signal E. is proportional to the density of the fluid being measured. Note that the reason why the density was determined from the fundamental wave component of the pressure gradient using synchronous detection is to eliminate noise caused by the flow in the main pipe 1 and the like. When the signal-to-noise ratio is relatively large, it is not always necessary to perform synchronous detection; it is also possible to obtain a signal proportional to the density by passing the pressure transducer output through a bandpass filter and rectifying it. can. In addition, another synchronous signal generator is used to generate a ±1 binary signal whose positive and negative sides are reversed at an appropriate phase in synchronization with the rotation of the sampling bomb, and perform synchronous detection or generate an acceleration waveform. Correlation detection may also be performed.

これまで述べた原理から明らかなように、流体の流れる
本管l自体にルーツブロワのようなボンブが接続されて
いて、流れに脈動がある場合には、測定用の管2や4を
設ける必要はなく、本管の圧力勾配を直接測定して、密
度を知ることができる。また、流体の粘性が大きい場合
には、第1図の実施例と同様に、流体の脈動速度に比例
した信号成分、すなわち加速度成分と直交する信号を利
用して粘性の影響を除くことができる。
As is clear from the principles described above, if a bomb such as a Roots blower is connected to the main pipe l through which the fluid flows and there is pulsation in the flow, it is not necessary to provide the measurement pipes 2 and 4. Instead, the density can be determined by directly measuring the pressure gradient in the main pipe. Furthermore, when the viscosity of the fluid is high, the influence of viscosity can be removed by using a signal component proportional to the pulsation velocity of the fluid, that is, a signal orthogonal to the acceleration component, as in the embodiment shown in FIG. .

以上述べてきたように本発明は、流体の密度と加速度お
よび圧力勾配の間に成り立つ運動方程式に基づき、振動
的加速度とそれにともなって発生する圧力勾配変動を知
って密度を求めるものである。流体に加速度を加えるの
に、第1図の実施例ではスビーカを用い、第2図の実施
例ではサンブノングポンプを用いた。このように、流体
に加速度を加える手段や、圧力勾配を検出する手段,ま
た信号処理を行う電子回路などは様々の方式を考1 1 えることができ、これら具体的な方式によって本発明の
本質が左右されるのではない。また、その用途が管内を
流れる流体の密度測定に限らないことは言うまでもない
。本発明の動作原理は、最も基本的な物理法則の一つで
ある運動方程式に基づいている。このため,本発明の動
作原理は、温度、圧力などがいかなる条件にあっても成
り立つものである。従って、これらの条件に影響される
ことなく密度を測定することが可能である。流体の粘性
は運動方程式に関わるが、その関係は明瞭にわかってい
るので、上述のように容易に影響を除くことができる。
As described above, the present invention determines the density based on the equation of motion established between the density of the fluid, the acceleration, and the pressure gradient, and by knowing the oscillatory acceleration and the pressure gradient fluctuations that occur accordingly. To apply acceleration to the fluid, a subaker was used in the embodiment shown in FIG. 1, and a Sambunong pump was used in the embodiment shown in FIG. In this way, various methods can be considered for means for applying acceleration to fluid, means for detecting pressure gradients, electronic circuits for signal processing, etc., and these specific methods will explain the essence of the present invention. is not influenced by Moreover, it goes without saying that its use is not limited to measuring the density of fluid flowing inside a pipe. The operating principle of the present invention is based on the equation of motion, one of the most fundamental physical laws. Therefore, the operating principle of the present invention is valid under any temperature, pressure, etc. conditions. Therefore, it is possible to measure density without being affected by these conditions. Fluid viscosity is related to the equation of motion, but since the relationship is clearly known, its influence can be easily removed as described above.

また、本発明の密度計は、構造が単純で、コンバク1・
に実現することが可能で、取り扱いが簡便であるという
利点を有する。
In addition, the density meter of the present invention has a simple structure, and
It has the advantage of being easily realized and easy to handle.

さらに、流体中のゴミが可動部分に付着しても影響を受
けないことも本発明の特徴である。
Another feature of the present invention is that it is not affected even if dust in the fluid adheres to the movable parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例、第2図は本発明の他の実施
例である。 ]・・・流体の流れる管、2・・・測定管、3、1 2 3゜ ・・・・導圧管、4・・・・背管、5・・・・ス
ピーカ、6・・・・速度ビックアップ、7・・ 差圧変
換器、8・−・・増幅器、9・・・・引き算器、lO・
・・正弦波発振器、11・・・・移相器、12、12゜
・・・乗算器、13、13゛ ・・・ローパスフィルタ
、14・引き算器、15・・・・指示計器、16・・・
サンブノングポンプ、l7・・・・電源、18・・・・
圧力変換器、19・・・同期信号発生装置。
FIG. 1 shows one embodiment of the invention, and FIG. 2 shows another embodiment of the invention. ]... Fluid flowing pipe, 2... Measuring tube, 3, 1 2 3°... Impulse tube, 4... Back pipe, 5... Speaker, 6... Speed Big up, 7...Differential pressure converter, 8...Amplifier, 9...Subtractor, lO.
... Sine wave oscillator, 11 ... Phase shifter, 12, 12゜ ... Multiplier, 13, 13゛ ... Low pass filter, 14 - Subtractor, 15 ... Indicator, 16 -・・・
Sambunong pump, l7...power supply, 18...
Pressure transducer, 19... synchronization signal generator.

Claims (1)

【特許請求の範囲】[Claims] 1、流体の満たされた管と、この管内の流体に振動的な
加速度を加える手段と、上記管内の圧力勾配の変動を測
定する検出器とから構成され、上記検出器により測定さ
れた圧力勾配と上記加速度とから、上記管内の流体の密
度を知ることを特徴とする密度計。
1. Consists of a tube filled with fluid, means for applying vibrational acceleration to the fluid in the tube, and a detector that measures fluctuations in the pressure gradient in the tube, and the pressure gradient measured by the detector. A density meter characterized in that the density of the fluid in the pipe is determined from the acceleration and the acceleration.
JP22840089A 1989-09-05 1989-09-05 Acoustic density meter Expired - Fee Related JP2816992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22840089A JP2816992B2 (en) 1989-09-05 1989-09-05 Acoustic density meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22840089A JP2816992B2 (en) 1989-09-05 1989-09-05 Acoustic density meter

Publications (2)

Publication Number Publication Date
JPH0392747A true JPH0392747A (en) 1991-04-17
JP2816992B2 JP2816992B2 (en) 1998-10-27

Family

ID=16875874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22840089A Expired - Fee Related JP2816992B2 (en) 1989-09-05 1989-09-05 Acoustic density meter

Country Status (1)

Country Link
JP (1) JP2816992B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6715339B2 (en) * 1999-06-04 2004-04-06 Honeywell International Inc. Self-normalizing flow sensor and method for the same
US7069604B2 (en) 2000-06-23 2006-07-04 Inax Corporation Tankless western-style flush toilet
KR20150115374A (en) * 2014-04-04 2015-10-14 주식회사 포스코 Processing apparatus for molten metal and the method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6715339B2 (en) * 1999-06-04 2004-04-06 Honeywell International Inc. Self-normalizing flow sensor and method for the same
US7069604B2 (en) 2000-06-23 2006-07-04 Inax Corporation Tankless western-style flush toilet
KR20150115374A (en) * 2014-04-04 2015-10-14 주식회사 포스코 Processing apparatus for molten metal and the method thereof

Also Published As

Publication number Publication date
JP2816992B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US4520320A (en) Synchronous phase marker and amplitude detector
JP4800543B2 (en) Method and apparatus for simultaneously measuring the flow rate and concentration of a multiphase liquid / gas mixture
US4445389A (en) Long wavelength acoustic flowmeter
RU2460974C2 (en) Signal processing method, signal processing apparatus and coriolis flow meter
RU2502962C2 (en) Method and device to measure fluid parameter in vibration metre
Pandit et al. Measurement of bubble size distribution: an acoustic technique
US4032259A (en) Method and apparatus for measuring fluid flow in small bore conduits
BRPI0721881B1 (en) vibratory flow meter, vibratory flow meter system, and method for measuring flow characteristics of a three phase flow
TW201142250A (en) Signal processing method, signal processing apparatus, and coriolis flowmeter
Takamoto et al. New measurement method for very low liquid flow rates using ultrasound
EP0462711A1 (en) Fluid flow measurement
US3370463A (en) Mass flow meter
JPH1038658A (en) Acoustic volumeter
RU2456548C2 (en) Signal processing method, signal processing apparatus and coriolis acceleration flow metre
US9593978B2 (en) Device and method for measuring mass flow rate of fluids
JPH0392747A (en) Acoustic density meter
JPS582620B2 (en) Bubble detection method and device
JP2005337937A (en) Air bubble sensor
RU2772068C1 (en) Method for mass flow measurement
Jhang et al. 3-D velocity field measurement using multiple ultrasonic plane detections and high-order correlation analysis
RU2439502C2 (en) System for flow measurement and method of measuring three-phase flow parameters
Anderson et al. Liquid-filled Transient Pressure Measuring Systems: A Method for Determining Frequency Respose
RU2689250C1 (en) Multicomponent fluid ultrasonic doppler flowmeter
RU2180743C2 (en) Process determining active porosity of materials
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees