JPH0392732A - Optical-beam tracking apparatus - Google Patents

Optical-beam tracking apparatus

Info

Publication number
JPH0392732A
JPH0392732A JP22964989A JP22964989A JPH0392732A JP H0392732 A JPH0392732 A JP H0392732A JP 22964989 A JP22964989 A JP 22964989A JP 22964989 A JP22964989 A JP 22964989A JP H0392732 A JPH0392732 A JP H0392732A
Authority
JP
Japan
Prior art keywords
signal
circuit
output
light
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22964989A
Other languages
Japanese (ja)
Inventor
Kenji Tatsumi
辰巳 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22964989A priority Critical patent/JPH0392732A/en
Publication of JPH0392732A publication Critical patent/JPH0392732A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a DC signal which is proportional to the intensity of incident light for each photodetector, to simplify the circuit constitution and to obtain a highly accurate error signal by regenerating only the same frequency component as a reference signal by a synchronous detection based on the received signal of each photodetector. CONSTITUTION:Received light which is guided into a four-division photodetector 2 forms an optical spot 1 on a detecting surface. An optical spot 23 of emitted light 22 from a laser generating device 19 is superimposed on the spot 1. The modulated signals are outputted from photodetetors 2a-2d by the interference of the spots and inputted into an adding circuit 12 and narrow BPFs 15a-15d through amplifiers 3a-3d. The added output signal is mixed with a reference signal from an oscillator 17 in a heterodyne detecting circuit 15. The output signal is divided into two signals. The signals are inputted into a clock regenerating circuit 18 and an identifying and regenerating circuit 14. Thus the clock signal is taken out and regenerated, and the data signal is regenerated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば衛星間光通信システムにおいて光ビ
ームを追尾するための追尾用誤差信号をム追尾装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tracking device that generates a tracking error signal for tracking a light beam in, for example, an inter-satellite optical communication system.

得るための光ビ 〔従来の技術〕 衛星間光通信システムでは、通常通信信号検波時の直流
戒分を用いて光ビームの追尾を行うが、太陽のような強
力な背景雑音光を信号光と同時に受光すると雑音光が生
しさ一巴る直流成分が極めて大きくなるため精度の高い
追尾用誤差信号を得ることができなくなり、これにより
光ビームを追尾できなくなるとともに、通信回線が遮断
されるという問題点が生じる。太陽光による背景雑音光
があるときの対策として、一方の衛星側からは情報信号
のかわりに正弦波で光ビームを変調し、他方の衛星側で
は受信光より変調信号のみをとり出すビーコン方式と呼
ばれる方式がある。
[Conventional technology] In inter-satellite optical communication systems, optical beams are normally tracked using direct current control when detecting communication signals. If the light beams are received at the same time, noise light will be generated and the DC component will become extremely large, making it impossible to obtain a highly accurate tracking error signal, which will cause the problem of not only being unable to track the light beam but also cutting off the communication line. A point occurs. As a countermeasure against background noise caused by sunlight, a beacon method is used in which one satellite modulates a light beam with a sine wave instead of an information signal, and the other satellite extracts only the modulated signal from the received light. There is a method called

太陽光による背景雑音光があるときに双方向通信を行い
ながら通信回線の維持が可能な追尾方式として下記に説
明するものがあった。
There is a tracking method described below that can maintain a communication line while performing two-way communication when there is background noise light due to sunlight.

第2図は例えば樫木らにより“背景雑音先に強い光IS
Lビーム追尾方式の提案”として昭和63年電子情報通
信学会春季全国大会に公表された従来の光ビーム追尾装
置の信号処理回路のブロソク図を示している。図におい
て、王は入射デジタル信号光の光スボソト、2は入射デ
ジタル信号光を検出する4分割光検出器、2a,2b,
2c,2dは前記4分割光検出器2を措或ずる各光検出
器、3は4分割光検出器2の出力信号を増幅する増幅器
、4は増幅器3の出力信号中の直流成分を除去する第1
の直流威分除去回路、5は上記回路4の出力信号を2乗
検波する2乗検波回路、6は低域通過フィルタ、7は2
乗検波回路5の出力信号中の直流威分を除去する第2の
直流戒分除去回路、8は上記回路7の出力信号を2乗平
均する2乗平均演算回路、9は2滅衰器、工0ば低域通
過フィルタ6と%減衰器9との出力信号差をとり増幅す
る差動増幅器、11は差動増幅器10の出力信号により
追尾用誤差信号を演算する追尾誤差信号演算回路である
Figure 2 shows, for example, Kashiki et al.
This figure shows a block diagram of the signal processing circuit of a conventional optical beam tracking device, which was announced at the Spring National Conference of the Institute of Electronics, Information and Communication Engineers in 1988 as a proposal for an L-beam tracking system. 2 is a 4-split photodetector for detecting the incident digital signal light, 2a, 2b,
2c and 2d are photodetectors that replace the 4-split photodetector 2; 3 is an amplifier that amplifies the output signal of the 4-split photodetector 2; and 4 is for removing the DC component in the output signal of the amplifier 3. 1st
5 is a square-law detection circuit for square-law detection of the output signal of the circuit 4, 6 is a low-pass filter, and 7 is a 2-square-law detection circuit.
a second DC signal removal circuit that removes the DC signal in the output signal of the multiplicative detection circuit 5, 8 a root-mean-square calculation circuit that averages the square of the output signal of the circuit 7, 9 a two-attenuator, 0 is a differential amplifier that takes and amplifies the output signal difference between the low-pass filter 6 and the % attenuator 9, and 11 is a tracking error signal calculation circuit that calculates a tracking error signal from the output signal of the differential amplifier 10. .

次に動作について説明する。第2図には省略されている
が受信光学系で受光された通信信号光と背景雑音光は前
記4分割光検出器2に導かれ、その検出器面上に光スボ
ソ1−1を形或する。4分割光検出器2を構威ずる各光
検出器2a,2b2c,2dはそれぞれ電気的に絶縁さ
れているので、入射光の強度に応じた電気信号を出力す
ることができる。上記各光検出器2a,2b,2c,2
dに接続されている回路は」二記光検出器2aに接続さ
れているものと同じであるので以後の説明は光検出器2
aから追尾誤差信号演算回路11に至る回路構或につい
て行う。通信信号は矩形のNRZ符号のO N/O F
 F信号を仮定する。光検出器2aからの電気信号は、
坩幅器3で増幅された後、第1の直流成分除去回路4に
入力されて、直流成分が除去される。この直流成分が除
去された通信信号と雑音を含む信号は2乗検波器5に人
力される。ここで、2乗検波すると通信信号に関しては
直流成分のみが得られ、雑音成分に関してはランダム雑
音を仮定ずると直流威分と連続スペクLル成分が得られ
る。光ビームの追尾には通信信号を2乗したときの直流
成分を用いる必要があるが、これに重畳された不要な雑
音の直流成分(J以下のように除去される。
Next, the operation will be explained. Although not shown in FIG. 2, the communication signal light and background noise light received by the receiving optical system are guided to the 4-split photodetector 2, and an optical sensor 1-1 is formed on the detector surface. do. Since each of the photodetectors 2a, 2b2c, and 2d making up the four-split photodetector 2 is electrically insulated, it is possible to output an electrical signal according to the intensity of incident light. Each of the above photodetectors 2a, 2b, 2c, 2
The circuit connected to the photodetector 2a is the same as that connected to the photodetector 2a, so the following explanation will be based on the photodetector 2a.
The circuit structure from a to the tracking error signal calculation circuit 11 will be described. The communication signal is a rectangular NRZ code O N/O F
Assume F signal. The electrical signal from the photodetector 2a is
After being amplified by the converter 3, the signal is input to the first DC component removal circuit 4, where the DC component is removed. The communication signal from which the DC component has been removed and the signal containing noise are input to a square law detector 5 . Here, when performing square law detection, only the DC component is obtained for the communication signal, and for the noise component, assuming random noise, the DC power component and the continuous spectral component are obtained. Although it is necessary to use the DC component obtained by squaring the communication signal to track the light beam, the DC component of unnecessary noise superimposed on this is removed as shown below.

前記第1の直流成分除去回路4を通過後の信号威分をS
,雑音威分をnとし、時刻t及びt+τにおける信号成
分と雑音成分をそれぞれ添字1と添字2で区別すると、
2乗検波回路5の出力信号の自己相関R(τ)は第(1
1式のように表される。
The signal strength after passing through the first DC component removal circuit 4 is S
, the noise intensity is n, and the signal component and noise component at times t and t+τ are distinguished by subscript 1 and subscript 2, respectively.
The autocorrelation R(τ) of the output signal of the square-law detection circuit 5 is
It is expressed as equation 1.

R(τ)   一 E  C(S1+n+)  ’  
(Sz+nz)  2一 H  (S l2 Sz’ 
 )  +  2E  (51’  n I t ) 
 +4E(S+Sz Lnz ) +IE2(nI2)
 +2I!2(r++nz)           ・
・・(11ここでE〔・〕は平均演算を表す。上記第(
1)式において、第1.  2.  4項は直流戒分、
第3.5項は連続スペクトル威分に相当する。また、第
1項は信号戒分、第2〜5項は雑音戒分を表している。
R(τ) 1 E C(S1+n+)'
(Sz+nz) 21 H (S l2 Sz'
) + 2E (51' n I t )
+4E(S+Sz Lnz) +IE2(nI2)
+2I! 2(r++nz) ・
...(11 Here, E[.] represents the average calculation.The above (
1) In formula 1. 2. 4th term is DC command,
Section 3.5 corresponds to the continuous spectrum distribution. Further, the first term represents signal discrimination, and the second to fifth terms represent noise discrimination.

ここで、雑音戒分に注目すると直流戒分の電力すなわち
第2項と第4項は連続スペクトル成分の電力すなわち第
3項と第5項のAになっている。
Here, focusing on the noise predetermined power, the power of the DC predetermined signal, ie, the second term and the fourth term, becomes the power of the continuous spectrum component, ie, the third term and the fifth term A.

前記2乗検波回路5の出力信号を2分配し、その出力信
号の一方を低域通過フィルタ6に入力すると、その出力
信号として第(1)式に示した第1〜5 2.4項を含む信号が得られる。他方、前記2乗検波回
路5の出力信号の他方を第2の直流成分除去回路7に入
力すると第(1)式に示す第3項,第5項を含む連続ス
ペクトル成分が得られる。上記第2の直流成分除去回路
7の出力信号を2乗平均演算回路8を介してA減衰器9
に人力ずると前妃A滅衰器9の出力信号として第(1)
式の第3.5項の直流値の半分の信号が得られる。上記
低域J過フィルタ6の出力信号と上記’A’$i衰器9
の出ノノ信号とを差動増幅器10に入力すると、第(1
)式の第1項すなわち信号戒分に比例した直流値が得ら
れる。
When the output signal of the square-law detection circuit 5 is divided into two and one of the output signals is inputted to the low-pass filter 6, terms 1 to 5 2.4 shown in equation (1) are obtained as the output signal. A signal containing On the other hand, when the other output signal of the square law detection circuit 5 is input to the second DC component removal circuit 7, a continuous spectrum component including the third term and the fifth term shown in equation (1) is obtained. The output signal of the second DC component removal circuit 7 is sent to an A attenuator 9 via a root mean square calculation circuit 8.
(1) as the output signal of the former queen A annihilator 9
A signal that is half the DC value in term 3.5 of the equation is obtained. The output signal of the low-pass J overfilter 6 and the 'A'$i attenuator 9
When inputting the output signal to the differential amplifier 10, the (1st
) The first term of the equation, that is, the DC value proportional to the signal amplitude is obtained.

前記各光検出器2b,2c,2dからの出力信号に関し
ても同様の信号が得られる。以上の4信号を追尾誤差信
号演算回路11に入力して演算すると背景光雑音が除去
された追尾用誤差信号が得られる。
Similar signals are obtained for the output signals from each of the photodetectors 2b, 2c, and 2d. When the above four signals are input to the tracking error signal calculation circuit 11 and calculated, a tracking error signal from which background light noise has been removed is obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光ビーム追尾装置は、通信信号から直流戒分を再
生するところで2乗検波を用い、上記2乗検波出力の自
己相関演算を行っていること,お6一 よび雑音成分を除去するために引き算を差動増幅器で行
っていることにより下記のような課題があった。
Conventional optical beam tracking devices use square law detection when regenerating the DC signal from the communication signal, and perform autocorrelation calculations on the square law detection output. Performing subtraction using a differential amplifier caused the following problems.

即ち、第1に2乗検波しているが、2乗検波の出力信号
は入力信号が小さくなると検波能率が低下するとともに
、不確実さが増加する。たとえば第2図において、光検
出器20に入射する光の強度は他の光検出器2a,2b
,2dに入射する光の強度より小さいため通信信号と背
景雑音が同等もしくは雑音の方が大きくなる可能性があ
る。このような信号を2乗検波しても正確な信号成分を
得ることはできない。
That is, first, square law detection is performed, but as the input signal becomes smaller, the detection efficiency of the output signal of the square law detection decreases and the uncertainty increases. For example, in FIG. 2, the intensity of light incident on the photodetector 20 is different from that of the other photodetectors 2a and 2b.
, 2d, the communication signal and background noise may be the same or may be larger. Even if such a signal is subjected to square law detection, accurate signal components cannot be obtained.

第2に自己相関演算を行っているが、信号と雑音に相関
がなく、また雑音がランダムであれば信号成分のみに対
して自己相関の出力信号は大きくなるが、雑音がランダ
ムでないと自己相関出力信号は連続スペクトルにならず
、輝線スペクトル成分をもつことになるので、前記2乗
平均演算回路8の出力信号には、上記輝線スペクトルの
2乗平均出力信号をもつことになり、前記差動増幅器l
Oの出力で雑音成分を除去した信号を得ることはできな
い。最後に差動増幅器10で雑音威分を除去する演算を
行っているが、増幅器のドリフi・等により出力信号に
オフセントを生じる可能性があり、精度の高い追尾用誤
差信号を得ることができなかった。
Second, an autocorrelation calculation is performed, but if there is no correlation between the signal and noise and the noise is random, the autocorrelation output signal will be large for only the signal component, but if the noise is not random, the autocorrelation output signal will be large. Since the output signal is not a continuous spectrum but has a bright line spectrum component, the output signal of the root mean square calculation circuit 8 has the root mean square output signal of the bright line spectrum, and the difference amplifier l
It is not possible to obtain a signal from which noise components have been removed from the output of O. Finally, the differential amplifier 10 performs calculations to remove noise, but there is a possibility that offsets may occur in the output signal due to amplifier drift, etc., making it impossible to obtain a highly accurate tracking error signal. There wasn't.

この発明は上記のような課題を解消するためになされた
もので、背景光雑音を除去するとともに、S/N比の高
い精度のよい追尾用誤差信号を得ることができる光ビー
ム追尾装置を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and provides an optical beam tracking device that can remove background light noise and obtain a highly accurate tracking error signal with a high S/N ratio. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る光ビーム追尾装置は、入射デジタル信号
光を検出する複数分割の光検出器2a22b,2c,2
dと、上記各光検出器2a.2b2c.2dにレーザ光
を照射するレーザ発生装置19と、上記各光検出器2a
,2b,2c,2dから出力される変調信号の中の所定
周波数シ1}域成分を抽出する各帯域i1過フィルタ1
5a,15b15C,15dと、上記各帯域通過フィル
タ15a,15b.15c,15dにより抽出された所
定周波数帯域成分を基準信号によって検波する各検波回
路1.6a.16b.16c,16dと、上記各検波回
路16a,16b,16c,L6dの出力信号の中の低
周波威分を通過させる各低域通過フィルタ6a,6b,
6c,6dと、上記各低域通過フィルタ5a,6b,6
c,5dの出力信号に基づいて光ビームの追尾を行うた
めの追尾用誤差信号を演算する追尾誤差信号演算回路I
IIとを備えたものである。
The light beam tracking device according to the present invention includes a plurality of divided photodetectors 2a22b, 2c, 2 for detecting incident digital signal light.
d, and each of the photodetectors 2a. 2b2c. 2d, and each of the photodetectors 2a.
, 2b, 2c, and 2d.
5a, 15b 15C, 15d, and each of the band pass filters 15a, 15b. Each detection circuit 1.6a detects a predetermined frequency band component extracted by 15c, 15d using a reference signal. 16b. 16c, 16d, and each low-pass filter 6a, 6b, which passes the low frequency component in the output signal of each of the detection circuits 16a, 16b, 16c, L6d.
6c, 6d, and each of the above-mentioned low-pass filters 5a, 6b, 6
Tracking error signal calculation circuit I that calculates a tracking error signal for tracking the light beam based on the output signals of c and 5d.
II.

〔作用〕[Effect]

複数分割の光検出器2a,2b.2c,2dは入射デジ
タル信号光を検出する。レーザ発生装置19は各光検出
器2a,2b,2c,2dにレーザ光を照射する。各帯
域通過フィルタ15a15b,15c,15dは各光検
出器2a,2b,2c,2dから出力される変調信号の
中の所定周波数帯域威分を抽出する。各検波回路L6a
,16b,1.6c.16dは上記所定周波数帯域戒分
を基準信号によって検波する。各低域通過フィ9 ルタ6a,6b,6c,6dは各検波回路16a16b
,16c.16dの出力信号の中の低周波成分を通過さ
せる。追尾誤差信号演算回路111ば各低域i[1過フ
ィルタ6a,6t+,6c  6dの出力信号に基づい
て追尾用誤差信号を演算する。
Plurally divided photodetectors 2a, 2b. 2c and 2d detect incident digital signal light. The laser generator 19 irradiates each photodetector 2a, 2b, 2c, and 2d with a laser beam. Each bandpass filter 15a15b, 15c, 15d extracts a predetermined frequency band signal from the modulated signal output from each photodetector 2a, 2b, 2c, 2d. Each detection circuit L6a
, 16b, 1.6c. 16d detects the predetermined frequency band signal using a reference signal. Each low pass filter 9 filter 6a, 6b, 6c, 6d is each detection circuit 16a16b
, 16c. The low frequency components in the output signal of 16d are passed. A tracking error signal calculation circuit 111 calculates a tracking error signal based on the output signals of each of the low-pass filters 6a, 6t+, 6c, and 6d.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例に係る光ビーム追尾装置の
構成を示すブロック図である。第1図において、第2図
に示す構戒要素に対応ずるものには同一の符号を付し、
その説明を省略する。第1図において、3a,3b.3
c,3dは光検出器2a,2b,2c,2dの出力信号
をそれぞれ増幅する増幅器、12は増幅器3a,3b,
3c3dの出力信号を加算する加算回路、l3は加算回
路】2の出力信号を基準発振器I7からの基準信号に基
づいてヘテログイン検波を行いベースバンド信号を再生
するヘテログイン検波回路、14ぱヘテログイン検波回
路I3の出力信号よりデタ信号を再生する識別再生回路
、18はヘテログイン検波回路13の出力信号よりクロ
ンク信号を10 再生するクロック再生回路である。15a,15b,1
5c,15dは増幅器3a,3b,3c,3dの出力信
号(各光検出器2a.2b2c,2dから出力される変
調信号)の中の各所定周波数帯域威分を抽出する狭帯域
通過フィルタ、16a,16b,16c,16dは上記
各所定周波数帯域成分を基準発振器17からの基準信号
に基づいて検波する検波回路、6a,6b,6c6dは
検波回路16a,16b,16c,16dの出力信号の
中の低周波威分を通過させる低域通過フィルタ、111
は低域通過フィルタ6a,6b,6c,6dの出力信号
に基づいて光ビームの追尾を行うための追尾用誤差信号
を演算する追尾誤差信号演算回路である。19は光検出
器2a,2b,2c,2dに照射するレーザ光を発生す
るレーザ発生装置、20はレーザ発生装置I9を駆動制
御するレーザ駆動口路、21はレーザ発生装置19から
発生するレーザ光の周波数11i!I御を行う周波数制
御回路である。22はレーザ発生装置19からの出射光
、23は4分割光検出1ifZ上における出射光22の
スポットである。
FIG. 1 is a block diagram showing the configuration of a light beam tracking device according to an embodiment of the present invention. In Fig. 1, the same reference numerals are given to the components corresponding to the structural precepts shown in Fig. 2.
The explanation will be omitted. In FIG. 1, 3a, 3b. 3
12 are amplifiers 3a, 3b,
13 is an adder circuit which adds the output signals of 3c3d; 13 is an adder circuit; 14 is a heterolog detection circuit which performs heterolog detection on the output signal of 2 based on the reference signal from the reference oscillator I7 and reproduces the baseband signal; An identification and regeneration circuit 18 regenerates a data signal from the output signal of the detection circuit I3, and a clock regeneration circuit 18 regenerates a clock signal from the output signal of the heterolog detection circuit 13. 15a, 15b, 1
5c, 15d are narrow band pass filters 16a which extract the power of each predetermined frequency band from the output signals of the amplifiers 3a, 3b, 3c, 3d (modulation signals output from each photodetector 2a, 2b, 2c, 2d); , 16b, 16c, and 16d are detection circuits for detecting each of the predetermined frequency band components based on the reference signal from the reference oscillator 17, and 6a, 6b, and 6c6d are detection circuits for detecting the respective predetermined frequency band components based on the reference signal from the reference oscillator 17. Low-pass filter that passes low frequency components, 111
is a tracking error signal calculation circuit that calculates a tracking error signal for tracking a light beam based on the output signals of the low-pass filters 6a, 6b, 6c, and 6d. 19 is a laser generator that generates laser light to irradiate the photodetectors 2a, 2b, 2c, and 2d; 20 is a laser drive port that drives and controls the laser generator I9; and 21 is a laser beam that is generated from the laser generator 19. Frequency 11i! This is a frequency control circuit that performs I control. 22 is the emitted light from the laser generator 19, and 23 is the spot of the emitted light 22 on the 4-split light detection 1ifZ.

次に動作について説明する。前記4分割光検出器2に導
かれた受信光はその検出器面上に光スボソト1を形威す
る。この光スボソト1に前記レーザ発生装置19からの
出別光22の光スボソト23が重畳される。ここで、I
111記レーザ発生装置19の発振周波数fLを上記受
信光の周波数f1に近い値とすると、上記光スボソト1
と光スボ・ノト23との干渉により周波数f,4=lf
+−   fcをキャリア周波数とする変調信号が各光
検出器2a,2b,2c,  2dより出力される。各
検出器’la.  2b,2c,2dばそれぞれの人荊
光強度に応した電気信号を出力し、それぞれに接続され
た増幅器3a,3b,3c,3dに入力ずる。
Next, the operation will be explained. The received light guided to the four-split photodetector 2 forms a light beam 1 on the detector surface. An optical subsystem 23 of the output light 22 from the laser generator 19 is superimposed on this optical subsystem 1. Here, I
111 If the oscillation frequency fL of the laser generator 19 is set to a value close to the frequency f1 of the received light, the optical subsoto 1
The frequency f,4=lf due to the interference between the
A modulated signal having a carrier frequency of +-fc is output from each photodetector 2a, 2b, 2c, and 2d. Each detector'la. 2b, 2c, and 2d output electric signals corresponding to the intensity of the phallus light, and input them to amplifiers 3a, 3b, 3c, and 3d connected to the respective ones.

各増幅器3a,3b,3c,3dの出力は2分配されて
一方は加算回路12に人力し、他方は各々に接続された
中心周波数fMの狭帯域通過フィルタ15a,15b,
1.5c.15dに入力する。
The output of each amplifier 3a, 3b, 3c, 3d is divided into two parts, one of which is input to the adder circuit 12, and the other is connected to each narrow band pass filter 15a, 15b with a center frequency of fM.
1.5c. 15d.

加算回路12では前記増幅器3a.3b.3c3dの出
力信号が増幅加算されて出力される。前記加算回路I2
の出力信号はヘテログイン検波回17からの発振周波数
f8の基準信号とを混合してヘテログイン検波を行うこ
とにより受信信号のヘースバンドの通信信号を出力する
。この出力信号は2分配されて一方はクロック再生回路
18へ、他方は識別再生回路14へ入力される。前記ク
ロソク再生回路18は、ここでは詳細な説明を省略する
が、フェイズ口ックループを含む公知の回路で形威され
ており、通信信号よりクロソク信号を抽出再生するもの
である。前記クロンク信号を基準として識別再生回路1
4でデータ信号が再生される。
In the adder circuit 12, the amplifiers 3a. 3b. The output signals of 3c3d are amplified and added and output. Said addition circuit I2
The output signal is mixed with the reference signal of the oscillation frequency f8 from the heterolog detection circuit 17 to perform heterolog detection, thereby outputting a communication signal of the Haas band of the received signal. This output signal is divided into two parts, one of which is input to the clock regeneration circuit 18 and the other input to the identification and regeneration circuit 14. Although a detailed explanation will be omitted here, the cross-resonance reproducing circuit 18 is implemented as a known circuit including a phase loop, and extracts and regenerates a cross-reference signal from a communication signal. An identification reproducing circuit 1 based on the clock signal as a reference.
4, the data signal is regenerated.

次に、追尾用誤差信号を得る過程について説明する。上
記各増幅器3b,3c,3d6こ接続されている回路は
上記増幅器3aに接続されているものと同じであるので
以後の説明は増幅器3aから追尾誤差信号演算回路11
1に至る動作について説明する。前記増幅器3aからの
電気信号は中心】 3 周波数f.4の狭帯域通過フィルター5aに入力し、入
力信号から周波数f.の近傍の成分が抽出される。この
信号は検波回路16aに入力する。一方前記基準発振器
l7からの信号も前記検波回路Q 1iこ入力する。
Next, the process of obtaining the tracking error signal will be explained. The circuits connected to each of the amplifiers 3b, 3c, and 3d6 are the same as those connected to the amplifier 3a, so the following explanation will be from the amplifier 3a to the tracking error signal calculation circuit 11.
The operation leading up to 1 will be explained. The electrical signal from the amplifier 3a is centered] 3. Frequency f. 4, the frequency f. Components near are extracted. This signal is input to the detection circuit 16a. On the other hand, the signal from the reference oscillator l7 is also input to the detection circuit Q1i.

ここで、前記狭帯域通過フィルター5aの電気信号をE
,  cos (( ωs+ωm)t+ψ、}+E,,
COS(ω,,1+ψ,,)とし、前記基準発振器17
の出力信号をcos (ωイt十ψ8)とすると、前討
1検波回路16aの出力E。は第(2)弐のようになる
Here, the electrical signal of the narrow band pass filter 5a is
, cos ((ωs+ωm)t+ψ,}+E,,
COS (ω,,1+ψ,,), and the reference oscillator 17
If the output signal of is cos (ω t + ψ 8), then the output E of the first detection circuit 16a. becomes like No. (2) 2.

EO−や[cos (ω, 14ψ, ψM)”cos
 ((2ωイ+ωm)t+ ψ1l+ψイ}〕」ル(c
os((ω7−ωs)t+ψ。−ψ、}」−1 cos((ω,+ωM)1+  ψl,4  ψM )
 ) −{2)ここで、E.は信号成分の振幅、ω.4
−2π『8、ω.は上記狭帯域通過フィルター5aをi
JIl過後の変調信号角周波数、ψ.は信号成分の位相
、Enは雑音成分の振幅、ω7は雑音成分の角周波数、
ψ。は雑音成分の位相、ψ8は基準信号の位相で14 ?る。
EO- or [cos (ω, 14ψ, ψM)”cos
((2ωi+ωm)t+ψ1l+ψi})
os((ω7-ωs)t+ψ.-ψ,}"-1 cos((ω,+ωM)1+ψl,4 ψM)
) −{2) Here, E. is the amplitude of the signal component, ω. 4
−2π′8, ω. is the narrow band pass filter 5a as i
Modulation signal angular frequency after JIl, ψ. is the phase of the signal component, En is the amplitude of the noise component, ω7 is the angular frequency of the noise component,
ψ. is the phase of the noise component, ψ8 is the phase of the reference signal, and 14? Ru.

上記出力E0を前記低域通過フィルタ6aを通して、ω
■一〇となる直流成分のみをとり出すと第(2)式の第
1項の戒分のみが復調され、その出力信号の大きさE 
p cは BDC−ケcos (ψ7−ψM)      −(3
1となる。ここで、あらかしめ基準発振器の位相を調整
し、ψ1=ψ8になるように調整しておくと出力信号の
大きさE,。は最大値E./2をとるようにできる。第
(2)式に示した第3項は前記低域通過フィルタ6aの
通過帯域に入る可能性があるが、雑音戊分の角周波数ω
7と周波数ω9が一致する確率は小さ《、かつ雑音成分
の位相ψ。はランダムであるので第《2)式の第3項の
前記低域i111過フィルタ6aを通過後の信号は信号
威分出力EDCにくらべて十分小さい。したがってS/
N比のより前記光検出器2aの入射光量に比例した直流
信号を低域通過フィルタ6aから得ることができる。前
記各光検出器2b,2c,2dからの出力に関しても同
様の信号が得られる。以上の4信号を追尾誤差信号演算
回路!. 1. 1に入力して演算すると背景光雑音が
除去されたS/N比の良い追尾用誤差信号が得られる。
The output E0 is passed through the low-pass filter 6a and ω
■If only the DC component that is 10 is extracted, only the first term of equation (2) is demodulated, and the magnitude of the output signal E
p c is BDC−ke cos (ψ7−ψM) −(3
It becomes 1. Here, if the phase of the preliminary reference oscillator is adjusted so that ψ1=ψ8, the magnitude of the output signal will be E. is the maximum value E. /2 can be obtained. The third term shown in equation (2) may fall within the passband of the low-pass filter 6a, but the angular frequency ω of the noise component
The probability that 7 and frequency ω9 match is small 《and the phase ψ of the noise component. Since EDC is random, the signal after passing through the low-pass i111 filter 6a in the third term of Equation (2) is sufficiently smaller than the signal power output EDC. Therefore S/
Due to the N ratio, a DC signal proportional to the amount of light incident on the photodetector 2a can be obtained from the low-pass filter 6a. Similar signals are obtained with respect to the outputs from each of the photodetectors 2b, 2c, and 2d. Tracking error signal calculation circuit for the above 4 signals! .. 1. 1 and performs calculations, a tracking error signal with a good S/N ratio from which background light noise has been removed can be obtained.

この追尾用誤差信号は図示しないアンテナ駆動装置に与
えられ、アンテナ位置の制御などに用いられる。
This tracking error signal is given to an antenna drive device (not shown) and is used for controlling the antenna position.

前記追尾誤差信号演算回路111からレーザ発生装置1
9にいたるフィードバック回路は、レーザ発生装置19
の発振周波数と受信信号の周波数の差lr+.fclを
常に一定値rHに保つためのものであり、低域通過フィ
ルタ6a,6b,6c,6dの出力信号の和が最大とな
るように周波数制御回路21でレーザ発生装置19の発
振周波数を制御する。
From the tracking error signal calculation circuit 111 to the laser generator 1
The feedback circuit leading to 9 is a laser generator 19
The difference between the oscillation frequency of the signal and the frequency of the received signal lr+. This is to keep fcl always at a constant value rH, and the frequency control circuit 21 controls the oscillation frequency of the laser generator 19 so that the sum of the output signals of the low-pass filters 6a, 6b, 6c, and 6d is maximized. do.

なお、上記実施例では衛星間光通信に用いる場合につい
て説明したが、地」二の通信で用いる対向型の空間光伝
送装置に用いても良いことは言うまでもない。
Although the above embodiment has been described for use in inter-satellite optical communication, it goes without saying that the present invention may also be used in a two-way spatial optical transmission device used in ground-to-ground communication.

以上のように上記実施例によれば、基準発振器からの信
号を基準とし、光ヘテログイン検波により各光検出器の
受信信号から基準信号と同し周波数成分のみを同期検波
により再生することにより、背景雑音光の影響が除去さ
れた各光検出器の入射光強度に比例した直流信号を得ら
れるようにしたので、回路構戊が簡単になるとともに、
精度の高い追尾用誤差信号が得られる効果がある。
As described above, according to the above embodiment, by using the signal from the reference oscillator as a reference and reproducing only the same frequency component as the reference signal from the received signal of each photodetector by optical heterogeneous detection by synchronous detection, Since it is possible to obtain a DC signal proportional to the incident light intensity of each photodetector, the influence of background noise light has been removed, the circuit structure is simplified, and
This has the effect of obtaining a highly accurate tracking error signal.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、入射デジタル信号光を検
出する複数分割の光検出器と、上記各光検出器にレーザ
光を照射するレーザ発生装置と、上記各光検出器から出
力される変調信号の中の所定周波数帯域成分を抽出する
各帯域通過フィルタと、上記各帯域通過フィルタにより
抽出された所定周波数帯域成分を基準信号に基づいて検
波する各検波回路と、上記各検波回路の出力信号の中の
低周波威分を通過させる各低域通過フィルタと、上記各
低域通過フィルタの出力信号に基づいて光ビームの追尾
を行うための追尾用誤差信号を演算する追尾誤差信号演
算回路とを備えて構威したので、例えば光コヒーレント
通信におけるヘテロダイン検波の中間周波数成分は上記
帯域通過フィル17 夕により抽出され、その雑音戒分を除去でき、上記検波
回路は各光検出器の出力信号が小さくても、また、その
出力信号のレヘルが背景雑音のレヘルより小さい場合で
も、背景雑音光の影響が除去された各光検出器の入射光
強度に比例した直流信号が上記低域通過フィルタから得
られ、これによりS/N比の高い精度の良い追尾用誤差
信号を得ることができ、したがって光ビームの追尾処理
の信fin性が向−1−.するという効果が得られる。
As described above, according to the present invention, there is a plurality of divided photodetectors that detect incident digital signal light, a laser generator that irradiates laser light to each of the photodetectors, and a laser beam output from each of the photodetectors. Each bandpass filter extracts a predetermined frequency band component from the modulated signal, each detection circuit detects the predetermined frequency band component extracted by each of the bandpass filters based on a reference signal, and the output of each of the above detection circuits. Each low-pass filter that passes the low-frequency component in the signal, and a tracking error signal calculation circuit that calculates a tracking error signal for tracking the light beam based on the output signal of each of the above-mentioned low-pass filters. For example, the intermediate frequency component of heterodyne detection in optical coherent communication can be extracted by the bandpass filter 17, and its noise can be removed, and the detection circuit can detect the output signal of each photodetector. Even if the level of the output signal is smaller than the level of the background noise, the DC signal proportional to the intensity of the incident light of each photodetector from which the influence of the background noise light has been removed is passed through the low-pass filter. As a result, a highly accurate tracking error signal with a high S/N ratio can be obtained, and therefore the reliability of the optical beam tracking process is improved. The effect of doing so can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第l図はこの発明の一実施例に係る光ビーム追尾装置の
構成を示すブロック図、第2図は従来の光ビーム追尾装
置の構威を示すブロソク図である。 2a,2b,2c,2d−−・光検出器、5a,6b,
6c.6d・・・低域通過フィルタ、15a,15b.
15c.15d・−−狭帯域通過フィルタ(帯域通過フ
ィルタ)、16a,1 6 b.  1 6 c,  
I 6 d・・・検波回路、I9・・・レーザ発生装置
、111・・・追尾誤差信号演算回路。
FIG. 1 is a block diagram showing the structure of a light beam tracking device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the structure of a conventional light beam tracking device. 2a, 2b, 2c, 2d--・Photodetector, 5a, 6b,
6c. 6d...Low pass filter, 15a, 15b.
15c. 15d---Narrow band pass filter (band pass filter), 16a, 1 6 b. 1 6 c,
I6d...detection circuit, I9...laser generator, 111...tracking error signal calculation circuit.

Claims (1)

【特許請求の範囲】[Claims] 入射デジタル信号光を検出する複数分割の光検出器と、
上記各光検出器にレーザ光を照射するレーザ発生装置と
、上記各光検出器から出力される変調信号の中の所定周
波数帯域成分を抽出する各帯域通過フィルタと、上記各
帯域通過フィルタにより抽出された所定周波数帯域成分
を基準信号に基づいて検波する各検波回路と、上記各検
波回路の出力信号の中の低周波成分を通過させる各低域
通過フィルタと、上記各低域通過フィルタの出力信号に
基づいて光ビームの追尾を行うための追尾用誤差信号を
演算する追尾誤差信号演算回路とを備えたことを特徴と
する光ビーム追尾装置。
a multi-segmented photodetector that detects incident digital signal light;
A laser generator that irradiates laser light onto each of the photodetectors, a bandpass filter that extracts a predetermined frequency band component from the modulated signal output from each of the photodetectors, and extraction by each of the bandpass filters. each detection circuit that detects the predetermined frequency band component based on the reference signal, each low-pass filter that passes the low frequency component in the output signal of each of the above-mentioned detection circuits, and the output of each of the above-mentioned low-pass filters. A light beam tracking device comprising: a tracking error signal calculation circuit that calculates a tracking error signal for tracking a light beam based on the signal.
JP22964989A 1989-09-05 1989-09-05 Optical-beam tracking apparatus Pending JPH0392732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22964989A JPH0392732A (en) 1989-09-05 1989-09-05 Optical-beam tracking apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22964989A JPH0392732A (en) 1989-09-05 1989-09-05 Optical-beam tracking apparatus

Publications (1)

Publication Number Publication Date
JPH0392732A true JPH0392732A (en) 1991-04-17

Family

ID=16895508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22964989A Pending JPH0392732A (en) 1989-09-05 1989-09-05 Optical-beam tracking apparatus

Country Status (1)

Country Link
JP (1) JPH0392732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666520A (en) * 1992-08-14 1994-03-08 A T R Koudenpa Tsushin Kenkyusho:Kk Optical waveguide sensor equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666520A (en) * 1992-08-14 1994-03-08 A T R Koudenpa Tsushin Kenkyusho:Kk Optical waveguide sensor equipment

Similar Documents

Publication Publication Date Title
KR910003237B1 (en) Polarization insensitive coherent lightwave detector
US4090147A (en) Interferometric amplifier
MY123977A (en) Automatic setting of gain in control loops
CA2092107A1 (en) Signal processing incorporating signal tracking, estimation,and removal processes using a maximum a posteriori algorithm, and sequential signal detection
CN108242996A (en) A kind of quantum key delivering method and device
JPH05244094A (en) Optical transmission equipment
US3939341A (en) Phase-locked optical homodyne receiver
JP3984426B2 (en) Information reproducing apparatus, signal processing apparatus, information reproducing method, and optical recording medium
JP2004505541A (en) Method and apparatus for tone tracking in a wireless optical communication system
EP2226953B1 (en) An optical relay system and method
EP0652652A1 (en) Method and apparatus for receiving monitoring signal
JPH0392732A (en) Optical-beam tracking apparatus
JPH05304502A (en) Optical communication system
US6580314B1 (en) Demodulation system and method for recovering a signal of interest from a modulated carrier sampled at two times the phase generated carrier frequency
JPH02236477A (en) Light beam tracking device
JP3593461B2 (en) Receiver for remote control
JPH0748692B2 (en) Light beam tracking device
JPH02196546A (en) Method and apparatus for optical communication
JP2548032Y2 (en) Tracking receiver
JPH02104153A (en) Optical input interruption detecting system
JPH01222529A (en) Method and apparatus for detecting optical signal
JP3035882B2 (en) Optical receiver
JPH104386A (en) Optical homodyne detection communication system and equipment, and system and equipment for optical code division multiplex transmission using same
JPS58169349A (en) Optical spot controller
JPS62206947A (en) Optical reception equipment