JPH0392411A - Active suspension - Google Patents
Active suspensionInfo
- Publication number
- JPH0392411A JPH0392411A JP22880989A JP22880989A JPH0392411A JP H0392411 A JPH0392411 A JP H0392411A JP 22880989 A JP22880989 A JP 22880989A JP 22880989 A JP22880989 A JP 22880989A JP H0392411 A JPH0392411 A JP H0392411A
- Authority
- JP
- Japan
- Prior art keywords
- deceleration
- acceleration
- command value
- value
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000725 suspension Substances 0.000 title claims abstract description 20
- 230000001133 acceleration Effects 0.000 claims abstract description 99
- 238000001514 detection method Methods 0.000 claims description 31
- 230000008859 change Effects 0.000 claims description 21
- 239000012530 fluid Substances 0.000 claims description 18
- 230000007423 decrease Effects 0.000 claims description 11
- 208000019901 Anxiety disease Diseases 0.000 abstract description 2
- 230000036506 anxiety Effects 0.000 abstract description 2
- 230000007935 neutral effect Effects 0.000 description 26
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000005484 gravity Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 210000000538 tail Anatomy 0.000 description 4
- 230000005284 excitation Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000010720 hydraulic oil Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Vehicle Body Suspensions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、能動型サスペンションに係り、特に、車体
及び車輪間に配設された流体圧シリンダの作動圧を前後
加減速度に応じて制御し、加減速時の車高値を調整する
ようにした能動型サスペンシゴンに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an active suspension, and in particular to a suspension that controls the operating pressure of a fluid pressure cylinder disposed between a vehicle body and wheels in accordance with longitudinal acceleration/deceleration. , relates to an active suspension system that adjusts the vehicle height during acceleration and deceleration.
「従来の技術〕
発進時や制動時に生じる車両のピッチ運動を制御可能な
能動型サスペンションとして、本出願人は特願昭63−
246294号(未公開)記載のものを出願している。"Prior Art" The applicant has proposed an active suspension that can control the pitch motion of a vehicle that occurs when starting or braking.
No. 246294 (unpublished) has been filed.
この出願記載の能動型サスペンシゴン装置の一態様は、
その実施例で述べているように、車体と各車輪との間に
介挿された油圧シリンダと、この油圧シリンダの作動圧
を指令値のみに応じて制御する圧力制御弁と、車体の前
後加減速度を検出する前後加減速度センサと、この加減
速度センサの検出値と変更可能な加減速度中立値との差
値に応じた前記指令値を演算する演算手段とを備えると
ともに、車両が揺動しないで停車している初期状態が認
識された時点の前後加減速度センサの検出値を加減速度
中立値として設定する手段と、所定走行距離又は所定走
行時間毎に演算された前後加減速度センサの検出値の平
均値で加減速度中立値を更新する手段とを有している。One aspect of the active suspension device described in this application includes:
As described in the example, there is a hydraulic cylinder inserted between the vehicle body and each wheel, a pressure control valve that controls the operating pressure of this hydraulic cylinder according to a command value only, and a longitudinal adjustment of the vehicle body. The vehicle includes a longitudinal acceleration/deceleration sensor that detects speed, and a calculation means that calculates the command value according to the difference between the detected value of the acceleration/deceleration sensor and a changeable acceleration/deceleration neutral value, and the vehicle does not rock. means for setting the detected value of the longitudinal acceleration/deceleration sensor at the time when the initial state of stopping is recognized as the acceleration/deceleration neutral value, and the detected value of the longitudinal acceleration/deceleration sensor calculated every predetermined traveling distance or predetermined traveling time. and means for updating the neutral acceleration/deceleration value with the average value of the acceleration/deceleration.
これによって、先願の目的である、坂道停車状態から発
進して平坦路走行に至る場合の、加減速度補正の適切化
による高精度の姿勢制御を達威している。This achieves highly accurate attitude control by optimizing acceleration/deceleration correction when the vehicle starts from a stopped state on a slope and travels on a flat road, which is the objective of the prior application.
また、前記油圧シリンダのシリンダ室には、路面側から
人力するバネ下共振域の高周波振動に対応した油圧変動
を吸収するアキュムレー夕を接続している。Furthermore, an accumulator is connected to the cylinder chamber of the hydraulic cylinder to absorb hydraulic fluctuations corresponding to high-frequency vibrations in the unsprung resonance region manually applied from the road surface.
ところで、上述の能動型サスペンションにおいて、圧力
制御弁に供給する励磁電流■(指令電流)と圧力制御弁
の出力圧P(即ちシリンダ圧)との関係は、第10図に
示すようになっている。つまり、前後加減速度が零のと
きには中立励磁電流I.が演算され、加減速時に、ある
量の前後加減速度が検出されたときには、前後のシリン
ダ圧の上昇,下降の変化率が同一に調整される。このた
め、前後加減速度M (it速時を正値とする)を横軸
に、油圧シリンダの作動圧Pを縦軸にとった制御特性の
一例は第11図に示すようになる。これを詳述すると、
定速走行時である前後加減速度X=Oのときには前輪側
,後輪側作動圧Pが共に所定中立圧P.4となり、加減
速走行によって前後加減速度ヌ1が大きくなるにつれて
、前輪側.後輪側作動圧Pが共に同一変化率で増大又は
減少し、ピッチ剛性を発生させている。By the way, in the above-mentioned active suspension, the relationship between the excitation current (command current) supplied to the pressure control valve and the output pressure P of the pressure control valve (i.e. cylinder pressure) is as shown in Fig. 10. . In other words, when the longitudinal acceleration/deceleration is zero, the neutral excitation current I. is calculated, and when a certain amount of longitudinal acceleration/deceleration is detected during acceleration/deceleration, the rate of change in the rise and fall of the front and rear cylinder pressures is adjusted to be the same. For this reason, an example of the control characteristic is shown in FIG. 11, where the horizontal axis is the longitudinal acceleration/deceleration M (positive value at the time of IT speed) and the vertical axis is the operating pressure P of the hydraulic cylinder. To elaborate on this,
When the longitudinal acceleration/deceleration X=O during constant speed driving, both the front wheel side and rear wheel side working pressures P are at the predetermined neutral pressure P. 4, and as the longitudinal acceleration/deceleration nu1 increases due to acceleration/deceleration driving, the front wheel side. The rear wheel side working pressure P both increases or decreases at the same rate of change, causing pitch stiffness.
しかしながら、上述した第11図の制御特性を有する能
動型サスベンシヲンでは、定速直進時における各輪のシ
リンダ圧が共に中立作動圧PMとなるので、この中立圧
Psで定まる車高値の走行となり、一方、加減速時にお
ける車体沈み込み側の作動圧上昇及び車体浮き上がり側
の作動圧下降が共に同じ割合でなされるので、その加減
速時における車高値はその平均値,即ちほぼ中立値P8
で定まる、定速直進時と同じ車高値を維持し、定速直進
走行から加速,減速を行う際、車両の重心高さが変わら
ずに所定車高値のままとなるから、加減速時に若干V!
3. Pが低下する車両に慣れている乗員にとって、却
って不安感を覚えるいう現状にあった。この不都合は、
とくに、減速時のノーズダイブ時に顕著であった。However, in the active suspension having the control characteristics shown in FIG. 11 described above, the cylinder pressures of each wheel when traveling straight at a constant speed are both at the neutral operating pressure PM, so the vehicle runs at the vehicle height determined by this neutral pressure Ps, and on the other hand, During acceleration and deceleration, the working pressure on the sinking side of the vehicle body and the working pressure on the lifting side of the car body decrease at the same rate, so the vehicle height value during acceleration and deceleration is the average value, that is, approximately the neutral value P8.
When accelerating or decelerating from constant-speed straight-ahead driving, the height of the vehicle's center of gravity remains unchanged and remains at the predetermined vehicle height value, which is determined by !
3. The current situation was such that the passengers, who were used to vehicles with reduced P, felt uneasy. This inconvenience is
This was especially noticeable during nose dive during deceleration.
また、上述したように前後輪で作動圧の変化割合が同一
であり、車体沈み込み側の圧力上昇が大きいから、シリ
ンダに接続しているアキュムレー夕が大きく潰れ、圧力
変動を吸収し難くなり、したがって例えば制動時に前輪
が拾う、路面の細かな凹凸による振動を車体側に伝えて
、乗心地が悪化するという未解決の問題もあった。In addition, as mentioned above, the rate of change in operating pressure is the same for the front and rear wheels, and the pressure increase on the sinking side of the car is large, so the accumulator connected to the cylinder collapses significantly, making it difficult to absorb pressure fluctuations. Therefore, for example, there is an unresolved problem that vibrations picked up by the front wheels during braking due to small irregularities on the road are transmitted to the vehicle body, worsening ride comfort.
本発明は、これらの現状に着目してなされたもので、そ
の第1の課題は、加減速時における車高値の不変化に起
因した乗員の不安感を取り除くことであり、その第2の
課題は、そのような不安感を除去しながら、加減速時の
乗心地を向上させることである。The present invention has been made in view of these current circumstances, and its first objective is to eliminate the feeling of anxiety among occupants caused by the unchanged vehicle height during acceleration and deceleration. The objective is to improve ride comfort during acceleration and deceleration while eliminating such uneasiness.
上記第1の課題を解決するため、請求項(】)及び(3
)記載の発明は第1図に示すように、車体側部材と車輪
側部材との間に各輪別に介装された流体圧シリンダと、
この流体圧シリンダの作動圧を指令値に応じて個別に制
御する圧力制御弁と、車体の前後方向の加減速度を検出
する前後加減速度検出手段と、この前後加減速度検出手
段の加減速度検出値に基づき、加速時及び減速時の少な
くとも一方の走行時の車高を定速直進時よりも低下させ
る指令値を各輪別に演算する指令値演算手段と、この指
令値演算手段が演算した指令値を前記圧力制御弁に各々
出力する指令値出力手段とを備えたことを要部としてい
る。In order to solve the first problem above, claims (]) and (3)
As shown in FIG. 1, the invention described in ) includes a fluid pressure cylinder interposed between a vehicle body side member and a wheel side member for each wheel;
A pressure control valve that individually controls the operating pressure of the fluid pressure cylinder according to a command value, a longitudinal acceleration/deceleration detection means for detecting acceleration/deceleration in the longitudinal direction of the vehicle body, and an acceleration/deceleration detection value of the longitudinal acceleration/deceleration detection means. a command value calculation means for calculating, for each wheel, a command value for lowering the vehicle height during at least one of acceleration and deceleration than when traveling straight at a constant speed, based on the above, and a command value calculated by the command value calculation means; and command value output means for respectively outputting the values to the pressure control valves.
また、前記第2の課題を解決するため、請求項(2)及
び(3)記載の発明は、車体側部材と車輪側部材との間
に各輪別に介装された流体圧シリンダと、この流体圧シ
リンダに設けられ前記車輪側部材の振動を吸収するアキ
ュムレータと、前記流体圧シリンダの作動圧を指令値に
応じて個別に制御する圧力制御弁と、車体の前後方向の
加減速度を検出する前後加減速度検出手段と、この前後
加減速度検出手段の加減速度検出値に基づき、加速時及
び減速時の少なくとも一方の走行時の車高を定速直進時
よりも低下させる指令値を各輪別に演算する指令値演算
手段と、この指令値演算手段が演算した指令値を前記圧
力制御弁に各々出力する指令値出力手段とを備えたこと
を要部としている。Furthermore, in order to solve the second problem, the invention according to claims (2) and (3) includes a fluid pressure cylinder interposed between the vehicle body side member and the wheel side member for each wheel; an accumulator provided in the fluid pressure cylinder to absorb vibrations of the wheel side member; a pressure control valve that individually controls the operating pressure of the fluid pressure cylinder according to a command value; and a pressure control valve that detects longitudinal acceleration/deceleration of the vehicle body. A longitudinal acceleration/deceleration detection means, and a command value for each wheel to lower the vehicle height during at least one of acceleration and deceleration than when traveling straight at a constant speed based on the acceleration/deceleration detection value of the longitudinal acceleration/deceleration detection means. The main part includes a command value calculation means for calculating, and a command value output means for outputting the command values calculated by the command value calculation means to the pressure control valves.
請求項(1)及び(3)記載の発明では、車両が定速直
進状態の場合、前後加速度検出値が零であり、指令値演
算手段が所定指令値を演算するので、この流体圧シリン
ダの作動圧がこの所定指令値に応じて制御され、フラッ
トな所定車高値が維持される。In the inventions described in claims (1) and (3), when the vehicle is traveling straight at a constant speed, the longitudinal acceleration detected value is zero and the command value calculation means calculates the predetermined command value, so that the fluid pressure cylinder The operating pressure is controlled according to this predetermined command value, and a flat predetermined vehicle height value is maintained.
この状態から加速及び減速の少なくとも何れかの状態に
移行すると、指令値演算手段によって、例えば、前後加
減速度検出値の絶対値が大きくなるにつれて車体浮き上
がり側に対しては所定変化率で下がり且つ車体沈み込み
側に対しては車体浮き上がり側の変化率よりも小さい変
化率で上がる指令値を各輪別に演算する。そして、この
各指令値が指令値出力手段によって圧力制御弁に各々出
力される。これにより、車体沈み込み側の流体圧シリン
ダの作動圧上昇の割合は、車体浮き上がり側の流体圧シ
リンダの作動圧低下の割合よりも小さくなる。この結果
、ある程度の適度なピッチ状態を許容しながら、重心高
さ.即ち車高値が定速直進時よりも適度に低下する。When the state transitions from this state to at least one of acceleration and deceleration, the command value calculation means determines that, for example, as the absolute value of the longitudinal acceleration/deceleration detection value increases, the vehicle body lift side decreases at a predetermined rate of change, and the vehicle body For the sinking side, a command value that increases at a smaller rate of change than the rate of change for the vehicle body lifting side is calculated for each wheel. Then, each command value is outputted to the pressure control valve by the command value output means. As a result, the rate of increase in the operating pressure of the fluid pressure cylinder on the side where the vehicle body sinks is smaller than the rate of decrease in the operating pressure of the fluid pressure cylinder on the side where the vehicle body is raised. As a result, the height of the center of gravity can be improved while allowing a certain degree of moderate pitch condition. In other words, the vehicle height value is moderately lower than when the vehicle is traveling straight at a constant speed.
また、請求項(2)及び(3)記載の発明では、上記の
作用に加えて、車体沈み込み側の流体圧シリンダの圧力
上昇率が小さめであるので、これに接続されているアキ
ュムレー夕の潰れ具合が少なく、バネ定数をより小さい
値に保持できる。このため、車輪側部材の振動を吸収す
るというアキュムレータの機能を、車両加減速時にも作
用させることができ、車体側へ振動が伝わるのを防止で
きる。In addition to the above-mentioned effects, in the inventions described in claims (2) and (3), since the pressure increase rate of the fluid pressure cylinder on the side where the vehicle body sinks is small, the accumulator cylinder connected thereto There is less crushing and the spring constant can be kept at a smaller value. Therefore, the function of the accumulator to absorb vibrations of the wheel-side member can be activated even when the vehicle is accelerating or decelerating, and vibrations can be prevented from being transmitted to the vehicle body.
以下、この発明の一実施例を第2図乃至第9図に基づき
説明する。この実施例の能動型サスペンションは車体の
ピッチ制御のみを行う場合を示す。An embodiment of the present invention will be described below with reference to FIGS. 2 to 9. The active suspension of this embodiment shows a case where only the pitch control of the vehicle body is performed.
第2図において、10はサスペンションアームである車
体側部材を、IIFL〜IIRRは前左〜後右車輪を、
12は能動型サスペンションを夫々示す。In Fig. 2, 10 is a suspension arm on the vehicle body side, IIFL to IIRR are front left to rear right wheels,
Reference numeral 12 indicates an active suspension.
能動型サスペンション12は、車体側部材lOと車輪1
1FL〜IIRRの各車輪側部材14との間に各々介装
された流体圧シリンダとしての油圧シリンダ18FL〜
18RRと、この油圧シリンダ18FL〜18RRの作
動圧を個別に調整する圧力制御弁20FL〜20RRと
、この油圧系の油圧源22と、この油圧源22及び圧力
制御弁20FL〜2ORR間に介挿された蓄圧用のアキ
ュムレータ24.24と、車体の横方向に発生する加速
度を検出する横加減速度センサ26と、この横加減速度
センサ26の検出信号に基づき圧力制御弁20FL〜2
0RRの出力圧を個別に制御するコントローラ30とを
有している。また、油圧シリンダ18FL〜18RRの
後述する圧力室Lの各々は、絞り弁32を介してバネ下
振動吸収用の比較的小容量のアキュムレータ34に接続
されている。さらに、油圧シリンダ18Fし〜18RH
の各々のバネ上,バネ下相当間には、比較的低いバネ定
数であって車体の静荷重を支持するコイルスプリング3
6が配設されでいる。The active suspension 12 includes a vehicle body side member lO and a wheel 1.
Hydraulic cylinders 18FL to 18FL as fluid pressure cylinders interposed between each wheel side member 14 of 1FL to IIRR.
18RR, pressure control valves 20FL to 20RR that individually adjust the operating pressures of the hydraulic cylinders 18FL to 18RR, a hydraulic power source 22 of the hydraulic system, and pressure control valves 20FL to 2ORR inserted between the hydraulic power source 22 and the pressure control valves 20FL to 2ORR. an accumulator 24.24 for accumulating pressure, a lateral acceleration/deceleration sensor 26 that detects acceleration generated in the lateral direction of the vehicle body, and pressure control valves 20FL to 20F based on the detection signal of the lateral acceleration/deceleration sensor 26.
It has a controller 30 that individually controls the output pressure of ORR. Further, each of the pressure chambers L of the hydraulic cylinders 18FL to 18RR, which will be described later, is connected via a throttle valve 32 to a relatively small-capacity accumulator 34 for absorbing unsprung vibrations. Furthermore, hydraulic cylinder 18F ~ 18RH
Between the unsprung and unsprung portions of each is a coil spring 3 which has a relatively low spring constant and supports the static load of the vehicle body.
6 is arranged.
油圧シリンダ18FL〜18RRの各々はシリンダチュ
ーブ18aを有し、このシリンダチューブl8aには、
ピストン18cにより隔設された下側の圧力室Lが形威
されている。そして、シリンダチューブ18aの下端が
車輪側部材14に取り付けられ、ピストンロッド18b
の上端が車体側部材10に取り付けられている。また、
圧力室Lの各々は、油圧配管38を介して圧力制御弁2
0FL〜20RRの出力ボートに接続されている。Each of the hydraulic cylinders 18FL to 18RR has a cylinder tube 18a, and this cylinder tube l8a includes:
A lower pressure chamber L is defined by the piston 18c. The lower end of the cylinder tube 18a is attached to the wheel side member 14, and the piston rod 18b
The upper end of is attached to the vehicle body side member 10. Also,
Each of the pressure chambers L is connected to the pressure control valve 2 via a hydraulic pipe 38.
Connected to output ports from 0FL to 20RR.
また、圧力制御弁20FL〜20RRの各々は、円筒状
の弁ハウジングとこれに一体的に設けられた比例ソレノ
イドとを有した、従来周知の3ボート比例電1ifi減
圧弁(例えば特開昭64−74111号参照)で形成さ
れている。そして、比例ソレノイドの励磁コイルに供給
する指令電流i (指令値)を調整することにより、弁
ハウジング内に収容されたボペットの移動距離、即ちス
プールの位置を制御し、供給ボート及び出力ボート又は
出力ボート及び戻りボートを介して油圧源22と油圧シ
リンダ18FL〜18RRとの間で流通する作動油を制
御できるようになっている。Further, each of the pressure control valves 20FL to 20RR is a conventionally well-known three-boat proportional electric 1ifi pressure reducing valve (for example, Japanese Patent Laid-Open No. 1983-1992-1), which has a cylindrical valve housing and a proportional solenoid integrally provided therein. 74111)). By adjusting the command current i (command value) supplied to the excitation coil of the proportional solenoid, the moving distance of the boppet housed in the valve housing, that is, the position of the spool, is controlled, and the supply boat, output boat, or output The hydraulic oil flowing between the hydraulic power source 22 and the hydraulic cylinders 18FL to 18RR can be controlled via the boat and the return boat.
ここで、励磁コイルに加えられる指令電流i( : f
FL−1 am)と圧力制御弁20FL(〜20RR
)の出力ボートから出力される制御圧Pとの関係は、第
3図に示すようになっている。つまり、ノイズを考慮し
た最小電流値iMINのときには最低制御圧P8。とな
り、この状態から電流値iを増加させると、電流値lに
比例して直線的に制御圧Pが増加し、最大電流値i M
AXのときには設定ライン圧に相当する最高制御圧P。Here, command current i ( : f
FL-1 am) and pressure control valve 20FL (~20RR
) and the control pressure P output from the output boat is as shown in FIG. In other words, when the minimum current value iMIN takes noise into consideration, the minimum control pressure is P8. When the current value i is increased from this state, the control pressure P increases linearly in proportion to the current value l, and the maximum current value i M
When AX, the maximum control pressure P corresponds to the set line pressure.
AXとなる。iNは中立指令電流,PMは中立制御圧で
ある。It becomes AX. iN is a neutral command current, and PM is a neutral control pressure.
一方、車両の重心位置には前後加減速度センサ26が装
備されている。この前後加減速度センサ26は、車体に
作用する前後方向の加減速度Xを検知するもので、例え
ば磁気的に浮かせたマスが慣性力によって変位したとき
の変位量に対応した電圧信号gをコントローラ30に出
力する。そして、その検出特性は第4図に示すように、
前後加減速度x=0のときに検出信号g=gN (所定
中立値)となり、この状態から減速又は加速をしたとき
に前後加減速度kに比例して増大又は減少する。ここで
、前後加減速度父は減速時に正,加速時に負とする。On the other hand, a longitudinal acceleration/deceleration sensor 26 is installed at the center of gravity of the vehicle. This longitudinal acceleration/deceleration sensor 26 detects acceleration/deceleration X in the longitudinal direction acting on the vehicle body. For example, the controller 30 sends a voltage signal g corresponding to the amount of displacement when a magnetically suspended mass is displaced by inertial force. Output to. The detection characteristics are as shown in Figure 4.
When the longitudinal acceleration/deceleration x=0, the detection signal g=gN (predetermined neutral value), and when decelerating or accelerating from this state, it increases or decreases in proportion to the longitudinal acceleration/deceleration k. Here, the longitudinal acceleration/deceleration is positive during deceleration and negative during acceleration.
更に、前記コントローラ30は第5図に示すように、入
力するアナログ量の前後加速度に応じた検出信号gをデ
ジタル量に変換するA/D変換器70と、演算処理用の
マイクロコンピュータ72と、このマイクロコンピュー
タ72から出力されるデジタル量の圧力指令値VFL’
=VRIIを個別にアナログ量に変換するD/A変換器
73A〜73Dと、このアナログ量の圧力指令値V,L
−V−を目標値として、圧力制御弁20FL〜20RR
に個別に出力する指令電流i FL− i Rllを、
目標値に追随させる駆動回路74A〜74Dとを有して
いる。Furthermore, as shown in FIG. 5, the controller 30 includes an A/D converter 70 that converts a detection signal g corresponding to the input analog longitudinal acceleration into a digital quantity, and a microcomputer 72 for arithmetic processing. Digital pressure command value VFL' output from this microcomputer 72
= D/A converters 73A to 73D that individually convert VRII into analog quantities, and pressure command values V, L of these analog quantities.
-V- as the target value, pressure control valves 20FL to 20RR
The command current i FL- i Rll to be output individually to
It has drive circuits 74A to 74D that follow the target value.
この内、マイクロコンピュータ72は、少なくともイン
ターフェイス回路76と演算処理装置78とRAM,R
OM等からなる記憶装置80とを含んで構威され、イン
ターフェイス回路76はI/Oポート等から構威されて
いる。また、演算処El装置78は、インターフエイス
回路76を介し?検出信号gvを読み込み、これらに基
づき後述する演算その他の処理を行う。記憶装置80は
、演算処理装置78の処理の実行に必要な所定プログラ
ム及び固定データ等を予め記憶しているとともに、演算
処理装置78の処理結果を記憶する。Of these, the microcomputer 72 includes at least an interface circuit 76, an arithmetic processing unit 78, a RAM, and a RAM.
The interface circuit 76 includes an I/O port and the like. Further, the arithmetic processing El device 78 is connected via the interface circuit 76. The detection signal gv is read, and based on these, calculations and other processing described later are performed. The storage device 80 stores in advance a predetermined program, fixed data, etc. necessary for execution of processing by the arithmetic processing device 78, and also stores processing results of the arithmetic processing device 78.
前記記憶装置80に記憶される固定データには、第6図
に対応した記憶テーブルが含まれる.同図は前左側〜後
右側の圧力指令値V yt= V IN (電圧値)の
加減速度賢に対する特性を示している。これを詳述する
と、前後加速度父=Oのときに所定中立値VN (:直
進時に車高を維持する指令値)をとり、減速に対応する
前後加速度賢〉0のときに、前側圧力指令値V,L,V
■〉v8且つ後側圧力指令値Vat,vll<vNとな
る.このとき、0〈父≦kI (S!1は例えば0.5
CG))の間では、前側圧力指令値vFt.,■■が■
8から■。′まで変化率α,で増大し、後側圧力指令値
V,lL, V■がV2からv1まで変化率αz(I
αzl > l α1 1)で減少する.さらに、X
,<Xの範囲では、■FL.VFII=VM ,
VRL. V**=Vs (71状態が夫々保?される
.一方、加速に対応する前後加速度X〈Oのときには、
前側圧力指令値VFL, VFR及び後側圧力指令値V
IL, V■が共に対称に変化する。The fixed data stored in the storage device 80 includes a storage table corresponding to FIG. This figure shows the characteristics of the pressure command value V yt=V IN (voltage value) from the front left side to the rear right side with respect to the acceleration/deceleration rate. To explain this in detail, when the longitudinal acceleration = O, a predetermined neutral value VN (command value for maintaining the vehicle height when traveling straight) is taken, and when the longitudinal acceleration corresponding to deceleration = 0, the front pressure command value is V, L, V
■〉v8 and rear side pressure command value Vat, vll<vN. At this time, 0<father≦kI (S!1 is, for example, 0.5
CG)), the front pressure command value vFt. ,■■ is■
From 8 ■. ', the rear pressure command values V, 1L, V■ increase at the rate of change αz(I) from V2 to v1.
αzl > l α1 1). Furthermore, X
, <X, ■FL. VFII=VM,
VRL. V**=Vs (71 states are maintained respectively.On the other hand, when the longitudinal acceleration corresponding to the acceleration is X〈O,
Front pressure command value VFL, VFR and rear pressure command value V
Both IL and V■ change symmetrically.
つまり、加速度〈父,の範囲では、中立値v1から同一
の変化率α3 (1α,1〉1α2 1)で飽和{II
Vf及びv,/まで増大及び減少し、その後、一定値V
.及び■,′を保持する。In other words, in the range of acceleration 〈father,〉, saturation occurs from the neutral value v1 at the same rate of change α3 (1α, 1〉1α2 1) {II
increases and decreases to Vf and v,/, then a constant value V
.. and ■, ′ are retained.
このように本実施例では、減速時のみ、圧力指令値VF
L〜Vllmlの変化率を前輪側,後輪側で違えており
、後述するように前後輪で変化巾の異なる圧力指令を行
えるようにしている。In this way, in this embodiment, only during deceleration, the pressure command value VF
The rate of change from L to Vllml is different between the front and rear wheels, allowing pressure commands with different ranges of change to be given to the front and rear wheels, as will be described later.
次に、上記実施例の動作を説明する。Next, the operation of the above embodiment will be explained.
車両のイグニッションスイッチがオン状態になると、コ
ントローラ30が起動し、所定のメインプログラム実行
中に、第7図に示すタイマ割込み処理を所定時間(例え
ば20+sec)毎に実行する。When the ignition switch of the vehicle is turned on, the controller 30 is activated and executes the timer interrupt process shown in FIG. 7 at predetermined intervals (for example, 20+ seconds) while a predetermined main program is being executed.
この第7図の処理を説明する。まず、同図のステップの
では、マイクロコンピュータ72の演算処理装置78は
、前後加減速度センサ26の検出信号gを読み込み、ス
テップ■に移行する。この?テップ■では、ステップの
で読み込んだ検出信号gから中立値gNを差し引いて、
前後加速度検出信号Δgを求める.次いでステップ■に
移行し、記憶装置80に予め格納している記憶テーブル
を参照する等して、検出信号Δgに対応した前後加減速
度賢を算出する。The process shown in FIG. 7 will be explained. First, in step 2 of the same figure, the arithmetic processing unit 78 of the microcomputer 72 reads the detection signal g of the longitudinal acceleration/deceleration sensor 26, and proceeds to step (3). this? In step ■, subtract the neutral value gN from the detection signal g read in step
Find the longitudinal acceleration detection signal Δg. Next, the process moves to step (2), and by referring to a memory table previously stored in the storage device 80, etc., the longitudinal acceleration/deceleration corresponding to the detection signal Δg is calculated.
次いでステップ■に移行し、前記第6図に対応した記憶
テーブルを個別に参照して、ステップ■で算出した前後
加減速度Xで一義的に定まる各輪の圧力指令値V,L−
V■を読み出し、その値を一次記憶する。この設定にお
いて、記憶テーブルの記憶データが第6図中の各曲線に
おける折れ点の値である場合には、その中間点の値は既
知の2点間に基づく演算から求めるとしてもよい。Next, the process moves to step (2), and the memory table corresponding to FIG.
Read V■ and temporarily store the value. In this setting, if the stored data in the storage table is the value of a bending point in each curve in FIG. 6, the value of the midpoint may be obtained from a calculation based on two known points.
この後、演算処理装置78は、ステップ■に移行して、
ステップ■で演算した圧力指令値VFL〜V■をインタ
ーフェイス回路76を介してD/A変換器73A〜73
Dに個別に出力する。After this, the arithmetic processing unit 78 moves to step (3),
The pressure command values VFL~V■ calculated in step ■ are sent to the D/A converters 73A~73 via the interface circuit 76.
Output to D individually.
このため、上述の制御を行うことによって得られる、前
後加減速度Xの変化に対する各輪のシリ?ダ圧Pの変化
は、第8図に示すようになる。For this reason, the deviation of each wheel with respect to the change in longitudinal acceleration/deceleration X obtained by performing the above-mentioned control? The change in pressure P is as shown in FIG.
次に、全体動作を説明する。Next, the overall operation will be explained.
いま、車両が平坦な凹凸の無い良路を一定速度で直進走
行しているものとする。この状態ではノイズダイブ及び
スカット等のピッチ運動を生じないので、前後加減速度
センサ26の検出信号gはその中立値gHであり、コン
トローラ30によって演算される前後加減速度Xは零と
なる(第7図ステップ■〜■参照)。このため、記憶テ
ーブルを参照して設定される各圧力指令値V FL””
V Rll =■8となり(第6図,第7図ステップ
■参照)、この中立値VNがD/A変換器73A〜73
Dに夫々出力される。そして、D/A変換器73A〜7
3Dによってアナログ量に変換された圧力指令f直VF
L−V■(=VS)は、目標値として駆動回路74A〜
74Dに夫々出力され、この駆動回路74A〜74Dか
ら目標値v,4に対応した中立指令電流i.が圧力制御
弁20PL〜20RRに夫々供給される.これにより、
圧力制御弁20FL〜20RRは、油圧シリンダ18F
L−18RRの作動圧を各?中立圧PM (第3図参照
)に制御するので、油圧シリンダ18FL〜18RRの
夫々は中立圧Psに応じた力を発生させて、車体が所定
車高値のフラットな姿勢に保持される。It is now assumed that a vehicle is traveling straight at a constant speed on a flat, smooth road. In this state, pitch movements such as noise dive and scut do not occur, so the detection signal g of the longitudinal acceleration/deceleration sensor 26 is its neutral value gH, and the longitudinal acceleration/deceleration X calculated by the controller 30 is zero (7th (See figure steps ■~■). For this reason, each pressure command value VFL"" is set by referring to the memory table.
V Rll =■8 (see step ■ in Figures 6 and 7), and this neutral value VN is applied to the D/A converters 73A to 73.
They are output to D respectively. And D/A converters 73A to 7
Pressure command f direct VF converted into analog quantity by 3D
L-V■ (=VS) is set as a target value by the drive circuit 74A~
74D, and from these drive circuits 74A to 74D, neutral command currents i. are supplied to pressure control valves 20PL to 20RR, respectively. This results in
The pressure control valves 20FL to 20RR are connected to the hydraulic cylinder 18F.
What is the operating pressure of L-18RR? Since the pressure is controlled to be the neutral pressure PM (see FIG. 3), each of the hydraulic cylinders 18FL to 18RR generates a force corresponding to the neutral pressure Ps, and the vehicle body is held in a flat posture at a predetermined vehicle height.
この定速直進状態から、例えばブレーキを踏んで減速状
態に移行すると、車体前方向に慣性力が作用し、車体前
側が沈み込み、車体後側が浮き上がるノーズダイブが発
生しようとする。When the constant-speed straight-ahead state shifts to a decelerating state, for example by stepping on the brake, inertial force acts in the front direction of the vehicle, causing the front side of the vehicle to sink and the rear of the vehicle to rise, resulting in a nose dive.
このとき、前後加減速度センサ26の検出信号gは中立
値g.4よりもブレーキ踏み込み量等に応じた分だけ大
きい値であるので、コントローラ30では、前後加速度
信号Δg>Qとなり、このΔgに応じた正の前後加減速
度覧.即ち減速度が算出され、この減速度kに応じた圧
力指令値VFL〜VlNが各々設定される(第7図ステ
ップ■〜■参照)。このときの圧力指令値VFL〜VR
Rは、VFLVFR>VRL,V■であって、中立値■
8からの変化巾は、前輪側の圧力指令値”FL+ ■F
lの方が後輪側の圧力指令値V,,,V■よりも小さく
、これらの指令値VFL〜VIAは夫々に対応した指令
電流? rt= i *,lに変換されて圧力制御弁2
0FL〜20RRに供給され、油圧シリンダ18FL〜
18RHの作動圧が指令電流i FL− i *R、即
ち、圧力指令値VF L ” V■に対応した値に制御
される。At this time, the detection signal g of the longitudinal acceleration/deceleration sensor 26 is the neutral value g. Since the value is larger than 4 by the amount corresponding to the amount of brake depression, etc., the controller 30 has a longitudinal acceleration signal Δg>Q, and a positive longitudinal acceleration/deceleration signal according to this Δg. That is, the deceleration is calculated, and pressure command values VFL to VIN are set in accordance with the deceleration k (see steps 1 to 2 in FIG. 7). Pressure command value at this time VFL ~ VR
R is VFLVFR>VRL, V■, and the neutral value■
The range of change from 8 is the pressure command value on the front wheel side “FL+ ■F
l is smaller than the rear wheel side pressure command values V, , , V■, and these command values VFL to VIA are the command currents corresponding to each? Converted to rt= i *, l and pressure control valve 2
Supplied to 0FL~20RR, hydraulic cylinder 18FL~
The operating pressure of 18RH is controlled to a value corresponding to the command current iFL-i*R, that is, the pressure command value VFL''V■.
そこで、前輪側の油圧シリンダl 8FL, 1 8
FHの作動圧は中立圧P.から小幅に高められて、車体
の沈み込みをある程度抑える力を発生し、後輪側の油圧
シリンダ1 811L, 1 8RRの作動圧は中立
圧Psから大幅に下げられて、車体の浮き上がりを助長
することがない(例えば第8図中のS(=M,の点参照
)。これによって、制動時のピッチ角が許容し得る適度
な値に抑制される。Therefore, the front wheel side hydraulic cylinder l 8FL, 1 8
The operating pressure of FH is neutral pressure P. The pressure is slightly increased from the neutral pressure Ps to generate a force that suppresses the sinking of the car body to some extent, and the operating pressure of the rear wheel hydraulic cylinders 1811L and 18RR is significantly lowered from the neutral pressure Ps, which helps the car body lift up. (For example, see the point S (=M) in FIG. 8.) As a result, the pitch angle during braking is suppressed to an acceptable and appropriate value.
一方、この制動状態における車高値は、前,後輪圧の平
均値で定まるが、その圧力平均値は第8図中の一点鎖線
Hで示すように、何れも加速度父に対応した分だけ中立
圧PMよりも低下する。つまり、定速状態から制動状態
に移行するにしたがって、車両は僅かなピッチ角のノー
ズダイブを許容しながら、重心高さ,即ち車高全体を適
度量だけ下げるので、とくに懸念されていた減速時に、
車高が下がらないことによって乗員が無用な不安感を覚
えたり、定速時に比べて操安性が低下するということ事
態も的確に回避される。On the other hand, the vehicle height value in this braking state is determined by the average value of the front and rear wheel pressures, and as shown by the dashed-dotted line H in Figure 8, the vehicle height value is determined by the average value of the front and rear wheel pressures. The pressure is lower than PM. In other words, as the vehicle transitions from a constant speed state to a braking state, the center of gravity height, that is, the overall vehicle height, is lowered by an appropriate amount while allowing a slight pitch angle nose dive, which is especially important during deceleration. ,
It is also possible to accurately avoid situations in which the occupants feel unnecessarily anxious due to the vehicle height not being lowered, and the handling stability is lower than when driving at a constant speed.
また、上記減速状態において、前輪側油圧シリンダ1
8FL, 1 BPRのシリンダ圧Pの増加割合を下
げているので、該シリンダ1 8FL, 1 BPR
に連結しているアキュムレータ34.34の潰れ具合が
少なく、作動油を吸収できる内容量が確保されている.
これにより、アキュムレータ34.34は、油圧振動を
吸収するバネ機能を消失していないので、例えば横断歩
道の手前でよく遭遇する路面の細かな凹凸による振動な
ど、バネ下共振域相当の高周波振動が人力した場合でも
、この振動人力に対応した油圧振動を確実に吸収でき、
これにより制動時に車体側に伝達される振動を抑制し、
ゴッゴッ感を減らして姿勢制御時の良好な乗心地を確保
できる.
この姿勢制御時の良好な乗心地が得られる理由を、第9
図(a)(b)に基づき定量的に解析してみる。In addition, in the above deceleration state, the front wheel side hydraulic cylinder 1
Since the increase rate of the cylinder pressure P of 8FL, 1 BPR is lowered, the increase rate of the cylinder pressure P of the cylinder 1 8FL, 1 BPR is
The accumulators 34 and 34 connected to the pump are less prone to collapse and have sufficient internal capacity to absorb hydraulic oil.
As a result, the accumulators 34 and 34 do not lose their spring function to absorb hydraulic vibrations, so high-frequency vibrations equivalent to the unsprung resonance region, such as vibrations caused by small irregularities on the road surface that are often encountered in front of a crosswalk, can be avoided. Even when using human power, it can reliably absorb the hydraulic vibration that corresponds to the human power.
This suppresses vibrations transmitted to the vehicle body during braking,
It reduces the jerky feeling and ensures good riding comfort during posture control. The reason why this good ride comfort is obtained during posture control is explained in the ninth section.
Let's analyze quantitatively based on Figures (a) and (b).
同図(a)のシリンダモデルにおいて、ピストン断面積
A,内圧P.内部体積V.ピストンストロークX,ロッ
ド反力Fとすると、バネ定数Kは、K=ΔF/ΔX
であり、
F=P−A, ΔF=ΔP−AΔV=A=Δ
X, ΔX=ΔV/Aと表されるから、
K一ΔF/ΔX
=(ΔP−A)/(ΔV/A)
= A Z ・ (ΔP/Δ■)
となる。つまり、バネ定数Kは「ΔP/Δ■」に比例す
るから、P−V=一定を示す第9図(b)のP− v
lib線で、定速直進時がa点.ある制動時がb点に在
るとすると、b点のバネ定数はa点のバネ定数よりも大
きく,ハードな状態になる。In the cylinder model shown in FIG. 5(a), the piston cross-sectional area A, the internal pressure P. Internal volume V. When the piston stroke is X and the rod reaction force is F, the spring constant K is K=ΔF/ΔX, F=P-A, ΔF=ΔP-AΔV=A=Δ
Since X, ΔX = ΔV/A, K-ΔF/ΔX = (ΔP-A)/(ΔV/A) = AZ · (ΔP/Δ■). In other words, since the spring constant K is proportional to "ΔP/Δ■", P-v in FIG. 9(b) showing that P-V=constant.
On the lib line, point a is when traveling straight at a constant speed. If a certain braking time is at point b, the spring constant at point b is larger than the spring constant at point a, resulting in a hard state.
換言すれば、前述した第10.11図の特性を有する能
動型サスペンションでは、制動時の前輪側のシリンダ圧
Pが高いので、ノーズダイブ抑制時に前輪側からの振動
人力を車体に伝達し、乗心地を悪化させる恐れがあった
。しかし、本実施例では、制動時の前輪側シリンダ圧P
が先願例よりも低くなるので、その分、バネ定数を小さ
なソフトな状態にでき、前述した効果を享受できるもの
である。In other words, in the active suspension having the characteristics shown in Fig. 10.11 described above, the cylinder pressure P on the front wheel side during braking is high, so when suppressing nose dive, the vibration human power from the front wheel side is transmitted to the vehicle body, and the rider There was a risk that it would make her feel worse. However, in this embodiment, the front wheel side cylinder pressure P during braking is
is lower than that of the prior application, so the spring constant can be kept in a soft state correspondingly small, and the above-mentioned effects can be enjoyed.
このようにして制動時のピッチ剛性及び車高制御を終わ
って再び定速直進状態に戻ると、センサ検出信号g=g
Nとなり、これによって前後加減加速度鷲一〇が演算さ
れ、前述と同様にフラットな所定車高値が維持される。In this way, when the pitch rigidity and vehicle height control during braking is finished and the state returns to a constant speed straight-ahead state, the sensor detection signal g=g
N, thereby calculating the longitudinal acceleration/subtraction of 10, and maintaining a flat predetermined vehicle height value as described above.
さらに、今度は、上述の定速直進状態から加速したとす
る。この加速時に検出されるセンサ信号gは中立値gN
よりも加速状況に応じた分だけ小さくなり、負の前後加
減速度賢,即ち加速度が演算され、前述と同様に記憶テ
ーブルの参照によって、加速度Xに対応した圧力指令値
V ,,, V 1111を、前後輪で同一の変化率,
変化中であって後輪側の方が高い値で設定される。これ
により、後輪側の油圧シリンダ1 8RL, 1 8
RHの作動圧Pが高められ且つ前輪側の油圧シリンダ1
8PL. 1 8PRの作動圧Pが下げられて、車
体後部が沈み込むスカットに抗するピッチ剛性が得られ
る。このように本実施例におけるスカット制御の場合は
、車体をほぼフラットな状熊に維持して走行できる。Furthermore, it is assumed that the vehicle accelerates from the above-mentioned constant speed straight-ahead state. The sensor signal g detected during this acceleration is the neutral value gN
The negative longitudinal acceleration/deceleration, that is, the acceleration, is calculated, and the pressure command value V , , V 1111 corresponding to the acceleration X is calculated by referring to the memory table as described above. , the same rate of change for the front and rear wheels,
While changing, the rear wheel side is set to a higher value. As a result, the rear wheel side hydraulic cylinders 1 8RL, 1 8
The working pressure P of RH is increased and the hydraulic cylinder 1 on the front wheel side
8PL. The operating pressure P of the 18PR is lowered, and pitch rigidity is obtained to resist the scut where the rear part of the vehicle body sinks. In this way, in the case of the scut control in this embodiment, the vehicle can be driven while maintaining the vehicle body in a substantially flat state.
以上、本実施例では、前後加減速度センサ26.A/D
変換器70及び第7図ステップ■〜■の処理が前後加減
速度検出手段を構威し、第7図ステップ■が指令値演算
手段に対応し、第7図ステップ■及びD/A変換器73
A〜73D,駆動回路74A〜74Dが指令値出力手段
を構戒している。As described above, in this embodiment, the longitudinal acceleration/deceleration sensor 26. A/D
The converter 70 and the processing in steps 1 to 2 in FIG. 7 constitute a longitudinal acceleration/deceleration detection means, the step 2 in FIG.
A to 73D and drive circuits 74A to 74D are monitoring the command value output means.
なお、上記実施例では油圧シリンダtapt,〜18R
Rにアキュムレータ34を個別に装備するとしたが、こ
れは必要に応じて取り外す構戒としてもよい。In addition, in the above embodiment, the hydraulic cylinder tapt, ~18R
Although the accumulator 34 is separately installed in R, this may be removed if necessary.
また、本出願の各発明に係る能動型サスペンションは、
上記実施例にように、減速時にのみ、車体沈み込み側の
シリンダ圧の増加率を小さく設定するものに限定される
ことなく、例えば、加速時の後輪側シリンダ圧の上昇率
を、前輪側シリンダ圧の低下率に比べて小さく設定し、
ある適度なスカットitを許容しながら車高値を若干下
げさせて、前述したと同等な作用効果を得るようにして
もよい。さらに、加速時及び減速時の両方に、かかる構
戒を適用してもよく、その場合には、前述した各種の効
果の他、圧力制御弁20FL〜20RRが制御する最大
値P WAXも先願記載のものより低くなるので、油圧
源22の一部を構戒する油圧ポンプの吐出量がより小さ
くて済み、リリーフ弁のリリーフ圧が低くて済むなどの
ことから、油圧源22全体の小形化,軽量化を図ること
ができる。In addition, the active suspension according to each invention of the present application is
As in the above embodiment, the rate of increase in cylinder pressure on the sinking side of the vehicle is not limited to being set small only during deceleration, but for example, the rate of increase in cylinder pressure on the rear wheel side during acceleration may be set to a small Set it to be smaller than the rate of decrease in cylinder pressure.
The same effect as described above may be obtained by slightly lowering the vehicle height while allowing a certain appropriate level of scut. Furthermore, such a structure may be applied to both acceleration and deceleration, and in that case, in addition to the various effects described above, the maximum value P WAX controlled by the pressure control valves 20FL to 20RR is also Since it is lower than the one described, the discharge amount of the hydraulic pump that controls a part of the hydraulic source 22 can be smaller, and the relief pressure of the relief valve can be lower, so the entire hydraulic source 22 can be made smaller. , weight reduction can be achieved.
さらに、本出願の各発明は当然に、車両のロール制御,
バウンス制御も合わせて行う能動型サスペンシゴンに適
用することもできる。Furthermore, each invention of the present application naturally includes vehicle roll control,
It can also be applied to active suspension systems that also perform bounce control.
さらにまた、各発明の流体圧シリンダは、前記実施例の
如く油圧シリンダを適用する場合に限定されるものでは
なく、例えば空気圧シリンダ等を用いる構或であっても
よい。Furthermore, the fluid pressure cylinder of each invention is not limited to the case where a hydraulic cylinder is applied as in the above-mentioned embodiments, but may be configured to use, for example, a pneumatic cylinder or the like.
さらにまた、前記実施例ではコントローラにマイクロコ
ンピュータを搭載させて構成したが、これは例えば、前
後加減速度センサの検出信号を入力して、前記第6図に
示した特性の電圧値を出力?る関数発生器を備え、この
出力値を駆動回路を介して圧力制御弁に送るアナログ回
路構或にしてもよい.一方、コントローラの処理として
は、前述したように圧力指令値VFL〜Vllを記憶テ
ーブルのルックアップから直接求めるものの他、算出し
た前後加減速度賢に制御ゲイ・ンを乗じ、これに中立値
vNを加算して圧力指令値VFL〜■■を演算し、その
制御ゲインを前後加減速度賢に応じて第8図の出力特性
が得られるように可変するとしてもよい.
さらにまた、各発明ではシリンダ圧の増加率が減少率よ
りも小さければよく、前後加減速度賢に対するシリンダ
圧の増加曲線又は減少曲線中の変化率を途中で任意に変
えてもよい。Furthermore, in the above embodiment, the controller is equipped with a microcomputer, but this inputs the detection signal of the longitudinal acceleration/deceleration sensor and outputs the voltage value having the characteristic shown in FIG. 6 above. An analog circuit structure may be used in which the output value is sent to the pressure control valve via a drive circuit. On the other hand, as for the processing of the controller, in addition to directly obtaining the pressure command values VFL to Vll from the lookup of the memory table as described above, the calculated longitudinal acceleration/deceleration is multiplied by the control gain, and the neutral value vN is calculated. The pressure command value VFL~■■ may be calculated by adding the pressure command values, and the control gain may be varied so as to obtain the output characteristics shown in FIG. 8 according to the longitudinal acceleration/deceleration. Furthermore, in each invention, the rate of increase in cylinder pressure only needs to be smaller than the rate of decrease, and the rate of change in the increase or decrease curve of cylinder pressure with respect to longitudinal acceleration/deceleration may be arbitrarily changed midway.
〔発明の効果〕
以上説明したように、請求項(1)及び(3)記載の発
明では、加速時及び減速時の少なくとも一方の走行時に
指令値,即ち流体圧シリンダの作動圧を車体沈み込み側
では上昇させ且つその反対の車体浮き上がり側では低下
させるが、その作動圧上昇の変化率を、作動圧低下の変
化率よりも小さく制御するとしているため、定速直進時
のフラットな所定車高値の状態から加速,減速状態に移
行すると、適度なピッチ剛性を得てピッチ角を許容し得
る値に抑制できるとともに、前後輪の作動圧平均値の低
下に依って重心位置の車高値が適度に低下し、乗員に安
心感を与え、また加速,fIi速時の操安性を高めると
いう効果が得られる。[Effects of the Invention] As explained above, in the inventions described in claims (1) and (3), the command value, that is, the working pressure of the fluid pressure cylinder, is set to the sinking of the vehicle body during at least one of acceleration and deceleration. On the other hand, it is raised on the side where the vehicle body lifts up, and it is lowered on the opposite side where the vehicle body lifts up, but the rate of change in the increase in operating pressure is controlled to be smaller than the rate of change in the decrease in operating pressure. When transitioning from the state to the acceleration or deceleration state, it is possible to obtain appropriate pitch rigidity and suppress the pitch angle to an acceptable value, and the vehicle height at the center of gravity can be moderated by reducing the average working pressure of the front and rear wheels. This has the effect of providing a sense of security to the occupants and improving steering stability during acceleration and fIi speeds.
また、請求項(2)及び(3)記載の発明では、上記効
果に加えて、車輪側部材の振動を吸収するアキュムレー
夕が、車両加減速時においても作用できるようになり、
,車体側へ振動が伝わるのを防止でき、乗心地を一層向
上させることができる。In addition to the above-mentioned effects, the invention according to claims (2) and (3) enables the accumulator that absorbs vibrations of the wheel side member to operate even when the vehicle accelerates or decelerates.
, it is possible to prevent vibrations from being transmitted to the vehicle body, further improving riding comfort.
第1図は発明のクレーム対応図(請求項(1)(3)記
載の発明を示す)、第2図は発明の一実施例を示す概略
構成図、第3図は圧力制御弁の出力特性を示すグラフ、
第4図は前後加減速度センサの検出特性を示すグラフ、
第5図はコントローラの一例を示すブロック図、第6図
は圧力指令値の記憶テ−ブルに対応した特性図、第7図
はコントローラにおいて実行される処理手順の一例を示
す概略フローチャート、第8図はシリンダ圧の特性図、
第9図(a)(b)はアキュムレー夕のバネ機能の説明
図、第10図は先願例に係る圧力制御弁の出力特性を示
すグラフ、第11図は先願例に係るシリンダ圧の特性図
である。
図中、10は車体側部材、l2は能動型サスペンション
、l4は車輪側部材、18FL−18RRは前左〜後右
油圧シリンダ(流体圧シリンダ)、20FL〜20RR
は前左〜後右圧力制御弁、26は前後加減速度センサ、
30はコントローラ、70はA/D変換器、73A〜7
3DはD/A変換器、74A〜74Dは駆動回路である
。Fig. 1 is a diagram corresponding to the claims of the invention (showing the invention described in claims (1) and (3)), Fig. 2 is a schematic configuration diagram showing an embodiment of the invention, and Fig. 3 is the output characteristics of the pressure control valve. A graph showing,
Figure 4 is a graph showing the detection characteristics of the longitudinal acceleration/deceleration sensor.
FIG. 5 is a block diagram showing an example of a controller, FIG. 6 is a characteristic diagram corresponding to a pressure command value storage table, FIG. 7 is a schematic flowchart showing an example of a processing procedure executed in the controller, and FIG. The figure is a characteristic diagram of cylinder pressure.
Figures 9(a) and (b) are explanatory diagrams of the spring function of the accumulator, Figure 10 is a graph showing the output characteristics of the pressure control valve according to the earlier application, and Figure 11 is a graph of the cylinder pressure according to the earlier application. It is a characteristic diagram. In the figure, 10 is a vehicle body side member, 12 is an active suspension, 14 is a wheel side member, 18FL-18RR is a front left to rear right hydraulic cylinder (fluid pressure cylinder), 20FL to 20RR
are the front left to rear right pressure control valves, 26 is the longitudinal acceleration/deceleration sensor,
30 is a controller, 70 is an A/D converter, 73A to 7
3D is a D/A converter, and 74A to 74D are drive circuits.
Claims (3)
れた流体圧シリンダと、この流体圧シリンダの作動圧を
指令値に応じて個別に制御する圧力制御弁と、車体の前
後方向の加減速度を検出する前後加減速度検出手段と、
この前後加減速度検出手段の加減速度検出値に基づき、
加速時及び減速時の少なくとも一方の走行時の車高を定
速直進時よりも低下させる指令値を各輪別に演算する指
令値演算手段と、この指令値演算手段が演算した指令値
を前記圧力制御弁に各々出力する指令値出力手段とを備
えたことを特徴とする能動型サスペンション。(1) A fluid pressure cylinder installed for each wheel between the vehicle body side member and the wheel side member, a pressure control valve that individually controls the operating pressure of this fluid pressure cylinder according to a command value, and a longitudinal acceleration/deceleration detection means for detecting acceleration/deceleration in the longitudinal direction;
Based on the acceleration/deceleration detection value of this longitudinal acceleration/deceleration detection means,
a command value calculating means for calculating a command value for each wheel to lower the vehicle height during at least one of acceleration and deceleration than when driving straight ahead at a constant speed; An active suspension comprising command value output means for outputting command values to control valves.
れた流体圧シリンダと、この流体圧シリンダに設けられ
前記車輪側部材の振動を吸収するアキュムレータと、前
記流体圧シリンダの作動圧を指令値に応じて個別に制御
する圧力制御弁と、車体の前後方向の加減速度を検出す
る前後加減速度検出手段と、この前後加減速度検出手段
の加減速度検出値に基づき、加速時及び減速時の少なく
とも一方の走行時の車高を定速直進時よりも低下させる
指令値を各輪別に演算する指令値演算手段と、この指令
値演算手段が演算した指令値を前記圧力制御弁に各々出
力する指令値出力手段とを備えたことを特徴とする能動
型サスペンション。(2) A fluid pressure cylinder interposed between the vehicle body side member and the wheel side member for each wheel, an accumulator provided in the fluid pressure cylinder to absorb vibrations of the wheel side member, and A pressure control valve that individually controls the operating pressure according to a command value, a longitudinal acceleration/deceleration detection means that detects the longitudinal acceleration/deceleration of the vehicle body, and a longitudinal acceleration/deceleration detection means that detects acceleration/deceleration during acceleration based on the acceleration/deceleration detected value of the longitudinal acceleration/deceleration detection means. and a command value calculation means for calculating a command value for each wheel to lower the vehicle height during at least one of the driving conditions during deceleration compared to when the vehicle is traveling straight at a constant speed, and the command value calculated by the command value calculation means is applied to the pressure control valve. An active suspension comprising command value output means for respectively outputting command values.
段の加減速度検出値が零のときには所定値とし、当該加
減速度検出値の絶対値が大きくなるにつれて車体浮き上
がり側に対しては所定変化率で下がり且つ車体沈み込み
側に対しては車体浮き上がり側の変化率よりも小さい変
化率で上がる指令値を演算する手段である請求項(1)
又は(2)記載の能動型サスペンション。(3) The command value calculation means sets a predetermined value when the acceleration/deceleration detection value of the longitudinal acceleration/deceleration detection means is zero, and changes the command value to a predetermined value for the vehicle body lifting side as the absolute value of the acceleration/deceleration detection value increases. Claim (1): means for calculating a command value that decreases at a rate of change and increases at a rate of change for the vehicle body sinking side, which is smaller than the rate of change for the vehicle body lift side.
Or the active suspension described in (2).
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1228809A JP2831393B2 (en) | 1989-09-04 | 1989-09-04 | Active suspension |
US07/576,585 US5090727A (en) | 1989-09-04 | 1990-09-04 | Suspension control system with vehicular driving condition dependent height adjustment |
EP90117010A EP0416560B1 (en) | 1989-09-04 | 1990-09-04 | Suspension control system with vehicular driving condition dependent height adjustment |
DE69010292T DE69010292T2 (en) | 1989-09-04 | 1990-09-04 | Suspension control system with a level control depending on driving conditions. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1228809A JP2831393B2 (en) | 1989-09-04 | 1989-09-04 | Active suspension |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0392411A true JPH0392411A (en) | 1991-04-17 |
JP2831393B2 JP2831393B2 (en) | 1998-12-02 |
Family
ID=16882196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1228809A Expired - Fee Related JP2831393B2 (en) | 1989-09-04 | 1989-09-04 | Active suspension |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2831393B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101254231B1 (en) * | 2011-01-17 | 2013-04-18 | 주식회사 만도 | Assist control system of vehicle and assist control method of the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS648406U (en) * | 1987-07-06 | 1989-01-18 |
-
1989
- 1989-09-04 JP JP1228809A patent/JP2831393B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS648406U (en) * | 1987-07-06 | 1989-01-18 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101254231B1 (en) * | 2011-01-17 | 2013-04-18 | 주식회사 만도 | Assist control system of vehicle and assist control method of the same |
Also Published As
Publication number | Publication date |
---|---|
JP2831393B2 (en) | 1998-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2514252B2 (en) | Active suspension | |
US5515277A (en) | Method and system for controlling active suspensions of a vehicle during acceleration and deceleration | |
JP2575419B2 (en) | Active suspension device | |
JPH0825374B2 (en) | Active suspension device | |
JPS61501260A (en) | Body tilting device | |
US6053509A (en) | Tire contact load control system | |
CN206856429U (en) | Adaptive electric-controlled hydraulic active suspension | |
JPH0392415A (en) | Active suspension | |
JP2013028204A (en) | Turn traveling control device and method for controlling turn traveling | |
JPH0392411A (en) | Active suspension | |
JPS61181713A (en) | Vehicle active suspension | |
JP2503254B2 (en) | Active suspension | |
JPH05185820A (en) | Active suspension system for vehicle | |
JP2503240B2 (en) | Active suspension | |
JP2805981B2 (en) | Active suspension | |
JP3052690B2 (en) | Active suspension | |
JPH01106718A (en) | Vehicle suspension system | |
JPS63232014A (en) | Control device for car suspension | |
JPH0392412A (en) | Active suspension | |
JPH02262416A (en) | Vehicle suspension controller | |
JP2553162Y2 (en) | Active suspension | |
JPH08282237A (en) | Active type suspension device | |
JP3779414B2 (en) | Ground load control device | |
JPH04274915A (en) | Active type suspension | |
JPH04197812A (en) | Method for controlling active suspension for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |