JPH0391513A - Fluorinated copolymer - Google Patents

Fluorinated copolymer

Info

Publication number
JPH0391513A
JPH0391513A JP22822489A JP22822489A JPH0391513A JP H0391513 A JPH0391513 A JP H0391513A JP 22822489 A JP22822489 A JP 22822489A JP 22822489 A JP22822489 A JP 22822489A JP H0391513 A JPH0391513 A JP H0391513A
Authority
JP
Japan
Prior art keywords
compound
fluorine
mol
copolymer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22822489A
Other languages
Japanese (ja)
Other versions
JP2881837B2 (en
Inventor
Hitoshi Matsuo
仁 松尾
Masanori Kaya
政徳 賀屋
Atsushi Funaki
篤 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP22822489A priority Critical patent/JP2881837B2/en
Publication of JPH0391513A publication Critical patent/JPH0391513A/en
Application granted granted Critical
Publication of JP2881837B2 publication Critical patent/JP2881837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a fluorinated copolymer which can give a fluororesin of a high modulus by copolymerizing a specified fluorinated organic compound A with a specified fluorinated organic compound B. CONSTITUTION:A compound (A) of formula I (wherein X is F or Cl) is copolymerized with a compound (B) of formula II (wherein Rf is a bivalent F-substituted organic group), e.g. a compound of formula III or IV, to obtain a fluorinated copolymer containing 80-99.9mol% compound A and 20-0.1mol% compound B and having a melt flow rate of 0.01-100. When this copolymer is heat-treated, it can give a fluororesin which has excellent effects such that it has a high modules, does not flow even when heated above its m.p., and has good heat resistance and chemical resistance.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は高弾性率を有するフッ素樹脂を与える含フッ素
共重合体に関するものである。 〔従来の技術〕 フッ素樹脂はその優れた耐熱性、耐薬品性、表面特性に
より、さまざまな分野で利用されているが、その欠点の
1つとして弾性率の低いことがあげられる。またポリテ
トラフルオロエチレン(PTFE)以外のフッ素樹脂は
融点以上に加熱すると流動して形が保てないことも欠点
としてあげられる。PTFEは融点以上に加熱しても流
動はしないが、逆に溶融成形できないという欠点がある
。かくして高弾性率で溶融成形ができてしかも融点以上
に加熱しても流動しないフッ素樹脂の開発が望まれてい
た。 フッ素樹脂を成形後架橋させることによりこれらの要求
特性を満たすことが考えられ、いままで様々な架橋方法
が考案されている。例えば特公昭62−23772では
フッ素樹脂に電子線を照射して架橋させている。しかし
この方法はハイドロカーボン樹脂には有効でもパーフル
オロ樹脂には適応できない。また特開昭61−1554
10ではフッ素樹脂にトリアリルシアヌレートなどの架
橋剤を添加して電子線架橋を行っている。しかしこの方
法で得られた樹脂は架橋剤の存在により耐薬品性、耐熱
性が劣る。 また特開昭63−68604やUSP4,204.92
7ではフッ素樹脂に光反応性基を付加し光架橋を行って
いる。しかしこれらの方法でも得られた樹脂は耐薬品性
、耐熱性に劣る。また、特公昭55−23567にはテ
トラフルオロエチレンとパーフルオロアクリル酸(誘導
体)との共重合体に熱を加えることにより架橋すること
が記述されている。しかし、架橋したポリマーについて
の物性の詳しい記述はない。 〔発明の解決しようとする課題] 本発明は、従来知られていなかった高弾性フッ素樹脂を
与える含フッ素共重合体を新規に提供することを目的と
するものである。 〔課題を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、化合物(A)と化合物(B)との共重合体であり、
(A)が80〜99,9モル%、(B)が0.1〜20
モル%含有し、メルトフローレートが0.01〜100
であることを特徴とする含フッ素共重合体。 (A) cFs =CFX   (XはF又はCl)(
B ) CFx = CFORt(1:H*0H(R,
は二価のフッ素置換有機基) 本明細書において、メルトフローレートとは、含フッ素
共重合体の融点以上の温度で測定される押出速度(g/
分)であり、具体的には次に示す方法で測定した。 メルトインデクサ−を用い、含フッ素共重合体を内径9
.5のシリンダーに装填し重合体の融点より30℃高い
温度で5分間保持した後、その温度で5のピストン荷重
下に内径2.1、長さ8のオリフィスを通して押出し、
このときの押出速度(g/分)をメルトフローレートと
した。 また、融点は真空理工製熱分析機(DTA)を用いて行
なった。試料をアルミニウムカップに入れ、室温より毎
分lO℃で昇温し、融解吸熱ピーク温度を融点とした。 また、化合物(B)は次に示す方法などにより合成する
ことができる6例えば、特開昭58−85832号に記
載されている如き方法、具体的には、CF*=CFO(
CFz)sCooCHx、CFlCFO<CFa) x
COOC,H,、CF、=CFOCF、CF(CFS)
O(CF、)、C00CIH@の如きフッ素化された不
飽和カルボン酸エステルの二重結合を、塩素ガスなどに
より保護した後、ソジウム・ボロハイドライド、リチウ
ム・ボロハイドライド、カリウム・ボロハイドライド、
リチウムアルミニウムハイドライド、ソジウムアルミニ
ウムハイドライド等の還元剤により還元する。これを亜
鉛等の金属により脱塩素化することにより目的の化合物
を得ることができる。 また、本発明において、化合物(B)は、上式で表わさ
れる化合物であるが、Rtは二価のフッ素置換有機基で
あるが、完全フッ素化された有機基が好ましい、また炭
素のみまたは炭素と酸素により鎖が形成された有機基、
すなわちパーフルオロアルキレン基またはエーテル結合
を含有するパーフルオロアルキレン基が好ましい。また
、かかる化合物(B)の鎖が長くなると重合性が低下し
、所望の重合体を得ることが難しくなるため好ましくな
い。好ましくは、R2の連鎖を構成する原子数が1〜1
5のものである。好ましい化合物(B)としては、 CFa=CFO(CFa)scHzOH,CFa=CF
O(CFi)gcHgOH。 CFz;CFOCF*CF (CFi)0 (CFi)
 gcHgOH。 CF、=CFOCF、CF(CF、)OCFtCF(C
Fa)O(CF、> tCHオOH。 CFz=CFOCFiCF*0CFaCFzO(CFa
)xcHxOHなどが例示される。 また、本発明の含フッ素共重合体は、化合物(B)に基
づく単位を0.1〜20モル%の割合で含む。かかる化
合物(B)に基づく単位の割合が少なすぎると、架橋剤
を用いずに高弾性率く有するフッ素樹脂を得ることが困
難になる・1なわち、加熱処理のみで充分な架橋体が得
ら才ない。一方、この割合が大きすぎると、含フッ素共
重合体の融点が低下し、加熱処理時−形tを保つことが
難しくなるため精密形成が難しくなる、熱処理時に内部
歪が生じ易くクラック力発生し易くなる、また含フッ素
共重合体が工=ストマー性になり、成形性が低下する等
の欠jが生じるため好ましくない、特に化合物(B)に
基づく単位が0.2〜10モル%の割合で含むことが好
ましい。 本発明の含フッ素共重合体は、上記化合物A)および(
B)に基づく単位の他に、化合者(A)および(B)と
共重合性の化合物が共1合されていても良い。化合物(
A)および化塗物(B)と共重合性の化合物としては、
次式て表わ曇れる化合物(C) CF、 = CFY  (Yは一価のフッ素置換有機基
)が好ましく採用される。かかる化合物(C)カ共重合
された含フッ素共重合体は、耐熱性、耐薬品性等の低下
がほとんどなく、溶融成形性の向上、加熱処理後のフッ
素樹脂の耐衝撃性、強靭性などの物性向上といった利点
がある。 化合物(C)は上式で表わされる化合物であるが、Yが
パーフルオロアルキル基またはパーフルオロアルコキシ
基のものが耐熱性、耐薬品性などの面から好ましく採用
される、特に化合物(A)および化合物(B)との共重
合性、含フッ素共重合体および加熱処理された含フッ素
樹脂の物性を考慮して、Yが炭素数1〜1oのバーフB
オロアルキル基またはパーフルオロアルコキシ基のもの
が好ましい。化合物(C)が共重合されている場合の共
重合割合は、化合物(A)が70〜99.9モJI、%
、化合物(B)が0.1〜20モル%、化合物(C)が
10モル%以下であることが好ましい。化合物(C)に
基づく単位の割合が大きくなりすぎると、含フッ素共重
合体の融点が低下したり、含フッ素共重合体がニジスト
マー性となったりするため、成形性が低下し、好ましく
ない。 また、本発明の含フッ素共重合体は、前述のメルトフロ
ーレートが0.01〜100である。メルトフローレー
トが極めて小さい、すなわち、超高分子量のもの、また
、メルトフローレートが極めて大きい、すなわち、低分
子量のもの、いずれの場合であっても、成形性が極めて
低下し成形材料として適さなくなり、好ましくない。 本発明の含フッ素共重合体は、溶液重合、懸濁重合、乳
化重合のどの方法でも製造することができる。 ここで重合開始剤としては遊離ラジカル重合開始剤が好
ましく、例えばジ(フルオロアシル)パーオキシド類、
ジ(クロロフルオロアシル)パーオキシド類、ジアルキ
ルパーオキシジカーボネート類、ジアシルパーオキシド
類、パーオキシエステル類、過硫酸塩類などが挙げられ
る。 重合媒体としては、溶液重合ではフロン11゜フロン 
113などのフロン類、ターシャリブタノールなどが挙
げられ、懸濁重合、乳化重合では水または水と他の溶媒
との混合媒体が用いられる。 重合温度は0〜100℃、重合圧力は0.5〜30kg
/cn+”Gの範囲から選択することができる。 重合反応は、例えば攪拌機つきオートクレーブに重合媒
体と化合物(B)および必要により化合物(C)1分子
量調節剤をまず仕込み、必要量の化合物(A)を圧太し
、重合開始剤を加えて重合を開始する0重合の進行と共
に圧力が低下するので、圧力の低下を補うように化合物
<A)を圧入し、目的量の重合体が生成するまで重合を
続ける。重合終了後は未反応モノマーを放出後、重合体
を洗浄、乾燥する。得られた共重合体は、共重合体の融
点以上に加熱することにより溶融成形が可能である。ま
た成形物を200℃以上融点以下の温度で5時間以上処
理を行うことにより架橋剤の添加なしに架橋させること
ができ、高弾性率で融点以上でも流動しない成形物が得
られる。 〔実施例〕 実施例1 内容量260ccの攪拌機つきオートクレーブに、フロ
ン113を320g%CF*二〇FO(CFt) 5c
Hz−01(を4.9g、メタノールを0.05 g仕
込み、内部空間を窒素ガスで十分置換した後これを排気
し、これにテトラフルオロエチレン(TFE)13g圧
入し、温度を50℃にし、攪拌を行う、これに重合開始
剤としてジ(ヘプタフルオロプロパノイル)パーオキサ
イドを1重量%フロン113に溶解させたものを3.0
cc加えて重合を開始させる0反応中、圧力の降下に応
じてTFEを遂次追加し、一定圧力を保つようにする。 TFHの逐次追加量が16gになったところで冷却、モ
ノマーバージを行なった。得られたスラリー溶液をフロ
ン113で洗浄して、 120℃12時間乾燥し、重合
体を得た。 重合体の物性の測定は次の方法によって行った。 メルトフローレート メルトインデクサ−により測定したもので、重合体を内
径9.5のシリンダーに装填し重合体の融点より30℃
高い温度で5分間保持した後、その温度で5のピストン
荷重下に内径2.1、長さ8のオリフィスを通して押出
し、このときの押出速度(g/分)をメルトフローレー
トとした。 CFs = CFO(CFi)sCHJH含有量(モル
%)たとえば米国特許第3.085.083号や特開昭
6〇−240713号に記載されているように、圧縮成
形フィルムの赤外スペクトルにより、−coaon基の
吸収(2,75マイクロメートル)の吸光度により、該
モノマーの含有量を次のように求めた。 融点 (’C) 融点は真空理工製熱分析機(DTA)を用いて行った。 試料をアルミニウムカップに入れ、室温より毎分lO℃
で昇温し、融解吸熱ピーク温度を融点とした。 実施例2 実施例1のCF*=CFO(CFm)sCHJHのかわ
りに、CFi:CFO(CFx) scHtOHを4.
0g仕込む以外は実施例1と同等の方法により重合体を
得た。 CFz=CFO(Ch)zc)IxOH含OH(モル%
)は実施例1と同じ方法で測定し、次のように求めた。 実施例3 実施例1のCF!=CFO(CF、)、CHloHのか
わりにCh”CFOCF*CF (CFs ) 0 (
CFt)scHtOHを7.8g仕込む以外は実施例1
と同等の方法により重合体を得た。 CF、=CFOCF、CF CCF@ ) O(CF、
)、CH,OH含有量(モル%)は実施例1と同じ方法
で測定し、次のように求めた。 フィルムの厚み(mm) 点とした。 実施例2 実施例1のCF、=CFO(CF、) 5clbOHの
かわりに、CFg=CFO(CF、) *CH雪OHを
4.0g仕込む以外は実施例1と同等の方法により重合
体を得た。 CF*=CFO(CFi)scHmOH含有量(モル%
)は実施例1と同じ方法で測定し、次のように求めた。 フィルムの厚み(mm) 実施例3 実施例1 (7) CFt=CFO(CF、) scH
tOH(7) カわりにCFa=CFOCFtCF (
CFs ) 0 (CFi)scH*0)1を7.8g
仕込む以外は実施例1と同等の方法により重合体を得た
。 CF*=CFOCF*CF (CFs ) O(CFm
)scHxOH含有量(モル%)は実施例1と同じ方法
で測定し、次のように求めた。 フィルムの厚み(am) 実施例4 実施例1のCFz=CFO(CFi)scHaOH4,
9gのかわりに、(:FlCFO(CF−)−OH−O
H2,5gとCF*= CFO(CFa)sF 2.4
 g仕込む以外は実施例1と同等の方法により重合体を
得た。 CFzHCFO(CFt) sF含有量(モル%)は、
厚さ約40μのフィルムの赤外線吸収スペクトル分析に
よって測定した980−’の波数における吸光度を23
50− ’の波数における吸光度で割った値を0.36
倍として求めた。 表1に重合結果を示す 表1 試験例 表2に各実施例の熱処理前後の物性を示す。 熱処理を行なうことにより、高弾性率で、融点以上に加
熱しても流動せず、耐熱性、耐薬品性の優れた成形物を
得ることができた。 表2 村パイブロン200℃での動的弾性率(E)[発明の効
果] 本発明の含フッ素共重合体は熱処理をすることにより高
弾性率で融点以上に加熱しても流動せず耐熱、耐薬品性
が良好であるという優れた効果を有するフッ素樹脂を与
えることができるものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fluorine-containing copolymer that provides a fluororesin having a high modulus of elasticity. [Prior Art] Fluororesins are used in various fields due to their excellent heat resistance, chemical resistance, and surface properties, but one of their drawbacks is that they have a low elastic modulus. Another drawback of fluororesins other than polytetrafluoroethylene (PTFE) is that they flow and cannot maintain their shape when heated above their melting point. Although PTFE does not flow even when heated above its melting point, it has the disadvantage that it cannot be melt-molded. Thus, it has been desired to develop a fluororesin that can be melt-molded with a high modulus of elasticity and that does not flow even when heated above its melting point. It is thought that these required characteristics can be met by crosslinking the fluororesin after molding, and various crosslinking methods have been devised so far. For example, in Japanese Patent Publication No. 62-23772, a fluororesin is crosslinked by irradiating it with an electron beam. However, although this method is effective for hydrocarbon resins, it cannot be applied to perfluoro resins. Also, JP-A-61-1554
In No. 10, electron beam crosslinking is performed by adding a crosslinking agent such as triallyl cyanurate to a fluororesin. However, the resin obtained by this method has poor chemical resistance and heat resistance due to the presence of a crosslinking agent. Also, JP 63-68604 and USP 4,204.92
In No. 7, a photoreactive group is added to a fluororesin to perform photocrosslinking. However, the resins obtained by these methods are inferior in chemical resistance and heat resistance. Further, Japanese Patent Publication No. 55-23567 describes that a copolymer of tetrafluoroethylene and perfluoroacrylic acid (derivative) is crosslinked by applying heat. However, there is no detailed description of the physical properties of crosslinked polymers. [Problems to be Solved by the Invention] An object of the present invention is to provide a novel fluorine-containing copolymer that provides a high elasticity fluororesin that has not been previously known. [Means for Solving the Problems] The present invention was made to solve the above-mentioned problems, and is a copolymer of a compound (A) and a compound (B),
(A) is 80-99.9 mol%, (B) is 0.1-20
Contains mol% and has a melt flow rate of 0.01 to 100
A fluorine-containing copolymer characterized by: (A) cFs = CFX (X is F or Cl) (
B) CFx = CFORt(1:H*0H(R,
is a divalent fluorine-substituted organic group) In this specification, melt flow rate is the extrusion rate (g/
minutes), and was specifically measured by the method shown below. Using a melt indexer, measure the fluorine-containing copolymer with an inner diameter of 9
.. After loading it into a cylinder of No. 5 and holding it at a temperature 30° C. higher than the melting point of the polymer for 5 minutes, extruding it at that temperature under a piston load of No. 5 through an orifice with an inner diameter of 2.1 and a length of 8,
The extrusion speed (g/min) at this time was defined as the melt flow rate. Further, the melting point was determined using a thermal analyzer (DTA) manufactured by Shinku Riko. The sample was placed in an aluminum cup, and the temperature was raised from room temperature at 10° C. per minute, and the melting endothermic peak temperature was taken as the melting point. Further, compound (B) can be synthesized by the following method, etc. 6 For example, the method described in JP-A-58-85832, specifically, CF*=CFO(
CFz)sCooCHx, CFlCFO<CFa) x
COOC,H,,CF,=CFOCF,CF(CFS)
After protecting the double bonds of fluorinated unsaturated carboxylic acid esters such as O(CF, ) and C00CIH@ with chlorine gas, sodium borohydride, lithium borohydride, potassium borohydride,
Reducing with a reducing agent such as lithium aluminum hydride or sodium aluminum hydride. The desired compound can be obtained by dechlorinating this with a metal such as zinc. Further, in the present invention, compound (B) is a compound represented by the above formula, and Rt is a divalent fluorine-substituted organic group, but a fully fluorinated organic group is preferable, and only carbon or carbon an organic group in which a chain is formed by and oxygen,
That is, a perfluoroalkylene group or a perfluoroalkylene group containing an ether bond is preferred. Further, if the chain of the compound (B) becomes long, the polymerizability decreases and it becomes difficult to obtain a desired polymer, which is not preferable. Preferably, the number of atoms constituting the chain of R2 is 1 to 1.
5. Preferred compounds (B) include CFa=CFO(CFa)scHzOH, CFa=CF
O(CFi)gcHgOH. CFz; CFOCF*CF (CFi)0 (CFi)
gcHgOH. CF,=CFOCF,CF(CF,)OCFtCF(C
Fa)O(CF, > tCHOH. CFz=CFOCFiCF*0CFaCFzO(CFa
)xcHxOH etc. are exemplified. Further, the fluorine-containing copolymer of the present invention contains units based on compound (B) in a proportion of 0.1 to 20 mol%. If the proportion of units based on the compound (B) is too small, it will be difficult to obtain a fluororesin having a high elastic modulus without using a crosslinking agent. I'm not talented. On the other hand, if this ratio is too large, the melting point of the fluorine-containing copolymer will decrease, making it difficult to maintain the t-shape during heat treatment, making precise formation difficult, and causing internal strain and cracking force during heat treatment. In particular, a proportion of units based on compound (B) of 0.2 to 10 mol % is undesirable because the fluorine-containing copolymer becomes easy to form, and the fluorine-containing copolymer becomes stomer-like, resulting in defects such as reduced moldability. It is preferable to include The fluorine-containing copolymer of the present invention comprises the above compounds A) and (
In addition to the unit based on B), a compound copolymerizable with the compounds (A) and (B) may be co-united. Compound(
As the compound copolymerizable with A) and the coating material (B),
A cloudy compound (C) represented by the following formula: CF, = CFY (Y is a monovalent fluorine-substituted organic group) is preferably employed. The fluorine-containing copolymer copolymerized with such compound (C) has almost no deterioration in heat resistance, chemical resistance, etc., improves melt moldability, and improves the impact resistance, toughness, etc. of the fluororesin after heat treatment. It has the advantage of improved physical properties. Compound (C) is a compound represented by the above formula, and those in which Y is a perfluoroalkyl group or a perfluoroalkoxy group are preferably employed from the viewpoint of heat resistance, chemical resistance, etc. In particular, compounds (A) and Considering the copolymerizability with compound (B) and the physical properties of the fluorine-containing copolymer and the heat-treated fluorine-containing resin, barf B in which Y has 1 to 1 carbon atoms
Those having an oloalkyl group or a perfluoroalkoxy group are preferred. When compound (C) is copolymerized, the copolymerization ratio is 70 to 99.9 mo JI,% of compound (A).
It is preferable that the amount of compound (B) is 0.1 to 20 mol %, and the amount of compound (C) is 10 mol % or less. If the proportion of units based on compound (C) becomes too large, the melting point of the fluorine-containing copolymer decreases or the fluorine-containing copolymer becomes diistomeric, resulting in a decrease in moldability, which is undesirable. Further, the fluorine-containing copolymer of the present invention has the aforementioned melt flow rate of 0.01 to 100. In either case, the melt flow rate is extremely low, that is, the material has an ultra-high molecular weight, and the melt flow rate is extremely high, that is, the material has a low molecular weight.In either case, the moldability is extremely reduced and the material is no longer suitable as a molding material. , undesirable. The fluorine-containing copolymer of the present invention can be produced by any method including solution polymerization, suspension polymerization, and emulsion polymerization. Here, the polymerization initiator is preferably a free radical polymerization initiator, such as di(fluoroacyl) peroxides,
Examples include di(chlorofluoroacyl) peroxides, dialkyl peroxydicarbonates, diacyl peroxides, peroxy esters, and persulfates. In solution polymerization, the polymerization medium is CFC 11°C.
Examples include fluorocarbons such as 113, tertiary butanol, etc. In suspension polymerization and emulsion polymerization, water or a mixed medium of water and other solvents is used. Polymerization temperature is 0~100℃, polymerization pressure is 0.5~30kg
/cn+"G. In the polymerization reaction, for example, a polymerization medium, compound (B) and, if necessary, one molecular weight regulator of compound (C) are first charged in an autoclave equipped with a stirrer, and the required amount of compound (A) is charged. ) and add a polymerization initiator to start polymerization.As the polymerization progresses, the pressure decreases, so compound <A) is press-ined to compensate for the decrease in pressure, and the desired amount of polymer is produced. The polymerization is continued until the end of the polymerization.After the polymerization is completed, unreacted monomers are released, and then the polymer is washed and dried.The obtained copolymer can be melt-molded by heating it above the melting point of the copolymer. Furthermore, by treating the molded product at a temperature of 200° C. or higher and lower than the melting point for 5 hours or more, crosslinking can be achieved without adding a crosslinking agent, and a molded product with a high elastic modulus that does not flow even above the melting point can be obtained. ] Example 1 In an autoclave with an internal capacity of 260 cc and a stirrer, 320 g% of Freon 113 was added to CF*20 FO (CFt) 5 c
4.9 g of Hz-01 (4.9 g of methanol and 0.05 g of methanol were charged, the internal space was sufficiently replaced with nitrogen gas and then evacuated, 13 g of tetrafluoroethylene (TFE) was pressurized into the tank, and the temperature was brought to 50°C. Stir and add 3.0% of di(heptafluoropropanoyl) peroxide dissolved in 1% by weight Freon 113 as a polymerization initiator.
During the reaction, TFE is successively added as the pressure decreases to maintain a constant pressure. When the amount of TFH added successively reached 16 g, cooling and monomer purge were performed. The obtained slurry solution was washed with Freon 113 and dried at 120°C for 12 hours to obtain a polymer. The physical properties of the polymer were measured by the following method. Melt flow rate was measured using a melt indexer, and the polymer was loaded into a cylinder with an inner diameter of 9.5 mm and the temperature was 30°C below the melting point of the polymer.
After holding at a high temperature for 5 minutes, it was extruded under a piston load of 5 at that temperature through an orifice with an inner diameter of 2.1 and a length of 8, and the extrusion rate (g/min) at this time was taken as the melt flow rate. CFs = CFO(CFi)sCHJH content (mol%) As described in, for example, U.S. Pat. The content of the monomer was determined from the absorbance of the coaon group (at 2.75 micrometers) as follows. Melting Point ('C) The melting point was determined using a thermal analyzer (DTA) manufactured by Shinku Riko. Place the sample in an aluminum cup and heat the sample at 10°C per minute from room temperature.
The temperature was raised at 100° C., and the melting endothermic peak temperature was taken as the melting point. Example 2 Instead of CF*=CFO(CFm)sCHJH in Example 1, CFi:CFO(CFx)scHtOH was used as 4.
A polymer was obtained in the same manner as in Example 1 except that 0 g was charged. CFz=CFO(Ch)zc)IxOH containing OH (mol%
) was measured in the same manner as in Example 1 and determined as follows. Example 3 CF of Example 1! =CFO(CF,), instead of CHloH, Ch”CFOCF*CF (CFs) 0 (
Example 1 except that 7.8g of CFt)scHtOH was charged.
A polymer was obtained by the same method as above. CF, = CFOCF, CF CCF@ ) O(CF,
), CH, and OH contents (mol %) were measured in the same manner as in Example 1 and determined as follows. Film thickness (mm) was scored as a point. Example 2 A polymer was obtained by the same method as in Example 1 except that 4.0 g of CFg=CFO(CF,) *CH snow OH was charged instead of CF,=CFO(CF,) 5clbOH in Example 1. Ta. CF*=CFO(CFi)scHmOH content (mol%
) was measured in the same manner as in Example 1 and determined as follows. Film thickness (mm) Example 3 Example 1 (7) CFt=CFO(CF,) scH
tOH(7) Instead, CFa=CFOCFtCF (
7.8g of CFs ) 0 (CFi)scH*0)1
A polymer was obtained in the same manner as in Example 1 except for charging. CF*=CFOCF*CF (CFs) O(CFm
) The scHxOH content (mol %) was measured in the same manner as in Example 1 and determined as follows. Film thickness (am) Example 4 CFz of Example 1=CFO(CFi)scHaOH4,
Instead of 9g, (:FlCFO(CF-)-OH-O
H2.5g and CF* = CFO(CFa)sF 2.4
A polymer was obtained in the same manner as in Example 1 except that g was charged. CFzHCFO(CFt) sF content (mol%) is
The absorbance at a wave number of 980-' was measured by infrared absorption spectrum analysis of a film with a thickness of about 40μ.
The value divided by the absorbance at the wavenumber of 50-' is 0.36
It was calculated as double. Table 1 shows the polymerization results. Test Examples Table 2 shows the physical properties of each example before and after heat treatment. By performing the heat treatment, it was possible to obtain a molded product that had a high elastic modulus, did not flow even when heated above the melting point, and had excellent heat resistance and chemical resistance. Table 2 Dynamic elastic modulus (E) at 200°C for Murapylon [Effects of the invention] The fluorine-containing copolymer of the present invention has a high elastic modulus by heat treatment, does not flow even when heated above the melting point, and is heat resistant. It is possible to provide a fluororesin having an excellent effect of good chemical resistance.

Claims (2)

【特許請求の範囲】[Claims] (1)下記化合物(A)と下記化合物(B)との共重合
体であり、(A)が80〜99.9モル%、(B)が0
.1〜20モル%含有し、メルトフローレートが0.0
1〜100であることを特徴とする含フッ素共重合体。 (A)CF_2=CFX(XはF又はCl)(B)CF
_2=CFOR_fCH_2OH(R_fは二価のフッ
素置換有機基)
(1) A copolymer of the following compound (A) and the following compound (B), in which (A) is 80 to 99.9 mol% and (B) is 0
.. Contains 1 to 20 mol% and has a melt flow rate of 0.0
A fluorine-containing copolymer having a molecular weight of 1 to 100. (A) CF_2=CFX (X is F or Cl) (B) CF
_2=CFOR_fCH_2OH (R_f is a divalent fluorine-substituted organic group)
(2)請求項1記載の化合物(A)、(B)及び下記化
合物(C)との共重合体であり、(A)が70〜99.
9モル%、(B)が0.1〜20モル%、(C)が10
モル%以下含有し、メルトフローレートが0.01〜1
00であることを特徴とする含フッ素共重合体。 (C)CF_2=CFY (Yは一価のフッ素置換有機基)
(2) A copolymer of the compounds (A) and (B) according to claim 1 and the following compound (C), in which (A) is 70 to 99.
9 mol%, (B) 0.1 to 20 mol%, (C) 10
Contains mol% or less and has a melt flow rate of 0.01 to 1.
00. A fluorine-containing copolymer characterized in that (C) CF_2=CFY (Y is a monovalent fluorine-substituted organic group)
JP22822489A 1989-09-05 1989-09-05 Fluorine-containing copolymer Expired - Fee Related JP2881837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22822489A JP2881837B2 (en) 1989-09-05 1989-09-05 Fluorine-containing copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22822489A JP2881837B2 (en) 1989-09-05 1989-09-05 Fluorine-containing copolymer

Publications (2)

Publication Number Publication Date
JPH0391513A true JPH0391513A (en) 1991-04-17
JP2881837B2 JP2881837B2 (en) 1999-04-12

Family

ID=16873120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22822489A Expired - Fee Related JP2881837B2 (en) 1989-09-05 1989-09-05 Fluorine-containing copolymer

Country Status (1)

Country Link
JP (1) JP2881837B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045467A1 (en) * 1996-05-30 1997-12-04 Asahi Glass Company Ltd. Molded articles of fluorinated copolymer
JP2002336624A (en) * 2001-05-16 2002-11-26 Nippon Clean Tekku Kk Filter fixture
KR100463907B1 (en) * 2001-06-11 2004-12-30 티아크 가부시키가이샤 Recording regenerative apparatus
WO2006057203A1 (en) * 2004-11-25 2006-06-01 Unimatec Co., Ltd. Fluorine-containing copolymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045467A1 (en) * 1996-05-30 1997-12-04 Asahi Glass Company Ltd. Molded articles of fluorinated copolymer
JP2002336624A (en) * 2001-05-16 2002-11-26 Nippon Clean Tekku Kk Filter fixture
KR100463907B1 (en) * 2001-06-11 2004-12-30 티아크 가부시키가이샤 Recording regenerative apparatus
WO2006057203A1 (en) * 2004-11-25 2006-06-01 Unimatec Co., Ltd. Fluorine-containing copolymer
US7538171B2 (en) 2004-11-25 2009-05-26 Unimatec Co., Ltd. Fluorine-containing copolymer

Also Published As

Publication number Publication date
JP2881837B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
RU2141489C1 (en) Thermoprocessible tetrafluoroethylene copolymer
US4910276A (en) Cyclic polymerization
US3282875A (en) Fluorocarbon vinyl ether polymers
EP0662096B1 (en) Iodine containing chain transfer agents for fluoromonomer polymerizations
AU2012350856B2 (en) Crosslinkable vinylidene fluoride and trifluoroethylene polymers
KR100284212B1 (en) Haloperfluoro and perfluoro ether polymers and batteries comprising same
US3817960A (en) Polymers of perfluorovinyl ethers
US11732073B2 (en) Fluorinated elastic copolymer, its composition and crosslinked rubber article
US5494984A (en) Method for producing a fluorinated polymer
JPH06220143A (en) Thermoplastic fluoroelastomer with improved stability against base
US3062793A (en) Amorphous copolymers of hexafluoropropylene and tetrafluoroethylene and their preparation
US4151340A (en) Process for producing fluorocopolymer
JP3028964B2 (en) Method for producing high-strength and elongate ethylene tetrafluoride-ethylene copolymer
JP3210000B2 (en) Manufacturing method of high modulus fluororesin
JPH02191613A (en) New non-crystalline fluorine-containing copolymer
JPH0391513A (en) Fluorinated copolymer
JPH10237130A (en) Fluorine-containing nitrile and its polymer
JPH11302394A (en) Molding product of crosslinked fluorine-containing polymer and its production
JPH01131214A (en) Cyclizing polymerization process
JPH06345824A (en) Production of fluorine-containing copolymer
JPH05230151A (en) Fluorine-containing polymer and cured products thereof
JPH06248026A (en) Curable fluorine-containing copolymer composition
US3350373A (en) Copolymers from 1, 2, 3, 3, 3-pentafluoropropylene and tetrafluoroethylene and process for preparing same
US4487902A (en) Polymer of TFE and f-alkyl ethylene
JP3323245B2 (en) Fluorine-containing compound and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees