JPH0392716A - Photoelectric encoder - Google Patents
Photoelectric encoderInfo
- Publication number
- JPH0392716A JPH0392716A JP23090689A JP23090689A JPH0392716A JP H0392716 A JPH0392716 A JP H0392716A JP 23090689 A JP23090689 A JP 23090689A JP 23090689 A JP23090689 A JP 23090689A JP H0392716 A JPH0392716 A JP H0392716A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light emitting
- grating
- emitting element
- photoelectric encoder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000001514 detection method Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 abstract description 20
- 238000000034 method Methods 0.000 abstract description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 3
- 239000010931 gold Substances 0.000 abstract description 3
- 229910052737 gold Inorganic materials 0.000 abstract description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract description 3
- 238000007740 vapor deposition Methods 0.000 abstract description 3
- 230000005284 excitation Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000011295 pitch Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 230000008021 deposition Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 102000001690 Factor VIII Human genes 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102100025490 Slit homolog 1 protein Human genes 0.000 description 1
- 101710123186 Slit homolog 1 protein Proteins 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/36—Forming the light into pulses
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Transform (AREA)
Abstract
Description
【発明の詳細な説明】 [産業」二の利用分!lil, ] 本発明は光電型エンコーダ、 学系の改良に関する。[Detailed description of the invention] [Industry] Second use! lil, ] The present invention provides a photoelectric encoder; Concerning the improvement of academic systems.
特にスケールと光
[従来の技術]
各El?, Kl’l定器、工作機械、さらに最近は各
神↑Ilt報機械等にも相対移動する二つの部月の変位
i辻を検出するため各種エンコーダが用いられており、
非接触で変位量検出が可能なところから光電型エンコー
ダか汎用されている。Especially scale and light [prior technology] Each El? Various encoders are used to detect the displacement of two parts that move relative to each other.
Photoelectric encoders are widely used because they can detect displacement without contact.
該光電型エンコーダは相対移動する二つの部利のそれぞ
れに設けられた格子と、該格子の重なり合いを検出する
ための発光素子および受光素子より1戊る。The photoelectric encoder includes a grating provided on each of two relatively moving parts, and a light emitting element and a light receiving element for detecting the overlapping of the gratings.
このような従来の光電型エンコーダとしては、通常の2
枚の格子の重なり合いを検出するエンコーダの他、第7
図に示すような3枚の格子の重なり合いの変化により変
位罪を検出する、所許ll 3格千式(Journal
of the optical society o
f America、1965, vol,55, N
o,4, p373−381) 、或いは第8因に示す
ような反躬式の光電2(゜4エンコータ(特開昭5 7
− 1. 9 8 8 1 4 )笠が周知である。As such a conventional photoelectric encoder, the normal 2
In addition to the encoder that detects the overlapping of two grids, the seventh
The Journal
of the optical society
f America, 1965, vol, 55, N
o, 4, p373-381), or a reciprocal photoelectric 2 (゜4 encoder) as shown in factor 8
-1. 9 8 8 1 4) Kasa is well known.
第7図に示す3格子式エンコーダ10は、平行配置され
た発光側格子12、検出側格子14と、両格子12.1
4の間に相対移動可能に平行配置された基準格子16と
、前記発光側格子12の図中左側に配fijl:された
発光素子]8と、前記検+H側格子14の図中右側に配
置された受光素子20と、を含む。The three-grid encoder 10 shown in FIG.
4, a reference grating 16 arranged in parallel so as to be relatively movable between the two, a light emitting element]8 disposed on the left side of the light emitting side grating 12 in the figure, and a light emitting element disposed on the right side of the detection+H side grating 14 in the figure. and a light-receiving element 20.
そして、発光素子18から出射された光は発光側格子1
2、.Jl(準格子16、検出側格子14を介して受光
素子20に至り、該受光素子20は各格子12,14.
16で制限された照射光を光電変換し、さらにブリアン
ブ22により増幅して検出信号Sを得る。Then, the light emitted from the light emitting element 18 is transmitted to the light emitting side grating 1
2. Jl (reaches the light-receiving element 20 via the quasi-grating 16 and the detection-side grating 14, and the light-receiving element 20 connects each grating 12, 14 .
The limited irradiation light is photoelectrically converted by 16 and further amplified by a Brian 22 to obtain a detection signal S.
ここで、.!,k ”(’!格子王6が発光側格子12
、検出側格子14対し例えば矢印X方向に相対移動する
と、発光素子工8からの照射光のうち格子121.6.
14により遮蔽される光量が徐々に変化し、検出信号S
は略正弦波として出力される。here,. ! ,k''('!The lattice king 6 is the light-emitting side lattice 12
, when moving relative to the detection side grating 14, for example in the direction of arrow X, the gratings 121, 6, .
The amount of light blocked by 14 gradually changes, and the detection signal S
is output as a substantially sine wave.
そして、前記基準格子16のビッチP,と検出信号Sの
波長が対応し、該検出信号Sの波長およびその分割値よ
り前記i!! ’l1!格子16の相対移動凰を測定す
るものである。Then, the pitch P of the reference grating 16 corresponds to the wavelength of the detection signal S, and from the wavelength of the detection signal S and its division value, the i! ! 'l1! This is to measure the relative movement of the grating 16.
従って、基準格子工6をメインスケール24に、発光側
格子12,検出側格子14をインデソクススゲール26
にそれそれ設置することにより、両スケールの相幻移動
量を検出することができる。Therefore, the reference grating 6 is used as the main scale 24, and the light emitting side grating 12 and the detection side grating 14 are used as the index scale 26.
By installing the two scales separately, it is possible to detect the amount of phase shift of both scales.
一方、第8図には反射式光電型エンコーダ10が示され
ており、前記第7図と対応する部分には同一符号を付し
説明を省略する。On the other hand, FIG. 8 shows a reflective photoelectric encoder 10, and parts corresponding to those in FIG. 7 are designated by the same reference numerals and their explanations will be omitted.
図示例においてはメインスケール24およびインデソク
ススケール26は光透過性のガラスより形成され、メイ
ンスケール24には反射性の2i1; ’jA格子16
を形成し、インデックススケール26には受光素子20
を格子状に形成する。In the illustrated example, the main scale 24 and the index scale 26 are made of light-transmitting glass, and the main scale 24 has a reflective 2i1;'jA grating 16.
, and the index scale 26 has a light receiving element 20
form a grid.
従って、インデックススケール26は、受光素子20に
より前記第7図の発光側格子12及び検出側格子14に
対応するスリッ1・が構成されることとなる。Therefore, in the index scale 26, the light-receiving element 20 forms a slit 1 corresponding to the light-emitting side grating 12 and the detection-side grating 14 shown in FIG.
そして、発光素子18からの光は、コリメータレンズ2
8により平行光に調整され、インデックススケール26
の裏面から照9・jされる。Then, the light from the light emitting element 18 is transmitted to the collimator lens 2
8 to adjust to parallel light, index scale 26
It is illuminated from the back side of 9.j.
この粘果、受光索子20が形成されていない部5
分からのみ光が透過しメインスケール24に照射される
。Light is transmitted only from the portion 5 of this viscous fruit where the light-receiving cord 20 is not formed, and is irradiated onto the main scale 24.
さらに、メインスケール24」二の基準格子16に反刺
された光は再度インデックススケール26方向へ進行し
、受光素子20で光市変換される。Furthermore, the light that has been irradiated by the reference grating 16 of the main scale 24'' travels again toward the index scale 26, and is subjected to optical conversion by the light receiving element 20.
ところが、2.(準格子16の間隙に照対された光は、
メインスケール24がガラス製であるところから透過し
てしまい、前記受光素子20には至らない。However, 2. (The light illuminated into the gap of the quasi-grating 16 is
Since the main scale 24 is made of glass, the light passes through the main scale 24 and does not reach the light receiving element 20.
以」二のようにしてメインスケーノレ24とインデック
ススケール26の相対移動徂は前記第7図の方式と同様
に受光素子20に略正弦波として検出されることとなる
。As described above, the relative movement of the main scale scale 24 and the index scale 26 will be detected by the light receiving element 20 as a substantially sinusoidal wave, similar to the method shown in FIG.
[発明が解決しようとする課題]
しかしながら、例えば第7図に示したような透過式の3
格子式光電型エンコーダによれば、スケール24.26
の両側に発光素子18、受光素子20を配置しなければ
ならす、部品点数が多く製造が煩雑であると共に、その
形状が大きくなって− 6 =
しまうという課題があった。[Problem to be solved by the invention] However, for example, the transmission type 3 shown in FIG.
According to the grating photoelectric encoder, the scale is 24.26
The light-emitting element 18 and the light-receiving element 20 must be arranged on both sides of the light-emitting element 18 and the light-receiving element 20, which requires a large number of parts and is complicated to manufacture, as well as being large in size.
この点は第8図に示した反対式光電型エンコーダにおい
ても全く同様で、特に同図に示すような方式ではコリメ
ータレンズ28を設けて光を分配しなければならず、や
はり装置の大型化は避けられないものであった。This point is exactly the same in the opposite type photoelectric encoder shown in Fig. 8. In particular, in the method shown in Fig. 8, a collimator lens 28 must be provided to distribute the light, and the size of the device cannot be increased. It was inevitable.
本発明は前記従来技術の課題に鑑みなされたものであり
、その目的は機構かffri fliで、しかも小型軽
−LL化を図ることのできる光’iLifi47エンコ
ーダをIlIf共することにある。The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to provide an optical 'iLifi47 encoder that has a simple mechanism and can be made small and light-LL.
[課題を解決するための手段]
前記[1的を達成するために、本山廓の4青求項1記載
の発明にかかる光fIi型エンコーダは、その発光側格
子.!I(板を板状発光素子より形成し、該板状発光素
子の基準格子対向面に遮光祠を一定間隔で配置したこと
を特徴とする。[Means for Solving the Problems] In order to achieve the above-mentioned [Object 1], the optical fIi type encoder according to the invention as set forth in Motoyama's 4-Seq. ! I (characteristically, the plate is formed from a plate-shaped light emitting element, and light-shielding shrines are arranged at regular intervals on the surface of the plate-shaped light emitting element facing the reference grid.
また、本出頭の請求項2記載の光電型エンコーダは、そ
の発光側格子基板が板状発光素子より形成され、該板状
発光素子の一商に受光素子を一′)℃間隔で整列配置し
たことを特徴とする。Further, in the photoelectric encoder according to claim 2 of the present application, the light-emitting side grating substrate is formed of a plate-shaped light-emitting element, and the light-receiving elements are arranged at intervals of 1') degrees Celsius in one part of the plate-shaped light-emitting element. It is characterized by
[作用]
本発明にかかる光電型エンコーダは前述した手段を有す
るので、発光側格子基板と発光素子が一体形成されるこ
ととなり、部品点数の削減、小型軽量化が図られること
となる。[Function] Since the photoelectric encoder according to the present invention has the above-described means, the light-emitting side grating substrate and the light-emitting element are integrally formed, and the number of parts can be reduced and the encoder can be made smaller and lighter.
また、反射式光電型エンコーダにおいて、発光側格子赴
板を構或する発光素子上に格子状受光素子を形成するこ
ととしたので、発光素子、受光素子、発光側格子、受光
側格子を全て一部祠で構戊することが可能となり、さら
に部品点数の削減、小型軽損化が図られることとなる。In addition, in the reflective photoelectric encoder, since the grid-like light receiving element is formed on the light emitting element that constitutes the light emitting side grid plate, the light emitting element, the light receiving element, the light emitting side grating, and the light receiving side grating are all integrated. It becomes possible to construct the structure with a separate shrine, further reducing the number of parts and making it smaller and lighter in damage.
[犬施例]
以下、図面に21(ついて本発明の好適な実施例を説明
する。11′IJ1前記従来技術と対応する部分には符
号100を加えて示し説明を省略する。[Dog Example] Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings 21 (11'IJ1). Parts corresponding to those in the prior art are designated by the reference numeral 100 and their explanation will be omitted.
第1図には本発明の一実施例にかかる光電型エンコーダ
に用いられる発光側格子基板の外観斜視図が示されてい
る。FIG. 1 shows an external perspective view of a light-emitting side grating substrate used in a photoelectric encoder according to an embodiment of the present invention.
同図に示す発光側格子2、(板130は、薄型長方形状
に構或され、極性の異なる小導体11”i 1 4 0
、142を積層配置して両者間に発光用の接合面を形成
している。The light-emitting side grating 2 (plate 130) shown in the same figure is constructed in a thin rectangular shape, and has small conductors 11"i 1 4 0 with different polarities.
, 142 are arranged in a stacked manner to form a light-emitting bonding surface between them.
本実施例においては、第1の半導体層140はP型Ga
As,第2の半導体層142はN型GaAsから戒り、
主として近赤外光を発光する。In this embodiment, the first semiconductor layer 140 is made of P-type Ga.
As, the second semiconductor layer 142 is made of N-type GaAs,
It mainly emits near-infrared light.
そして、前記両半導体層14.0.142の端而には電
極用金属膜144,146が金の蒸着によって形成され
ている。Further, metal films 144, 146 for electrodes are formed on the edges of both the semiconductor layers 14.0.142 by vapor deposition of gold.
前記両電極用金属脱1.44,146にはそれぞれ高圧
側リード線148および低圧側リード線150がボンデ
ィング接統されており、両屯+jノ4を介して各゛1′
−導体1cごrt4o,142にiL孔およびil子の
注入が行なわれる。A high voltage side lead wire 148 and a low voltage side lead wire 150 are bonded to the metal strips 1.44 and 146 for both electrodes, respectively.
- The conductor 1c is injected with an iL hole and an il element into the rt4o, 142.
従って、このように注入された正孔および電子は両半導
体層140,142の接絖而において再結合し、この時
電子励起エネルギーによって所定の周波数の発光が行な
われるのである。Therefore, the holes and electrons injected in this way recombine at the junction between both semiconductor layers 140 and 142, and at this time, the electron excitation energy causes light emission at a predetermined frequency.
= 9
?発明において特徴的なことは、このような発光素子自
体が発光側格子基板となっていることであり、このため
本実施例においては前記発光が外部に出射する側の金属
膜144が格子を形成している。すなわち、本実施例に
おいては電極用金属11Q 1 4 4には一定間隔で
スリッt− 1 4 4 aが複数設けられているので
ある。= 9? A characteristic feature of the invention is that such a light emitting element itself serves as a grating substrate on the light emitting side. Therefore, in this embodiment, the metal film 144 on the side from which the light emitted is emitted to the outside forms a grating. are doing. That is, in this embodiment, a plurality of slits t-144a are provided at regular intervals in the electrode metal 11Q144.
このスリットは、例えば20μmピッチ、10μmスリ
ットで構戊されている。The slits are configured, for example, with a pitch of 20 μm and a slit of 10 μm.
従って、前記接合面からの発光は電極用金属膜144の
スリッh 1 4 4 aから外部に出射し、この光ビ
ームの光束形状は11I」記開1.:J 1 4 4
aのスリット形状によって定められることとなる。Therefore, the light emitted from the bonding surface is emitted to the outside from the slit h 1 4 4 a of the electrode metal film 144, and the luminous flux shape of this light beam is 11I''. :J 1 4 4
It is determined by the slit shape of a.
尚、本実施例において反対側の電極用金属膜146は第
2の半導体層142の端而全部を覆い、また所半導体層
140,14.2の側面はその厚みがl4V < 、更
に接合面とは直交しているので発光がこれらの面から外
部に漏洩する損は僅かであり、接合面での発光は効率的
にスリッ)■ 1 4 4. aから出射することがで
きる。無論、前記側面を黒色塗10
料等で遮光することも好適である。In this embodiment, the electrode metal film 146 on the opposite side covers the entire second semiconductor layer 142, and the side surfaces of the semiconductor layers 140, 14.2 have a thickness of 14V<, and a bonding surface. Since they are perpendicular to each other, there is little loss of light emitted from these surfaces to the outside, and the light emitted from the bonded surfaces is efficiently slit) ■ 1 4 4. It can be emitted from a. Of course, it is also preferable to shield the side surfaces from light with black paint or the like.
また、本発明において、両半導体層140,142はそ
の極性すなわちpH2及びNURを逆転して配置するこ
とも可能である。Further, in the present invention, both semiconductor layers 140 and 142 can be arranged with their polarities, that is, pH2 and NUR, reversed.
また、本実施例では近亦外光を発光することとしたが、
例えば半導体としてGaPあるいは(GaAl)As等
を用いることも好適であり、必要に応じて可視光の発光
を可能とする。In addition, in this example, it was decided to emit near-field light, but
For example, it is also suitable to use GaP or (GaAl)As as the semiconductor, and it is possible to emit visible light if necessary.
また、電極用金属膜の形成には、前述した蒸着のほか、
スパッタリングその他任意の手法を用いることができる
。In addition to the above-mentioned vapor deposition, the metal film for electrodes can be formed using
Sputtering and other arbitrary methods can be used.
第2図には第l図に示した発光側格子21(板130を
光電型リニアエンコーダに用いた状態か示されている。FIG. 2 shows a state in which the light-emitting side grating 21 (plate 130 shown in FIG. 1) is used in a photoelectric linear encoder.
即ち、被測定物の長さに応じて相対移動する基準格子1
16と発光側格子工12,検出側格子114とで3格子
システムを年I1lli成している。That is, the reference grating 1 moves relatively according to the length of the object to be measured.
16, the light emitting side grating 12, and the detection side grating 114 make up a 3 grating system.
そして、本実施例ではそれぞれがインデックススケール
よりなる4組の検出格子114a,114b, ・・
114cを備えており、各検出格子に対応して受光素子
120a,120b,−120cが配置されている。そ
れぞれの検出格子1 1. 4 a,・・114Cは位
相が互いに90度ずつずれたピッチの縦縞状目盛りが形
成されている。徒って、各受光素子120a.,・・・
120cからはそれぞれπ/2ずつ位相のずれたA相、
B相、A相、B相の信号を得ることができ、A相−A相
により振幅増幅したA相出力を、B相−B相により同じ
く振幅増幅されたB相出力を得る。該A相出力およびB
相出力の位相のずれ方向等よりスケールの相対移動方向
の弁別および電気的に検出信号の分割を行ない、分解能
の高い変位昂検出を行なっている。In this embodiment, there are four detection gratings 114a, 114b, . . . each consisting of an index scale.
114c, and light receiving elements 120a, 120b, -120c are arranged corresponding to each detection grating. Each detection grid 1 1. 4a, . . . 114C are formed with vertical striped scales whose pitches are shifted by 90 degrees from each other. As a result, each light receiving element 120a. ,...
A phase with a phase shift of π/2 from 120c,
B-phase, A-phase, and B-phase signals can be obtained, and the A-phase output whose amplitude is amplified by the A-phase and the A-phase, and the B-phase output whose amplitude is also amplified by the B-phase and the B-phase are obtained. The A phase output and B
The direction of relative movement of the scale is discriminated based on the direction of phase shift of the phase output, etc., and the detection signal is electrically divided to perform displacement detection with high resolution.
ここで、本実施例においては、前述したように発光側格
子及板130が発光素子より形成され、該発光素子に直
接発光側格子1王2が形成されているので、前記第7図
と比較しても明らかなように部品点数の削減および形状
の小型化が図られている。Here, in this embodiment, as described above, the light-emitting side grating plate 130 is formed from a light-emitting element, and the light-emitting side grating 1 and 2 are formed directly on the light-emitting element, so compared with FIG. As is clear from the above, efforts have been made to reduce the number of parts and make the shape more compact.
第3図には本発明の第2実施例にかかる光電型エンコー
ダの概略構戊図が示されており、前記第2図と対応する
部分には符号100を加えて示し説明を省略する。FIG. 3 shows a schematic structural diagram of a photoelectric encoder according to a second embodiment of the present invention, and portions corresponding to those in FIG.
本実施例において特徴的なことは、発光側格子基板23
0を発光素子から形成すると共に、検出側格子)U(板
232を受光素子と一休形成したことである。The characteristic feature of this embodiment is that the light emitting side grating substrate 23
0 is formed from a light emitting element, and the detection side grating) U (plate 232) is formed from a light receiving element.
即ち、本実施例にかかる検出側格子基板232は、第4
図に示すように構或されている。That is, the detection-side grating substrate 232 according to this embodiment has the fourth
It is constructed as shown in the figure.
第4図において、検出側格子基板232は、例えばガラ
スよりなる光透過性蘂材250上に光遮断性且つ導電性
材料、例えば金属膜より成る第1信号導出材層252と
、光を電気信号に変換するPN半導体層254と、光透
過性且つ導電性祠籾例えばTnzO8,Sn02,Si
またはこれらの混合物からなる第2信号導出材層256
と、をこの順序で積層形成した受光部258を細甜状に
一定ピッチで形或している。In FIG. 4, the detection-side grating substrate 232 has a first signal deriving material layer 252 made of a light-shielding and conductive material, such as a metal film, on a light-transmitting material 250 made of glass, for example, and converts light into electrical signals. A PN semiconductor layer 254 that converts into
or a second signal deriving material layer 256 made of a mixture thereof
The light-receiving portion 258 is formed by laminating , and in this order, and is formed into a thin tangle-like shape at a constant pitch.
そして、検出側格子基板232は、その受光部258を
メインスケール224に対向して配置し、各受光部25
8が第2図において受光素子120一 13 一
および検出側格子114のスリットの役目を果すのであ
る。The detection side grating board 232 has its light receiving section 258 disposed to face the main scale 224, and each light receiving section 258 is arranged to face the main scale 224.
8 serve as the slits of the light receiving elements 120-13-1 and the detection side grating 114 in FIG.
なお、受光部258の第2信号導出材層256を通過し
た光はPN半導体層254に至り、N型非品質シリコン
膜260とP型非品質シリコン膜262の境界面で光電
変換され、出力端子264,266から外部に取り出さ
れる。Note that the light that has passed through the second signal deriving material layer 256 of the light receiving section 258 reaches the PN semiconductor layer 254, is photoelectrically converted at the interface between the N-type non-quality silicon film 260 and the P-type non-quality silicon film 262, and is sent to the output terminal. 264 and 266 to the outside.
以」二説明したように、本発明の第2実施例にかかる光
電型エンコーダによれば、発光側格子基板を発光素子と
一体形或すると共に、検出側格子2l(板を受光素子と
一体形或することとしたので、更に部品点数の削減、小
型軽量化が図られることとなる。As described above, according to the photoelectric encoder according to the second embodiment of the present invention, the light emitting side grating substrate is integrated with the light emitting element, and the detection side grating 2l (the plate is integrated with the light receiving element). As a result, the number of parts can be further reduced and the size and weight can be reduced.
第4図には本発明の第3実施例にかかる光電型エンコー
ダが示されており、前記第2実施例と対応する部分には
符号100を加えて説明を省略する。FIG. 4 shows a photoelectric encoder according to a third embodiment of the present invention, and portions corresponding to those in the second embodiment are designated by the reference numeral 100 and their explanation will be omitted.
本実施例において特徴的なことは、反射式の光電型エン
コーダにおいて発光側格子基板、発光素子、検出側格子
基板、受光素子を一体形成したこ14
とにある。The characteristic feature of this embodiment is that in a reflective photoelectric encoder, a light emitting side grating substrate, a light emitting element, a detecting side grating substrate, and a light receiving element are integrally formed14.
即ち、第5図においてインデックススケール370は、
その基板か長尺状の発光素子372から構或され、その
一面に受光部358が形成されている。That is, in FIG. 5, the index scale 370 is
The substrate is composed of an elongated light emitting element 372, and a light receiving section 358 is formed on one surface thereof.
従って、発光素子372から発した光は、メインスケー
ル324の,IIli準格子316に反11され、受光
部358に至ることとなる。Therefore, the light emitted from the light emitting element 372 is reflected by the IIli quasi-lattice 316 of the main scale 324 and reaches the light receiving section 358.
この際、発光素子372」二に一定間隔で形成された受
光部358が発光側格子の役1;リを果し、りJに受光
部358自体が格子状に形成されているため、検出側格
子の役割をも果すものである。At this time, the light receiving parts 358 formed at regular intervals on the light emitting element 372 serve as a grid on the light emitting side, and the light receiving parts 358 themselves are formed in a grid shape on the light emitting side. It also serves as a lattice.
ここで、インデックススケール370の詳細な構或が第
6図に示されている。Here, the detailed structure of the index scale 370 is shown in FIG.
同図より明らかなように、発光素子372は、P型半導
体層340とN型半導体層342とから形成される。As is clear from the figure, the light emitting element 372 is formed from a P-type semiconductor layer 340 and an N-type semiconductor layer 342.
そして、該長尺状発光素子372J:に一定間隔で受光
部358が形成される。Light receiving portions 358 are formed at regular intervals on the elongated light emitting element 372J.
尚、各受光部358の描成は前記第4図に示した通りで
ある。The depiction of each light receiving section 358 is as shown in FIG. 4 above.
次に、本実施例にかかるインデックススケール370の
製造方法について説明する。Next, a method for manufacturing the index scale 370 according to this embodiment will be described.
先ず、長尺状の発光素子372を常法のより形成する。First, a long light emitting element 372 is formed by a conventional method.
そして、該発光索子372を真空蒸着製置内に装着し、
5 X 1 0 −6torrの真空度の環境下で、1
50〜200℃に加熱し、タングステンボードからCr
を蒸着させ、発光素子372」二にCrを蒸着させて2
000〜3000人の厚さの第1信号導出材層352と
なるCr膜を形或する。Then, the light emitting cord 372 is installed in a vacuum deposition equipment,
1 in a vacuum environment of 5 x 10 -6 torr.
Heating to 50~200℃, Cr from tungsten board
Cr is vapor-deposited on the light emitting element 372'', and Cr is vapor-deposited on the light emitting element 372''.
A Cr film that becomes the first signal deriving material layer 352 is formed to have a thickness of 0.000 to 3000.
次に、前記Cr膜を形成した発光素子372をプラズマ
チャンバーに入れて3 0 0 ”Cに加熱し、SIT
−I410%を含むArガスをH2ガスにより10倍希
釈したガスを前記プラズマチャンバー内に導入する。そ
して、0.1〜2 torrの圧力下で高周波グロー放
電により、N型非品質シリコン(Na−Si)膜360
およびP型非品質シリコン(P a Sl)IK’3
62を、前記第1信号導出材層352上に積層し、これ
によって約1μmの厚さの半導体層354を形戒する。Next, the light emitting element 372 on which the Cr film was formed was placed in a plasma chamber and heated to 300"C, and SIT
A gas obtained by diluting Ar gas containing 10% -I4 ten times with H2 gas is introduced into the plasma chamber. Then, an N-type non-quality silicon (Na-Si) film 360 is formed by high-frequency glow discharge under a pressure of 0.1 to 2 torr.
and P-type non-quality silicon (P a Sl) IK'3
62 is laminated on the first signal deriving material layer 352, thereby forming a semiconductor layer 354 with a thickness of about 1 μm.
前記N型非晶質ンリコン膜360は、析出初期に微量の
PH3を反応ガス中にa人することにより、またP型非
品質シリコン膜362は途中で前記P H 8を13
2r−1 6に切換えることによりそれぞれ析出させる
。ここで、I) N半導体層354の形成は、熱分解法
、スパッタリグ蒸着法等の他の方法によっても形成する
ことが可能である。The N-type non-crystalline silicon film 360 is formed by adding a small amount of PH3 into the reaction gas at the initial stage of deposition, and the P-type non-quality silicon film 362 is formed by adding 13% of the PH8 to the reaction gas during the deposition.
2r-1 and 6, respectively. Here, I) The N semiconductor layer 354 can also be formed by other methods such as a thermal decomposition method and a sputtering deposition method.
次に、PN半導体層354を形成した発光素子372を
真空蒸着層内に入れ、150℃に加熱し、アルミナ壺に
入れたIn20aを電子ビーム蒸着法により約1000
人の厚さのIn203膜として蒸着させ、これによって
前記PN半導体層354の上に第2信号導出材層356
を形或する。Next, the light emitting element 372 with the PN semiconductor layer 354 formed thereon is placed in a vacuum evaporated layer, heated to 150° C., and In20a placed in an alumina pot is deposited with about 100
A second signal deriving material layer 356 is deposited as a human-thick In203 film on the PN semiconductor layer 354.
form.
次に、スピン塗装法によりホ1・レジストを約2μmの
厚さに塗布し乾燥させる。更にマスクにより出力端子部
366を遮光した後、紫外線で露光して現像し、出力端
子部366のホトレジストを除去する。Next, a photoresist is applied to a thickness of about 2 μm using a spin coating method and dried. Furthermore, after shielding the output terminal portion 366 from light with a mask, the photoresist on the output terminal portion 366 is removed by exposure to ultraviolet light and development.
ついで、ケミカルエッチングあるいはプラズマエッチン
グ等の方法により、出力端子366部分17
の第2信号導出材層356およびPN半導体層354を
除去し、第1信号導出祠層352を露出させる。Next, the second signal deriving material layer 356 and the PN semiconductor layer 354 of the output terminal 366 portion 17 are removed by a method such as chemical etching or plasma etching, and the first signal deriving layer 352 is exposed.
同様にして、受光部358の間の光導出スリット374
部分以外の部分をホトレジストで覆い、該光導出スリッ
ト374に該当する第1,第2信号導出材層352,3
56およびPN半導体層354をプラズマエッチング等
により除去し、発光素子372を露出させる。Similarly, the light guide slit 374 between the light receiving sections 358
The first and second signal guiding material layers 352, 3 corresponding to the light guiding slits 374 are covered with photoresist except for the first and second signal guiding slits 374.
56 and the PN semiconductor layer 354 are removed by plasma etching or the like to expose the light emitting element 372.
尚、光導出スリット374の幅は受光部358の発光素
子372の表面からの高さの2倍以上とすると明暗を検
知するのに好適である。Note that it is preferable that the width of the light guide slit 374 is at least twice the height of the light receiving section 358 from the surface of the light emitting element 372 to detect brightness and darkness.
次に、第1信号導出層352および第2信号導出層35
6から出ツJ電流を取出すための導線を前記出ノノ端子
364,366に導電線接着剤により取イ1け、最後に
PN半導体屑を保護するために全体に薄くシリコンワニ
スを塗布乾燥して完威させる。Next, the first signal derivation layer 352 and the second signal derivation layer 35
The conductor wire for extracting the output J current from 6 is attached to the output terminals 364 and 366 using conductive wire adhesive.Finally, in order to protect the PN semiconductor chips, apply a thin layer of silicone varnish to the entire surface and dry. make it complete.
以」二のように、本実施例にかかる光電型エンコーダに
よれば、インデックススケールとメインス18
ケールの二部制のみで3格子システムの光電L(14エ
ンコーダを構成することが可能となり、部品点数の犬申
品な削減、装置の小型軽量化を図ることができる。As described in Section 2 below, according to the photoelectric encoder according to this embodiment, it is possible to configure a photoelectric L (14 encoder) with a 3-grid system using only the two-part system of the index scale and the main scale, and the number of parts can be reduced. It is possible to achieve a significant reduction in the size of the device and to make the device smaller and lighter.
尚、前記各実施例によれば、3格子式光電型エンコーダ
を主体に説明したが、本発明は通常の2格子式光電型エ
ンコーダ等にも適用可能である。In each of the above embodiments, the three-grid photoelectric encoder was mainly described, but the present invention is also applicable to a normal two-grid photoelectric encoder.
また、前記各丈施例によれば、リニアエンコーダを例に
とり説明したが、これに限られるものではなく例えばロ
ータリーエンコーダ等にも適用可能である。In addition, although the above embodiments have been described using a linear encoder as an example, the present invention is not limited to this, and can also be applied to a rotary encoder, for example.
[発明の効果コ
以」―説明したように、本出願の1箔求項1記叔の光電
型エンコーダによれば、発光素子と発光側格子基板とを
一体形成したので、装置の小型軽川,化、部品点数の削
減を図ることが可能となる。[Effects of the Invention] As explained, according to the photoelectric encoder of the first foil claim 1 of the present application, the light emitting element and the light emitting side grating substrate are integrally formed, so that the device can be made smaller and smaller. , and the number of parts can be reduced.
又、本出願の請求項2記載の光電型エンコー夕によれば
、発光素子、発光側格子基板、受光素子、検出側格子星
板を一体形成することとしたので、更に部品点数の削減
、装置の小型軽量化を図ることが可11ヒとなる。Further, according to the photoelectric encoder according to claim 2 of the present application, the light emitting element, the light emitting side grating substrate, the light receiving element, and the detecting side grating star plate are integrally formed, so that the number of parts can be further reduced and the device can be improved. It is possible to make the device smaller and lighter.
第1図は本発明の第一実施例に係る光電型エンコーダに
用いられる発光側格子乱板の説明図、第2図は第一実施
例に係る光屯バ2エンコーダの概略構成図、
第3図は本発明の第二実施例に係る光電型エンコーダの
概略構戊図、
第4図は第二実施例に用いられる検出側格子2l(板の
説明図、
第5図は本発明の第三実施例に係る光電型エンコーダの
説明図、
第6図は第三実施例に係る光電型エンコーダに用いられ
るインデックススケールの説明図、第7図は従来の3格
子式光電型エンコーダの概略構成図、
第8図は従来の反別式光屯』ソエンコーダの概111呂
説明図である。
10,11.0,210,310・・エンコーダ、24
.124 224・・・メインスケール、26,12
6,226・・・インデックススケール、1.30,2
30・・・発光側格子是板、232・・・受光側格子基
板、
370・・・インデソクススケール。FIG. 1 is an explanatory diagram of a light-emitting grating plate used in a photoelectric encoder according to a first embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a photoelectric encoder according to a first embodiment, and FIG. The figure is a schematic structural diagram of a photoelectric encoder according to the second embodiment of the present invention, FIG. 4 is an explanatory diagram of the detection side grating 2l (plate) used in the second embodiment, and FIG. An explanatory diagram of a photoelectric encoder according to an embodiment; FIG. 6 is an explanatory diagram of an index scale used in a photoelectric encoder according to a third embodiment; FIG. 7 is a schematic configuration diagram of a conventional three-grid photoelectric encoder; Fig. 8 is a schematic explanatory diagram of the conventional anti-betsu-style encoder. 10, 11. 0, 210, 310... Encoder, 24
.. 124 224...Main scale, 26,12
6,226...index scale, 1.30,2
30... Light-emitting side grating plate, 232... Light-receiving side grating board, 370... Index scale.
Claims (2)
、所定の発光側格子が形成されたインデックススケール
と、 を含み、前記基準格子及び発光側格子により制限された
光を受光して前記メインスケールとインデックススケー
ルとの相対移動量を出力する光電型エンコーダにおいて
、 発光側格子基板を板状発光素子により形成し、その基準
格子対向面に薄膜状遮光材を一定間隔で配置したことを
特徴とする光電型エンコーダ。(1) A main scale on which a predetermined reference grating is formed; and an index scale arranged in parallel movably relative to the main scale and on which a predetermined light-emitting side grating is formed; In a photoelectric encoder that receives light restricted by a grating and outputs the amount of relative movement between the main scale and the index scale, the light emitting side grating substrate is formed of a plate-shaped light emitting element, and a thin film-shaped is formed on the surface opposite the reference grating. A photoelectric encoder characterized by light shielding materials arranged at regular intervals.
、発光側格子及び受光側格子が形成されるインデックス
スケールと、 を含み、前記発光側格子を介した光が基準格子で反射さ
れ、更に検出側格子により制限された光を受光して、メ
インスケールとインデックススケールとの相対移動量を
出力する光電型エンコーダにおいて、 前記発光側格子基板を板状発光素子より形成し、該板状
発光素子の一面に一定間隔で受光素子を整列配置し、 前記発光素子より出射した光が受光素子間を介してメイ
ンスケールの基準格子により反射され、発光素子上の受
光素子により受光されることを特徴とする光電型エンコ
ーダ。(2) a main scale on which a predetermined reference grating is formed; and an index scale arranged in parallel so as to be movable relative to the main scale, and on which a light-emitting side grating and a light-receiving side grating are formed, and the light-emitting side grating In a photoelectric encoder that outputs the amount of relative movement between the main scale and the index scale by reflecting the light transmitted through the reference grating and further restricting the light by the detection side grating, the light emitting side grating substrate is connected to a plate. light emitting elements arranged at regular intervals on one side of the plate-shaped light emitting element, light emitted from the light emitting elements is reflected by a reference grating of the main scale via between the light receiving elements, and the light emitting element A photoelectric encoder characterized in that light is received by an upper light receiving element.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1230906A JPH0656304B2 (en) | 1989-09-05 | 1989-09-05 | Photoelectric encoder |
DE19904091517 DE4091517T1 (en) | 1989-09-05 | 1990-09-05 | PHOTOELECTRIC CODING DEVICE |
DE4091517A DE4091517C2 (en) | 1989-09-05 | 1990-09-05 | Photoelectric encoder with reference grid |
PCT/JP1990/001138 WO1991003711A1 (en) | 1989-09-05 | 1990-09-05 | Photoelectric encoder |
GB9109425A GB2243684B (en) | 1989-09-05 | 1991-05-01 | Photoelectric encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1230906A JPH0656304B2 (en) | 1989-09-05 | 1989-09-05 | Photoelectric encoder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0392716A true JPH0392716A (en) | 1991-04-17 |
JPH0656304B2 JPH0656304B2 (en) | 1994-07-27 |
Family
ID=16915147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1230906A Expired - Fee Related JPH0656304B2 (en) | 1989-09-05 | 1989-09-05 | Photoelectric encoder |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPH0656304B2 (en) |
DE (1) | DE4091517C2 (en) |
GB (1) | GB2243684B (en) |
WO (1) | WO1991003711A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002236034A (en) * | 2000-12-07 | 2002-08-23 | Harmonic Drive Syst Ind Co Ltd | Optical encoder |
JP2002340622A (en) * | 2001-05-11 | 2002-11-27 | Mitsutoyo Corp | Photoelectric encoder, and manufacturing method therefor |
JP2002542616A (en) * | 1999-04-21 | 2002-12-10 | ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Integrated optronic thin film sensor and method of manufacturing the same |
US7348544B2 (en) | 2004-06-15 | 2008-03-25 | Canon Kabushiki Kaisha | Optical encoder with discontinuous optical grating |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6291839B1 (en) * | 1998-09-11 | 2001-09-18 | Lulileds Lighting, U.S. Llc | Light emitting device having a finely-patterned reflective contact |
DE19859670A1 (en) | 1998-12-23 | 2000-06-29 | Heidenhain Gmbh Dr Johannes | Readhead and method of making same |
DE602005002287T2 (en) | 2004-03-17 | 2008-05-29 | Canon K.K. | Optical encoder |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6324126A (en) * | 1986-06-25 | 1988-02-01 | Mitsutoyo Corp | Photoelectric encoder |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4019196A (en) * | 1974-11-22 | 1977-04-19 | Stanley Electric Co., Ltd. | Indicating element and method of manufacturing same |
JPS6032126B2 (en) * | 1981-06-01 | 1985-07-26 | 株式会社 三豊製作所 | Photoelectric encoder |
GB2099993B (en) * | 1981-06-01 | 1985-11-27 | Mitutoyo Mfg Co Ltd | Photoelectric displacement encoder |
JPS58147654A (en) * | 1982-02-26 | 1983-09-02 | Matsushita Electric Ind Co Ltd | Optical type frequency generator |
JPS59221667A (en) * | 1983-05-31 | 1984-12-13 | Matsushita Electric Ind Co Ltd | Optical rotation detector |
JPS61283818A (en) * | 1985-06-10 | 1986-12-13 | Sharp Corp | Photoelectric type rotary encoder |
US4943716A (en) * | 1988-01-22 | 1990-07-24 | Mitutoyo Corporation | Diffraction-type optical encoder with improved detection signal insensitivity to optical grating gap variations |
JPH06324126A (en) * | 1993-05-10 | 1994-11-25 | Fujisaki Densetsu Kk | Protective relay testing device |
-
1989
- 1989-09-05 JP JP1230906A patent/JPH0656304B2/en not_active Expired - Fee Related
-
1990
- 1990-09-05 WO PCT/JP1990/001138 patent/WO1991003711A1/en active Application Filing
- 1990-09-05 DE DE4091517A patent/DE4091517C2/en not_active Expired - Lifetime
-
1991
- 1991-05-01 GB GB9109425A patent/GB2243684B/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6324126A (en) * | 1986-06-25 | 1988-02-01 | Mitsutoyo Corp | Photoelectric encoder |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002542616A (en) * | 1999-04-21 | 2002-12-10 | ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Integrated optronic thin film sensor and method of manufacturing the same |
JP2002236034A (en) * | 2000-12-07 | 2002-08-23 | Harmonic Drive Syst Ind Co Ltd | Optical encoder |
JP2002340622A (en) * | 2001-05-11 | 2002-11-27 | Mitsutoyo Corp | Photoelectric encoder, and manufacturing method therefor |
US7348544B2 (en) | 2004-06-15 | 2008-03-25 | Canon Kabushiki Kaisha | Optical encoder with discontinuous optical grating |
Also Published As
Publication number | Publication date |
---|---|
WO1991003711A1 (en) | 1991-03-21 |
GB9109425D0 (en) | 1991-06-26 |
JPH0656304B2 (en) | 1994-07-27 |
GB2243684A (en) | 1991-11-06 |
GB2243684B (en) | 1993-07-07 |
DE4091517C2 (en) | 1997-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5155355A (en) | Photoelectric encoder having a grating substrate with integral light emitting elements | |
US6486467B1 (en) | Optical detector for measuring relative displacement of an object on which a grated scale is formed | |
CN104422469B (en) | Photoelectric encoder | |
US7417218B2 (en) | Triple grating optical encoder with light transmitting area in optical path | |
US7279698B2 (en) | System and method for an optical modulator having a quantum well | |
JPS582501B2 (en) | Light receiving element | |
TW523934B (en) | Light-receiving element array | |
JPH0392716A (en) | Photoelectric encoder | |
US6610975B2 (en) | Optical encoder | |
CN111599899B (en) | Light emitting diode, driving method thereof, light source device and electronic equipment | |
EP1175600A1 (en) | Integrated optoelectronic thin-film sensor and method of producing same | |
JP2011210807A (en) | Light-receiving element, optical sensor, and spectral sensor | |
US6794638B2 (en) | Photoelectric encoder having improved light-emitting and photoreceptive sections | |
Schmidt et al. | Position-sensitive photodetectors made with standard silicon-planar technology | |
KR20190041952A (en) | Photodetector with helmholtz resonator | |
JP4444715B2 (en) | Optical displacement measuring device | |
JP2010243323A (en) | Optical encoder | |
CN114079228B (en) | Laser and manufacturing method thereof | |
JP4880132B2 (en) | Photoelectric encoder | |
JPS6323377A (en) | Light emitting diode | |
JPS63243781A (en) | X-ray detector | |
GB2192753A (en) | Light emitting diode device | |
JP6533719B2 (en) | Light emitting and receiving device | |
JPS6320874A (en) | Radiation detector | |
JP2001230444A (en) | Photodiode array element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |