JPH02236477A - Light beam tracking device - Google Patents

Light beam tracking device

Info

Publication number
JPH02236477A
JPH02236477A JP1058841A JP5884189A JPH02236477A JP H02236477 A JPH02236477 A JP H02236477A JP 1058841 A JP1058841 A JP 1058841A JP 5884189 A JP5884189 A JP 5884189A JP H02236477 A JPH02236477 A JP H02236477A
Authority
JP
Japan
Prior art keywords
signal
circuit
output
light
tracking error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1058841A
Other languages
Japanese (ja)
Inventor
Kenji Tatsumi
辰巳 賢二
Junichiro Yamashita
純一郎 山下
Tadashi Matsushita
松下 匡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1058841A priority Critical patent/JPH02236477A/en
Publication of JPH02236477A publication Critical patent/JPH02236477A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate background light noise and to obtain an accurate tracking error signal having high S/N by respectively multiplying the outputs of respective photodetectors by the outputs of respective variable phase shifters and giving the multiplied result to a tracking error signal arithmetic operation circuit. CONSTITUTION:An addition circuit 12 adds the outputs of the respective photodetectors 2a - 2d. Next, a clock reproduction circuit 13 reproduces a clock signal based on the output of the addition circuit 12. Besides, the variable phase shifters 16a - 16d vary the phase of the clock signal from the clock reproduction circuit 13. Then, analog multiplication circuits 15a - 15d respectively multiply the outputs of the respective photodetectors 2a - 2d by the outputs of the respective variable phase shifters 16a - 16d and give the multiplied result to the tracking error signal arithmetic operation circuit 11 through low-pass filters 6a - 6d. Thus, the background light noise is eliminated and simultaneously the accurate tracking error signal having the high S/N is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば衛星間光通信システムにおいて光ビ
ームを追尾するための追尾用誤差信号を得て光ビームの
到来方向のずれを検出する光ビーム追尾装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical system that detects a deviation in the direction of arrival of a light beam by obtaining a tracking error signal for tracking a light beam in, for example, an inter-satellite optical communication system. This relates to a beam tracking device.

〔従来の技術〕[Conventional technology]

衛星間光通信システムでは、通常通信信号検波時の直流
成分を用いて光ビームの追尾を行なうが、太陽のような
強力な背景雑音光を信号光と同時に受光すると雑音光が
生じさせる直流成分が極めて大きくなるため精度の高い
追尾用誤差信号を得ることができなくなり、これにより
光ビームを追尾できなくなるとともに、通信回線が遮断
されるということが生じる。太陽光による背景雑音光が
あるときの対策として、一方の衛星側からは情報信号の
代わりに正弦波で光ビームを変調し、他方の衛星側では
受信光より変調信号のみをとり出すビーコン方弐と呼ば
れる光ビーム追尾方式がある。
In inter-satellite optical communication systems, optical beam tracking is normally performed using the DC component during communication signal detection, but when strong background noise light such as the sun is received at the same time as the signal light, the DC component generated by the noise light is Since it becomes extremely large, it becomes impossible to obtain a highly accurate tracking error signal, which makes it impossible to track the light beam and also causes the communication line to be cut off. As a countermeasure against background noise caused by sunlight, a beacon method is used in which one satellite modulates a light beam with a sine wave instead of an information signal, and the other satellite extracts only the modulated signal from the received light. There is a light beam tracking method called .

また、太陽光による背景雑音光があるときに双方向通信
を行ないながら通信回線の維持が可能な光ビーム追尾方
式として下記に説明するものがあった。
In addition, there is a light beam tracking method described below that is capable of maintaining a communication line while performing two-way communication when there is background noise light due to sunlight.

第2図は例えば樫木氏、他2名により“背景雑音光に強
い光ISL(光衛星間通信)ビーム追尾方式の提案”と
して昭和63年電子情報通信学会春季全国大会に公表さ
れた従来の光ビーム追尾装置の信号処理回路のブロソク
図を示している。図において、lは光スポット、2は4
分割光検出器(4分割光検出手段)、2a,2b,2c
,2dは前記4分割光検出器2を構成する各受光素子、
3は受光素子2a,2b.2c,2dの出力を増幅する
増幅器、4は増幅器3の出力の直流成分を除去する第1
の直流成分除去回路、5は第1の直流成分除去回路4の
出力を2乗検波する2乗検波回路、6は低域通過フィル
タ、7は2乗検波回路5の出力の直流成分を更に除去す
る第2の直流成分除去回路、8は直流成分除去回路7の
出力を2乗平均する2乗平均演算回路、9は2乗平均演
算回路8の出力を2分の1に減衰させる1/2fIi衰
器、10は差動増幅器、11は追尾誤差信号演算回路(
追尾誤差信号演算手段)である。上記差動増幅器10は
低域通過フィルタ6の出力と1/2減衰器9の出力との
差をとり増幅するものである。
Figure 2 shows, for example, the conventional optical system that was announced at the 1988 IEICE Spring National Conference by Mr. Kashiki and two others as "Proposal of an optical ISL (optical inter-satellite communication) beam tracking system that is resistant to background noise light." The block diagram of the signal processing circuit of a beam tracking device is shown. In the figure, l is the light spot, 2 is 4
Split photodetector (four-split photodetector), 2a, 2b, 2c
, 2d are each light receiving element constituting the 4-split photodetector 2,
3 are light receiving elements 2a, 2b. Amplifier 4 amplifies the outputs of amplifiers 2c and 2d, and 4 a first amplifier that removes the DC component of the output of amplifier 3.
5 is a square-law detection circuit for square-law detection of the output of the first DC-component removal circuit 4; 6 is a low-pass filter; and 7 is a square-law detection circuit for further removing the DC component of the output of the square-law detection circuit 5. 8 is a root-mean-square calculation circuit that averages the square of the output of the DC-component removal circuit 7; 9 is a 1/2 fIi that attenuates the output of the root-mean-square calculation circuit 8 by half; 10 is a differential amplifier, 11 is a tracking error signal calculation circuit (
tracking error signal calculation means). The differential amplifier 10 takes the difference between the output of the low-pass filter 6 and the output of the 1/2 attenuator 9 and amplifies it.

追尾誤差信号演算回路11は各受光素子2a,2b, 
 2c,  2dへ入射する入射デジタル信号光の入射
光強度にそれぞれ比例した信号に基づいて演算を行ない
光ビームの到来方向のずれを検出するものである。
The tracking error signal calculation circuit 11 includes each light receiving element 2a, 2b,
The shift in the direction of arrival of the light beam is detected by performing calculations based on signals proportional to the intensity of the incident digital signal light incident on the light beams 2c and 2d.

次に動作について説明する。第2図には省略されている
が受信光学系で受光された通信信号光と背景雑音光は前
記4分割光検出器2に導かれ、その検出器面上に光スポ
ソト1を形成する。4分割光検出器2を構成する各受光
素子2a,2b,2c,2dはそれぞれ電気的に絶縁さ
れているので、入射信号光の強度に応じた電気信号を出
力することができる。上記各受光素子2a.2b,2c
,  2dに接続されている回路は上記受光素子2aに
接続されているものと同じであるので、以後の説明は受
光素子2aから追尾誤差信号演算回路11に至る回路構
成について行なう。通信信号は矩形のNRZ符号のON
/OFF信号を仮定する.受光素子2aからの電気信号
は増幅器3で増幅されたのち第1の直流成分除去回路4
に入力されて直流成分が除去される。この直流成分が除
去された通信信号と雑音を含む信号は2乗検波器5に入
力される.ここで、2乗検波すると通信信号に関しては
直流成分のみが得られ、雑音成分に関してはランダム雑
音を仮定すると、直流成分と連続スペクトル成分が得ら
れる。光ビームの追尾には通信信号を2乗したときの直
流成分を用いる必要があるが、これに重畳された不要な
雑音の直流成分は以下のように除去されるi 前記第1の直流成分除去回路4を通過後の信号成分をS
、雑音成分をnとし、時刻t及びt+τにおける信号成
分,雑音成分をそれぞれ添字1と添字2で区別すると、
2乗検波回路5の出力の自己相関R(τ)は第1式のよ
うに表わされる。
Next, the operation will be explained. Although not shown in FIG. 2, the communication signal light and background noise light received by the receiving optical system are guided to the four-split photodetector 2, and form a light spot 1 on the detector surface. Since each of the light receiving elements 2a, 2b, 2c, and 2d constituting the 4-split photodetector 2 is electrically insulated, it is possible to output an electric signal according to the intensity of the incident signal light. Each of the light receiving elements 2a. 2b, 2c
. Communication signal is rectangular NRZ code ON
Assume /OFF signal. The electrical signal from the light receiving element 2a is amplified by the amplifier 3 and then sent to the first DC component removal circuit 4.
The DC component is removed. The communication signal from which the DC component has been removed and the signal containing noise are input to a square law detector 5. Here, when performing square law detection, only the DC component is obtained for the communication signal, and assuming random noise, the DC component and the continuous spectrum component are obtained for the noise component. Although it is necessary to use the DC component obtained by squaring the communication signal for tracking the light beam, the DC component of unnecessary noise superimposed on this is removed as follows.i The first DC component removal The signal component after passing through circuit 4 is S
, where the noise component is n, and the signal component and noise component at times t and t+τ are distinguished by subscript 1 and subscript 2, respectively.
The autocorrelation R(τ) of the output of the square law detection circuit 5 is expressed as in the first equation.

R  (r)=E  ((S++n+)”CSz+nz
)” )”E (S+”S.”) +2E (Sl”n
l”)+4E (S.S.nu  n.) 十E”  (n+”)  +2E”  (n+  nz
 )・・・・・・・・・・・・  +11 ここでE〔・〕は平均演算を表わす。第1式において、
第1.2.4項は直流成分、第3,5項は連続スペクト
ル成分に相当する。また、第1項は信号成分、第2〜5
項は雑音成分を表わしている。
R (r)=E ((S++n+)”CSz+nz
)” )”E (S+”S.”) +2E (Sl”n
l”)+4E (S.S.nu n.) 10E” (n+”) +2E” (n+ nz
)・・・・・・・・・・・・ +11 Here, E[.] represents the average calculation. In the first equation,
The 1.2.4 terms correspond to the DC component, and the 3rd and 5th terms correspond to the continuous spectrum components. Also, the first term is the signal component, the second to fifth terms
The terms represent noise components.

ここで、雑音成分に注目すると直流成分の電力すなわち
第2項と第4項は連続スペクトル成分の電力すなわち第
3項と第5項の1/2になっている。
Here, focusing on the noise component, the power of the DC component, ie, the second term and the fourth term, is 1/2 of the power of the continuous spectrum component, ie, the third term and the fifth term.

前記2乗検波回路5の出力を2分配し、一方を低域通過
フィルタ6に入力すると、その出力として第1式に示し
た第1.2.4項を含む信号が得られる。また、前記2
乗検波回路5の出力の他方を第2の直流成分除去回路7
に入力すると第1式に示す第3項,第5項を含む連続ス
ペクトル成分が得られる.上記第2の直流成分除去回路
7の出力を2乗平均演算回路8および1/2vA衰器9
とに入力すると前記1/2M衰器9の出力として第1式
の第3.5項の直流値の半分の信号が得られる。上記低
域通過フィルタ6の出力と上記1/2減衰器9の出力を
差動増幅器10に入力とすると、第1式の第1項すなわ
ち信号成分に比例した直流値が得られる。
When the output of the square-law detection circuit 5 is divided into two parts and one is inputted to the low-pass filter 6, a signal containing terms 1.2.4 shown in the first equation is obtained as the output. In addition, the above 2
The other output of the multiplicative detection circuit 5 is connected to a second DC component removal circuit 7.
By inputting , a continuous spectral component including the third and fifth terms shown in the first equation is obtained. The output of the second DC component removal circuit 7 is converted into a root mean square calculation circuit 8 and a 1/2vA attenuator 9.
When inputted to , a signal of half the DC value of term 3.5 of the first equation is obtained as the output of the 1/2M attenuator 9. When the output of the low-pass filter 6 and the output of the 1/2 attenuator 9 are input to the differential amplifier 10, the first term of the first equation, that is, the DC value proportional to the signal component is obtained.

前記各受光素子2b,2C,  2dからの出力に関し
ても同様の信号が得られる。以上の4信号を追尾誤差信
号演算回路11に入力して演算すると背景光雑音が除去
された追尾誤差信号が得られる。
Similar signals are obtained with respect to the outputs from each of the light receiving elements 2b, 2C, and 2d. When the above four signals are input to the tracking error signal calculation circuit 11 and calculated, a tracking error signal from which background light noise has been removed is obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光ビーム追尾装置は、通信信号から直流成分を再
生するところで2乗検波を用い、上記2乗検波出力の自
己相関演算を行なっていること、および雑音成分を除去
するために引き算を差動増幅器で行なっていることによ
り下記のような課題があった。
Conventional optical beam tracking devices use square law detection when regenerating DC components from communication signals, perform autocorrelation calculations on the output of the square law detection, and perform differential subtraction to remove noise components. The use of amplifiers caused the following problems.

第1に2乗検波しているが、2乗検波の出力は入力信号
が小さくなると検波能率が低下するとともに、不確実さ
が増加する。たとえば第2図において、受光素子2cに
入射する光の強度は他の受光素子2a,2b,2dに入
射する光の強度より小さいため、通信信号と背景雑音が
同等もしくは背景雑音の方が通信信号より大きくなる可
能性がある。このような信号を2乗検波しても正確な信
号成分を得ることはできない。
First, square law detection is used, but as the input signal becomes smaller, the detection efficiency decreases and the uncertainty increases in the output of square law detection. For example, in FIG. 2, the intensity of the light incident on the light receiving element 2c is lower than the intensity of the light incident on the other light receiving elements 2a, 2b, and 2d, so the communication signal and the background noise are the same or the background noise is higher than the communication signal. It may become larger. Even if such a signal is subjected to square law detection, accurate signal components cannot be obtained.

第2に、自己相関演算を行っているが、信号と雑音に相
関がなく、また雑音がランダムであれば信号成分のみに
対して自己相関の出力は大きくなるが、雑音がランダム
でないと自己相関出力は連続スペクトルにならず、輝線
スペクトル成分をもつことになるので、前記2乗平均演
算回路8の出力には上記輝線スペクトルの2乗平均出力
をもっことになり、前記差動増幅器10の出力で雑音成
分を除去した信号を得ることはできない。最後に差動増
幅器10で雑音成分を除去する演算を行っているが、増
幅器のドリフト等により出力にオフセットを生じる可能
性があり、精度の高い追尾誤差信号を得ることができな
かった。
Second, autocorrelation calculation is performed, but if there is no correlation between the signal and noise and the noise is random, the autocorrelation output will be large for only the signal component, but if the noise is not random, the autocorrelation output will be large. Since the output is not a continuous spectrum but has a bright line spectrum component, the output of the root mean square calculation circuit 8 has the root mean square output of the bright line spectrum, and the output of the differential amplifier 10 It is not possible to obtain a signal with noise components removed. Finally, the differential amplifier 10 performs calculations to remove noise components, but there is a possibility that an offset may occur in the output due to amplifier drift, etc., making it impossible to obtain a highly accurate tracking error signal.

この発明は上記のような課題を解消するためになされた
もので、背景光雑音を除去するとともに、S/N比の高
い情度のよい追尾誤差信号を得ることができる光ビーム
追尾装置を提供することを目的とする。
This invention has been made to solve the above-mentioned problems, and provides an optical beam tracking device that can remove background optical noise and obtain a sensitive tracking error signal with a high S/N ratio. The purpose is to

〔課題を解決するための手段] この発明に係る光ビーム追尾装置は、各受光素子2a,
2b,2c,2dの出力を加算する加算手段(加算回路
12)と、この加算手段の出力よりクロノク信号を再生
するクロック再生手段(クロック再生回路13)と、こ
のクロック再生手段からのクロック信号の位相を可変す
る複数の可変位相手段(可変位相器16a.16b.1
6c,16d)と、各受光素子2a,2b,2c,2d
の出力と各可変位相手段の出力とをそれぞれ掛算してこ
の結果を低域通過フィルタ6a,6b,6c,6dを介
して追尾誤差信号演算手段(追尾誤差信号演算回路11
)に与える掛算手段(アナログ掛算回路1 5 a. 
 l 5 b,  1 5 c,  1 5 d)とを
備えたことを特徴とするものである。
[Means for Solving the Problems] A light beam tracking device according to the present invention includes each light receiving element 2a,
Adding means (adding circuit 12) for adding the outputs of 2b, 2c, and 2d, clock reproducing means (clock reproducing circuit 13) for reproducing a clock signal from the output of this adding means, and A plurality of variable phase means for varying the phase (variable phase shifter 16a.16b.1
6c, 16d) and each light receiving element 2a, 2b, 2c, 2d
and the output of each variable phase means, and the results are sent to the tracking error signal calculation means (tracking error signal calculation circuit 11) via low-pass filters 6a, 6b, 6c, and 6d.
) (analog multiplication circuit 1 5 a.)
1 5 b, 1 5 c, 1 5 d).

〔作用〕[Effect]

加算手段(加算回路12)は各受光素子2a2b,2c
.2dの出力を加算し、クロツク再生手段(クロック再
生回路13)はその加算手段の出力よりクロック信号を
再生する。可変位相千段(可変位相器16a,16b,
16c,16d)はクロック再生手段(クロック再生回
路13)からのクロック信号の位相を可変する。掛算手
段(アナログ掛算回路15a.15b,15c,15d
)は、各受光素子2a,2b,2c,2dの出力と各可
変位相手段(可変位相器16a,1 6 b,  1 
6 c,  1 6 d)の出力とをそれぞれ掛算して
、この結果を低域通過フィルタ6a,6b,6c,6d
を介して追尾誤差信号演算手段(追尾誤差信号演算回路
11)に与える。
The addition means (addition circuit 12) includes each light receiving element 2a2b, 2c.
.. The clock reproducing means (clock reproducing circuit 13) regenerates a clock signal from the output of the adding means. 1,000 stages of variable phase (variable phase shifters 16a, 16b,
16c, 16d) vary the phase of the clock signal from the clock reproducing means (clock reproducing circuit 13). Multiplication means (analog multiplication circuits 15a, 15b, 15c, 15d
) is the output of each light receiving element 2a, 2b, 2c, 2d and each variable phase means (variable phase shifter 16a, 16b, 1
6c, 16d) respectively, and the results are applied to the low-pass filters 6a, 6b, 6c, 6d.
The signal is supplied to the tracking error signal calculation means (tracking error signal calculation circuit 11) via the tracking error signal calculation circuit 11.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例に係る光ビーム追尾装置の
構成を示すブロック図である。第1図において、第2図
に示す構成要素に対応するものには同一の符号を付し、
その説明を省略する。第1図において、3a、3b,3
c.3dは4分割光検出器2を構成する受光素子2a,
2b,2c,2dの各出力を増幅する増幅器、12は各
受光素子2a,2b,2c,2dの出力を加算する加算
回路(加算手段)、l3は加算回路l2の出力よりクロ
ック信号を再生するクロック再生回路(クロフク再生手
段》、l4は加算回路12の加算結果を入力しクロック
再生回路13からのクロック信号を基準として入射デジ
タル信号光を識別し再生データ信号を得る識別再生回路
、16a.1 6 b.  1 6 c,  1 6 
dはクロック再生回路13からのクロック信号の位相を
それぞれ可変する可変位相器(可変位相手段)である。
FIG. 1 is a block diagram showing the configuration of a light beam tracking device according to an embodiment of the present invention. In FIG. 1, components corresponding to those shown in FIG. 2 are given the same reference numerals,
The explanation will be omitted. In Figure 1, 3a, 3b, 3
c. 3d is a light-receiving element 2a constituting the 4-split photodetector 2;
An amplifier that amplifies each output of the light receiving elements 2b, 2c, and 2d; 12 is an adder circuit (adding means) that adds the outputs of the light receiving elements 2a, 2b, 2c, and 2d; l3 reproduces a clock signal from the output of the adder circuit l2. Clock regeneration circuit (kurofuku regeneration means), 14 is an identification and regeneration circuit that inputs the addition result of the adder circuit 12, identifies the incident digital signal light based on the clock signal from the clock regeneration circuit 13, and obtains a reproduced data signal, 16a.1 6 b. 1 6 c, 1 6
d is a variable phase shifter (variable phase means) that varies the phase of each clock signal from the clock regeneration circuit 13;

15a.15b.15c,15dは増幅器3a,3b,
3c,3dの出力(受光素子2a,2b.2c.2dの
出力)と可変位相器16a.16b.16c.16dの
出力とをそれぞれ掛算するアナログ掛算回路(掛算手段
)、6a,6b,6c,6dはアナログ掛算回路15a
,15b,15c,15dの各出力の低域周波数成分の
みを通過させる低域通過フィルタである。この実施例に
おける追尾誤差信号演算回路l1は、低域通過フィルタ
6a,6b,6c,6dを通ったアナログ掛算回路15
a.15b.15c,15dの掛算結果を入力し、光ビ
ームの到来方向のずれを示す追尾誤差信号を得る。
15a. 15b. 15c, 15d are amplifiers 3a, 3b,
3c, 3d (outputs of light receiving elements 2a, 2b.2c.2d) and variable phase shifters 16a. 16b. 16c. Analog multiplication circuits (multiplying means) that multiply the outputs of 16d and 6a, 6b, 6c, and 6d are analog multiplication circuits 15a.
, 15b, 15c, and 15d. The tracking error signal calculation circuit l1 in this embodiment includes an analog multiplication circuit 15 that passes through low-pass filters 6a, 6b, 6c, and 6d.
a. 15b. The multiplication results of 15c and 15d are input to obtain a tracking error signal indicating the shift in the direction of arrival of the light beam.

次にこの実施例の動作について説明する。4分割光検出
器2に導かれた入射デジタル信号光はその受光素子2a
.2b,2c,2d面上に光スポット1を形成する。各
受光素子’la,  2b,2C,2dはそれぞれの入
射光強度に応じた電気信号を出力し、それぞれに接続さ
れた増幅器3a,3b,3c,3dに入力する。各増幅
器の出力は2分配されて一方は加算回路12に入力し、
他方は各々に接続されたアナログ掛算回路15a,15
b.tsc.15dに入力する.加算回路12では前記
増幅器3a,3b,3c,3dの出力信号が増幅加算さ
れて出力される。前記加算回路12の出力は2分配され
て一方はクロック再生回路13へ、他方は識別再生回路
14へ入力される。前記クロ7ク再生回路13はここで
は詳細な説明を省略するが、フェイズロックループを含
む公知の回路で形成されており、通信信号よりクロフク
信号を抽出再生するものである。前記クロック信号を基
準として識別再生回路14でデータ信号が再生される。
Next, the operation of this embodiment will be explained. The incident digital signal light guided to the 4-split photodetector 2 is transmitted to its light receiving element 2a.
.. A light spot 1 is formed on surfaces 2b, 2c, and 2d. Each of the light receiving elements 'la, 2b, 2C, and 2d outputs an electric signal corresponding to the intensity of the incident light, and inputs the electrical signal to the amplifiers 3a, 3b, 3c, and 3d connected thereto. The output of each amplifier is divided into two parts, one of which is input to the adder circuit 12,
The other one is an analog multiplication circuit 15a, 15 connected to each
b. tsc. Enter in 15d. The adder circuit 12 amplifies and adds the output signals of the amplifiers 3a, 3b, 3c, and 3d, and outputs the resultant signals. The output of the adder circuit 12 is divided into two parts, one of which is input to a clock regeneration circuit 13 and the other input to an identification regeneration circuit 14. Although a detailed explanation will be omitted here, the clock reproduction circuit 13 is formed of a known circuit including a phase-locked loop, and extracts and reproduces a clock signal from a communication signal. The data signal is regenerated by the identification reproducing circuit 14 using the clock signal as a reference.

次に、追尾誤差信号を得る過程について説明する.上記
各増幅器3b,3c,3dに接続されている回路は上記
増幅器3aに接続されているものと同じであるので以後
の説明は増幅器3aから追尾誤差演算回路11に至る動
作について説明する.前記増幅器3aからの電気信号は
アナログ掛算回路15aに入力され、一方前記クロック
再生回路13からのクロック信号は前記可変位相器16
aを通過したのち前記アナログ掛算回路15aに入力さ
れる。ここで、前記増幅器3aの電気信号をE. co
s( (Wc +Wa )t+ ’7+’s ) + 
El1cos(wa t + <i)a)とし、前記可
変位相器16aの出力信号をcos(Wct + 4P
C)  とすると、前記アナログ掛算回路15aの出力
E0は第2式のようになる. E,  =  (Es cos  (( W,  +W
# )t声Pea )  +Ea cos(W.t  
+ y, )  ) cos(Wct  +’l’c 
)E. cos  (  ( 2 Wc  +W* )t+%’
a  +ψ− } 〕+ cos ( (We  +W
c )t+?a  +¥’c ) )”・(2)ここで
、E.は信号成分の振幅、Wcはクロック角周波数、W
,は変調信号角周波数、ψ1は信号成分の位相、E.は
雑音成分の振幅、W7は雑音成分の角周波数黛。は雑音
成分の位相、ψ0は再生クロック信号の位相である。
Next, we will explain the process of obtaining the tracking error signal. Since the circuits connected to each of the amplifiers 3b, 3c, and 3d are the same as the circuits connected to the amplifier 3a, the following description will focus on the operation from the amplifier 3a to the tracking error calculation circuit 11. The electrical signal from the amplifier 3a is input to the analog multiplication circuit 15a, while the clock signal from the clock regeneration circuit 13 is input to the variable phase shifter 16.
After passing through a, the signal is input to the analog multiplication circuit 15a. Here, the electric signal of the amplifier 3a is converted to E. co
s( (Wc +Wa)t+'7+'s) +
El1cos(wa t + <i)a), and the output signal of the variable phase shifter 16a is cos(Wct + 4P
C) Then, the output E0 of the analog multiplication circuit 15a becomes as shown in the second equation. E, = (Es cos (( W, +W
# )t voicePea ) +Ea cos(W.t
+ y, ) ) cos(Wct +'l'c
)E. cos ((2 Wc +W*)t+%'
a +ψ− } ]+ cos ( (We +W
c) t+? a + ¥'c ) )"・(2) Here, E. is the amplitude of the signal component, Wc is the clock angular frequency, and W
, is the modulation signal angular frequency, ψ1 is the phase of the signal component, E. is the amplitude of the noise component, and W7 is the angular frequency of the noise component. is the phase of the noise component, and ψ0 is the phase of the reproduced clock signal.

上記出力E0を前記低域通過フィルタ6aを通して、W
.=0となる直流成分のみを取り出すと、第2式の第1
項の成分のみが復調され、その出力信号の大きさEDC
は となる.ここで、あらかじめ前記可変位相器16aの位
相量ψ,を変化させてψゎ=ψ1となるように調整して
おくと出力信号の大きさEflCは最大値E./2をと
るようにできる。第2式に示した第3項は前記低域通過
フィルタ6aの通過帯−      ( cos (W
@ t ”  ’f’m   ’%’ c)  ”域に
入る可能性があるが、雑音成分の角周波数W1とクロッ
ク角周波数Wcが一致する場合はその確率が小さくかつ
雑音成分の位相ψ、はランダムであるので、第2式の第
3項の前記低域通過フィルタ6aを通過後の信号は信号
成分出力]Eocにくらべて十分小さい。したがってS
/N比のよい受光素子2aの入射光量に比例した直流信
号を得ることができる。前記各受光素子2b,2C, 
 2dからの出力に関しても同様の信号が得られる。以
上の各受光素子2a,2b,2c,2dからの信号に基
づく4信号を追尾誤差信号演算回路1lに入力して演算
すると背景光雑音が除去されたS/N比の良い追尾誤差
信号が得られる。
The output E0 is passed through the low-pass filter 6a and W
.. If we take out only the DC component where = 0, the first of the second equation
Only the component of the term is demodulated, and the magnitude of the output signal EDC
Hato becomes. Here, if the phase amount ψ of the variable phase shifter 16a is changed in advance and adjusted so that ψゎ=ψ1, the magnitude of the output signal EflC will be the maximum value E. /2 can be obtained. The third term shown in the second equation is the pass band of the low-pass filter 6a - (cos (W
@ t ” 'f'm '%' c) ” However, if the angular frequency W1 of the noise component and the clock angular frequency Wc match, the probability is small and the phase ψ of the noise component is Since it is random, the signal after passing through the low-pass filter 6a in the third term of the second equation is sufficiently smaller than the signal component output ]Eoc. Therefore S
A DC signal proportional to the amount of light incident on the light receiving element 2a with a good /N ratio can be obtained. Each of the light receiving elements 2b, 2C,
A similar signal is obtained for the output from 2d. When the four signals based on the signals from each of the light receiving elements 2a, 2b, 2c, and 2d are input to the tracking error signal calculation circuit 1l and calculated, a tracking error signal with a good S/N ratio from which background light noise is removed can be obtained. It will be done.

なお、上記実施例では衛星間光信号に用いる場合につい
て説明したが、地上の通信で用いる対向型の空間光伝送
装置に用いても良いことは言うまでもない。また、上記
実施例では増幅器3からの出力をアナログ掛算回路15
に直接入力するようにしたが、前記増幅器3と前記アナ
ログ掛算回路15の途中に、クロック周波数を中心周波
数とする帯域通過フィルタを挿入してもよい。
In the above embodiment, the case where the present invention is used for inter-satellite optical signals has been described, but it goes without saying that the present invention may also be used for a facing-type spatial optical transmission device used in terrestrial communication. Further, in the above embodiment, the output from the amplifier 3 is sent to the analog multiplication circuit 15.
However, a bandpass filter having the clock frequency as its center frequency may be inserted between the amplifier 3 and the analog multiplication circuit 15.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、各受光素子の出力を加算
する加算手段と、この加算手段の出力よりクロック信号
を再生するクロック再生手段と、このクロック再生手段
からのクロック信号の位相を可変する複数の可変位相手
段と、各受光素子の出力と各可変位相手段の出力とをそ
れぞれ掛算してこの結果を低域通過フィルタを介して追
尾誤差信号演算手段に与える掛算手段とを備えて構成し
たので、受信信号より再生されるクロック信号を基準信
号とし、各受光素子の受信信号からクロック信号と同じ
周波数成分のみを同期検波により再生することにより生
じる背景雑音光の影響が除去された各受光素子の入射光
強度に比例した直流信号を得ることができ、これにより
各受光素子の出力が小さ《でも、また、信号出力が雑音
より小さい場合でも、S/N比が高くなり信号成分のみ
を検出することが可能となり、したがって精度の高い追
尾誤差信号が得られ、光ビームの到来方向のずれを精度
良く検出できるという効果が得られる。
As described above, according to the present invention, there is an adding means for adding the outputs of each light receiving element, a clock reproducing means for reproducing a clock signal from the output of the adding means, and a variable phase of the clock signal from the clock reproducing means. and multiplication means for multiplying the output of each light-receiving element by the output of each variable phase means and applying the result to the tracking error signal calculation means via a low-pass filter. Therefore, the clock signal regenerated from the received signal is used as the reference signal, and the influence of background noise light caused by regenerating only the same frequency component as the clock signal from the received signal of each light receiving element by synchronous detection is removed. A DC signal proportional to the intensity of light incident on the element can be obtained, and even if the output of each light-receiving element is small, or the signal output is smaller than the noise, the S/N ratio is high and only the signal component can be detected. Therefore, it is possible to obtain a highly accurate tracking error signal, and it is possible to obtain the effect that the deviation in the direction of arrival of the light beam can be detected with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る光ビーム追尾装置の
構成ブロック図、第2図は従来の光ビー2 a,  2
 b,  2 c,  2 d・.−.受光素子、5a
,6b.6c,6d・・・・・・低域通過フィルタ、1
l・・・・・・追尾誤差信号演算回路(追尾誤差信号演
算手段)、12・・・・・・加算回路(加算手段)、1
3・・・・・・クロック再生回路(クロック再生手段)
、1.5a,15b,15c,15d・・・・・・アナ
ログ掛算回路(掛算手段)、16a,16b,16c.
16d・・・・・・可変位相器(可変位相手段)。 代理人  大岩 増雄(ばか2名)
FIG. 1 is a block diagram of the configuration of an optical beam tracking device according to an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional optical beam tracking device 2a, 2.
b, 2 c, 2 d. −. Light receiving element, 5a
, 6b. 6c, 6d...Low pass filter, 1
l... Tracking error signal calculation circuit (tracking error signal calculation means), 12... Addition circuit (addition means), 1
3...Clock regeneration circuit (clock regeneration means)
, 1.5a, 15b, 15c, 15d... Analog multiplication circuit (multiplication means), 16a, 16b, 16c.
16d...Variable phase shifter (variable phase means). Agent Masuo Oiwa (2 idiots)

Claims (1)

【特許請求の範囲】[Claims] 複数象限に対応して複数個の受光素子を有し入射信号光
を検出する複数分割光検出手段と、この複数分割光検出
手段の各受光素子へ入射する入射信号光の入射光強度に
それぞれ比例した信号に基づいて演算を行ない光ビーム
の到来方向のずれを検出する追尾誤差信号演算手段とを
備えた光ビーム追尾装置において、上記各受光素子の出
力を加算する加算手段と、この加算手段の出力よりクロ
ック信号を再生するクロック再生手段と、このクロック
再生手段からのクロック信号の位相を可変する複数の可
変位相手段と、上記各受光素子の出力と上記各可変位相
手段の出力とをそれぞれ掛算してこの結果を低域通過フ
ィルタを介して上記追尾誤差信号演算手段に与える掛算
手段とを備えたことを特徴とする光ビーム追尾装置。
A plurality of divided light detection means that has a plurality of light receiving elements corresponding to a plurality of quadrants and detects an incident signal light, and a plurality of divided light detection means that has a plurality of light receiving elements corresponding to a plurality of quadrants, and a plurality of divided light detection means that has a plurality of light receiving elements corresponding to a plurality of quadrants. A light beam tracking device is provided with a tracking error signal calculation means for performing calculations based on the signals obtained and detecting deviations in the direction of arrival of the light beam. A clock reproducing means for reproducing a clock signal from the output, a plurality of variable phase means for varying the phase of the clock signal from the clock reproducing means, and multiplying the output of each of the light receiving elements by the output of each of the variable phase means. and multiplication means for applying this result to the tracking error signal calculation means via a low-pass filter.
JP1058841A 1989-03-10 1989-03-10 Light beam tracking device Pending JPH02236477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058841A JPH02236477A (en) 1989-03-10 1989-03-10 Light beam tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058841A JPH02236477A (en) 1989-03-10 1989-03-10 Light beam tracking device

Publications (1)

Publication Number Publication Date
JPH02236477A true JPH02236477A (en) 1990-09-19

Family

ID=13095879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058841A Pending JPH02236477A (en) 1989-03-10 1989-03-10 Light beam tracking device

Country Status (1)

Country Link
JP (1) JPH02236477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724340A1 (en) * 1995-01-26 1996-07-31 Canon Kabushiki Kaisha Free space optical communication apparatus
JP2016537638A (en) * 2013-08-19 2016-12-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Optical detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724340A1 (en) * 1995-01-26 1996-07-31 Canon Kabushiki Kaisha Free space optical communication apparatus
US5684614A (en) * 1995-01-26 1997-11-04 Canon Kabushiki Kaisha Optical space communication apparatus
JP2016537638A (en) * 2013-08-19 2016-12-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Optical detector

Similar Documents

Publication Publication Date Title
US4090147A (en) Interferometric amplifier
KR910003237B1 (en) Polarization insensitive coherent lightwave detector
US5351123A (en) Method and apparatus for stabilizing control loop scale factor and gain in a fiber optic Sagnac interferometer
US5212825A (en) Synthetic heterodyne demodulator circuit
JPS61219234A (en) Light receiver
WO2004023680A1 (en) Optical receiver having compensation for kerr effect phase noise
JPS5932015B2 (en) Impulsive noise removal method
TW200504733A (en) Method and circuit for generating the tracking error signal using differential phase detection
JP3984426B2 (en) Information reproducing apparatus, signal processing apparatus, information reproducing method, and optical recording medium
US4814719A (en) Unsymmetrical QPSK demodulator
JPH02236477A (en) Light beam tracking device
JPS63502133A (en) Improved right angle notch filter
JPH02284547A (en) Orthogonal signal demodulation system
JP3443810B2 (en) Polarization control circuit
JPH0392732A (en) Optical-beam tracking apparatus
US5072140A (en) Automatic gain control for interferometers and phase sensitive detectors
JPS61230637A (en) Tracking error detecting device
JP3677142B2 (en) Synchronous detector
JPH01222529A (en) Method and apparatus for detecting optical signal
EP0246919B1 (en) Tracking servo device for data reading device
US20120232818A1 (en) Relative phase detector, relative phase detecting method and information reading device
Kopriva et al. Blind separation of optical tracker responses into independent components discriminates optical sources
JPS61162843A (en) Photomagnetic signal reproducing device
JPH02104153A (en) Optical input interruption detecting system
JPS592236A (en) Generator of tracking error signal