JP3210000B2 - Manufacturing method of high modulus fluororesin - Google Patents

Manufacturing method of high modulus fluororesin

Info

Publication number
JP3210000B2
JP3210000B2 JP2820490A JP2820490A JP3210000B2 JP 3210000 B2 JP3210000 B2 JP 3210000B2 JP 2820490 A JP2820490 A JP 2820490A JP 2820490 A JP2820490 A JP 2820490A JP 3210000 B2 JP3210000 B2 JP 3210000B2
Authority
JP
Japan
Prior art keywords
fluororesin
formula
polymerization
fluoropolymer
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2820490A
Other languages
Japanese (ja)
Other versions
JPH03234753A (en
Inventor
正之 田村
篤 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2820490A priority Critical patent/JP3210000B2/en
Publication of JPH03234753A publication Critical patent/JPH03234753A/en
Application granted granted Critical
Publication of JP3210000B2 publication Critical patent/JP3210000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本発明は高弾性率を有するフッ素樹脂の製造法に関す
る。
The present invention relates to a method for producing a fluororesin having a high elastic modulus.

【0002】[0002]

【従来の技術】[Prior art]

フッ素樹脂はその優れた耐熱性、耐薬品性、表面特性
により、さまざまな分野で利用されているが、その欠点
の一つとして弾性率の低いことが挙げられる。またポリ
テトラフルオロエチレン(PTFE)以外のフッ素樹脂は融
点以上に加熱すると流動して形が保てないことも欠点と
して挙げられる。PTFEは融点以上に加熱しても流動しな
いが、逆に溶融成形できないという欠点がある。かくし
て高弾性率で溶融成形ができ、しかも融点以上に加熱し
ても流動しないフッ素樹脂の開発が望まれていた。
Fluororesins are used in various fields due to their excellent heat resistance, chemical resistance, and surface properties, but one of their drawbacks is that they have low elastic modulus. Another drawback is that a fluororesin other than polytetrafluoroethylene (PTFE) flows when heated above its melting point and cannot maintain its shape. PTFE does not flow when heated to above its melting point, but has the drawback that it cannot be melt molded. Thus, it has been desired to develop a fluororesin that can be melt-molded with a high elastic modulus and that does not flow even when heated above its melting point.

【0003】 フッ素樹脂を成形後架橋させることによりこれらの要
求特性を満たすことが考えられ、いままでさまざまな架
橋方法が提案されている。 例えば特公昭62−23772ではフッ素樹脂に電子線を照
射して架橋させている。しかしこの方法はハイドロカー
ボン樹脂には有効でもペルフルオロ樹脂には適応できな
い。 また、特開昭61−155410ではフッ素樹脂にトリアリル
シアヌレートなどの架橋剤を添加して電子線架橋を行っ
ている。しかしこの方法で得られた樹脂は架橋剤の存在
により耐薬品性、耐熱性が劣る。
[0003] It is considered that these required properties are satisfied by crosslinking the fluororesin after molding, and various crosslinking methods have been proposed so far. For example, in JP-B-62-23772, a fluorine resin is irradiated with an electron beam to crosslink it. However, this method is effective for hydrocarbon resins but is not applicable to perfluoro resins. In Japanese Patent Application Laid-Open No. 61-155410, electron beam crosslinking is performed by adding a crosslinking agent such as triallyl cyanurate to a fluororesin. However, the resin obtained by this method is inferior in chemical resistance and heat resistance due to the presence of the crosslinking agent.

【0004】 また、特開昭63−68604やUSP4,204,927ではフッ素樹
脂に光反応性基を付加し光架橋を行っている。しかしこ
れらの方法でも得られた樹脂は耐薬品性、耐熱性に劣
る。 また、特公昭55−23567にはテトラフルオロエチレン
とペルフルオロアクリル酸(誘導体)との共重合体に熱
を加えることにより架橋することが記述されている。し
かし、架橋したポリマーについての物性の詳しい記述は
ない。
[0004] In JP-A-63-68604 and US Pat. No. 4,204,927, photocrosslinking is performed by adding a photoreactive group to a fluororesin. However, the resins obtained by these methods are inferior in chemical resistance and heat resistance. JP-B-55-23567 describes that a copolymer of tetrafluoroethylene and perfluoroacrylic acid (derivative) is cross-linked by applying heat. However, there is no detailed description of the physical properties of the crosslinked polymer.

【0005】[0005]

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明は、従来知られていなかった高弾性フッ素樹脂
を与える製造法を新規に提供することを目的とするもの
である。
An object of the present invention is to provide a novel method for producing a highly elastic fluororesin which has not been known hitherto.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本発明は、下記式(1)(ただし、Xはフツ素原子ま
たは塩素原子である)で表わされる単位が70〜99.9モル
%、下記式(2)(ただし、Rfは2価のフッ素置換有機
基、Aは炭素数1〜3のアルキル基または炭素数1〜3
のフルオロアルキル基である)で表される単位が0.1〜2
0モル%、下記式(3)(ただし、Zは1価のフッ素置
換有機基である)で表わされる単位(ただし、式(2)
で表わされる単位を除く)が0〜10モル%、の割合であ
り、メルトフローレートが0.01〜100である含フッ素重
合体を、200℃以上かつ該含フッ素重合体の融点以下の
温度で熱処理して、動的弾性率が0.8×109dyne/cm2以上
のフッ素樹脂を得ることを特徴とする高弾性率フッ素樹
脂の製造法を提供する。 −[−CF2CFX−]− ・・・(1) −[−CF2CF(ORfCOOA)−]− ・・・(2) −[−CF2CFZ−]− ・・・(3)
In the present invention, the unit represented by the following formula (1) (where X is a fluorine atom or a chlorine atom) is 70 to 99.9 mol%, and the following formula (2) (where R f is divalent fluorine substitution) An organic group, A is an alkyl group having 1 to 3 carbon atoms or 1 to 3 carbon atoms;
Is a fluoroalkyl group) represented by 0.1 to 2
0 mol%, a unit represented by the following formula (3) (where Z is a monovalent fluorine-substituted organic group) (provided that the formula (2)
Is 0 to 10 mol%, and the melt flow rate is 0.01 to 100, and the fluoropolymer is heat treated at a temperature of 200 ° C. or more and the melting point of the fluoropolymer or less. The present invention provides a method for producing a high elastic modulus fluororesin characterized by obtaining a fluororesin having a dynamic elastic modulus of 0.8 × 10 9 dyne / cm 2 or more. − [− CF 2 CFX −] −… (1) − [− CF 2 CF (OR f COOA) −] −… (2) − [− CF 2 CFZ −] −… (3)

【0007】 本発明の製造法において用いる含フッ素重合体は、前
記式(1)で表わされる単位が70〜99.9モル%、前記式
(2)で表わされる単位が0.1〜20モル%、前記式
(3)で表わされる単位が0〜10モル%である含フッ素
重合体である。
In the fluoropolymer used in the production method of the present invention, the unit represented by the formula (1) is 70 to 99.9 mol%, the unit represented by the formula (2) is 0.1 to 20 mol%, It is a fluoropolymer in which the unit represented by (3) is 0 to 10 mol%.

【0008】 かかる含フッ素重合体において、式(1)のXはフッ
素原子であるものの方が耐薬品性などの面からより好ま
しい。式(2)におけるRfは2価のフッ素置換有機基で
あり、例えば−(CF2−、−(CF2−(OCF(C
F3))−、−(CF2−(CF2CF(CF3))−、−
(CF2−(OCF2CF2−、−(CF2CF(CF3)O)
−(CF2−などの基が例示される。特にペルフルオ
ロ基であるのが好ましい。
In such a fluoropolymer, X in the formula (1) is more preferably a fluorine atom from the viewpoint of chemical resistance and the like. R f in the formula (2) is a divalent fluorine-substituted organic group, for example,-(CF 2 ) n -,-(CF 2 ) m- (OCF (C
F 3 )) n −, − (CF 2 ) m − (CF 2 CF (CF 3 )) n −, −
(CF 2 ) m- (OCF 2 CF 2 ) n -,-(CF 2 CF (CF 3 ) O) m
And a group such as — (CF 2 ) n —. Particularly, it is preferably a perfluoro group.

【0009】 また、Aは、炭素数1〜3のアルキル基または炭素数
1〜3のフルオロアルキル基である。本発明では、含フ
ッ素重合体が上記COOAで表わされる基を有するため、後
述の方法により高弾性率を有するフッ素樹脂を製造でき
る。
A is an alkyl group having 1 to 3 carbon atoms or a fluoroalkyl group having 1 to 3 carbon atoms. In the present invention, since the fluoropolymer has the group represented by COOA, a fluororesin having a high elastic modulus can be produced by the method described below.

【0010】 本発明の製造法において用いられる含フッ素重合体
は、式(1)の単位を70〜99.9モル%、式(2)の単位
を0.1〜20%の割合で含有する。式(2)で表わされる
単位が少なすぎると後述の方法により処理しても高弾性
率を有するフッ素樹脂が得られ難くなる。また、多すぎ
ると含フッ素重合体の融点を低下し熱処理時に形状を保
つことが難しくなるため精密成形が困難になる、熱処理
時に内部歪が生じやすくクラッチが発生しやすくなる、
また重合体がエラストマー性となり成形性が低下する、
などの欠点が生じる。
The fluoropolymer used in the production method of the present invention contains the unit of the formula (1) in a proportion of 70 to 99.9 mol% and the unit of the formula (2) in a proportion of 0.1 to 20%. If the amount of the unit represented by the formula (2) is too small, it becomes difficult to obtain a fluororesin having a high elastic modulus even when treated by the method described below. In addition, if the amount is too large, it becomes difficult to maintain the shape during the heat treatment by lowering the melting point of the fluoropolymer, so that precision molding becomes difficult.
Also, the polymer becomes elastomeric and moldability decreases,
Such disadvantages occur.

【0011】 また、本発明の製造法において用いられる含フッ素重
合体は、上述の式(1)の単位および式(2)の単位か
ら構成されるものであってもよいし、式(3)で表わさ
れる単位であって式(2)で表わされる単位以外の単位
(以下、単に「式(3)で表わされる単位」という)を
含むものであってもよい。式(3)で表わされる単位が
含まれていると、溶融成形性の向上、熱処理後のフッ素
樹脂の耐衝撃性、強靭性などの物性向上といった利点が
ある。ただし、過剰に式(3)で表わされる単位を含む
とエラストマー性となるため、式(3)で表わされる単
位は10モル%以下とされる。
Further, the fluoropolymer used in the production method of the present invention may be composed of the unit of the above formula (1) and the unit of the formula (2), or may be of the formula (3) And may include a unit other than the unit represented by the formula (2) (hereinafter, simply referred to as a “unit represented by the formula (3)”). When the unit represented by the formula (3) is included, there are advantages such as improvement in melt moldability and improvement in physical properties such as impact resistance and toughness of the fluororesin after heat treatment. However, if the unit represented by the formula (3) is excessively included, the unit becomes elastomeric, so that the unit represented by the formula (3) is set to 10 mol% or less.

【0012】 かかる含フッ素重合体は、式CF2=CFX(Xは前述と同
じ)で表わされる単量体(以下、単量体(1′)とい
う)、式CF2=CFORfCOOA(Rf、Aは前述と同じ)で表わ
される単量体(以下、単量体(2′)という)および必
要により式CF2=CFZ(Zは前述と同じ)で表わされる単
量体であって単量体(2′)以外の単量体(以下、単量
体(3′)という)を重合開始源の存在下に共重合する
ことによって得られる。
The fluoropolymer includes a monomer represented by the formula CF 2 CFX (X is the same as described above) (hereinafter, referred to as monomer (1 ′)), and a formula CF 2 CFOR f COOA (R f , A is a monomer represented by the same as described above (hereinafter referred to as monomer (2 ')) and, if necessary, a monomer represented by the formula CF 2 = CFZ (Z is the same as described above); It can be obtained by copolymerizing a monomer other than the monomer (2 ′) (hereinafter, referred to as a monomer (3 ′)) in the presence of a polymerization initiation source.

【0013】 重合開始源としては、電離性放射線や、有機ペルオキ
シド系重合開始剤、酸化還元系重合開始剤などの重合開
始剤などが採用できる。重合方法としては、懸濁重合、
乳化重合、溶液重合、塊状重合など従来公知の重合方法
が採用される。
As the polymerization initiation source, ionizing radiation, a polymerization initiator such as an organic peroxide-based polymerization initiator and an oxidation-reduction-based polymerization initiator can be used. As the polymerization method, suspension polymerization,
Conventionally known polymerization methods such as emulsion polymerization, solution polymerization and bulk polymerization are employed.

【0014】 ここで重合開始剤としては遊離ラジカル重合開始剤が
好ましく、例えばビス(フルオロアシル)ペルオキシド
類、ビス(クロロフルオロアシル)ペルオキシド類、ジ
アルキルペルオキシジカーボネート類、ジアシルペルオ
キシド類、ペルオキシエステル類、過硫酸塩類などが挙
げられる。
Here, the polymerization initiator is preferably a free radical polymerization initiator, for example, bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, dialkylperoxydicarbonates, diacyl peroxides, peroxyesters, And persulfates.

【0015】 重合媒体としては、溶液重合ではフロン11、フロン11
3などのフロン類、ターシャリブタノールなどが挙げら
れ、懸濁重合、乳化重合では水または水と他の溶媒との
混合媒体が用いられる。 重合温度は0〜100℃、重合圧力は0.5〜30kg/cm2Gの
範囲から選択できる。
As a polymerization medium, CFC 11 or CFC 11 in solution polymerization is used.
For example, water or a mixed medium of water and another solvent is used in suspension polymerization and emulsion polymerization. The polymerization temperature can be selected from 0 to 100 ° C, and the polymerization pressure can be selected from the range of 0.5 to 30 kg / cm 2 G.

【0016】 重合反応は、例えば撹拌機つきオートクレーブに重合
媒体と単量体(2′)、および必要により単量体
(3′)、分子量調節剤をまず仕込み、必要量の単量体
(1′)を圧入し、重合開始剤を加えて重合を開始す
る。重合の進行とともに圧力が低下するので、圧力の低
下を補うように単量体(1′)を圧入し、目的量の重合
体が生成するまで重合を続ける。重合終了後は未反応モ
ノマーを放出後、重合体を洗浄、乾燥する。
In the polymerization reaction, for example, a polymerization medium, a monomer (2 ′), and, if necessary, a monomer (3 ′) and a molecular weight modifier are first charged into an autoclave equipped with a stirrer, and a required amount of the monomer (1) is added. '), And polymerization is started by adding a polymerization initiator. Since the pressure decreases as the polymerization proceeds, the monomer (1 ') is injected so as to compensate for the decrease in the pressure, and the polymerization is continued until a desired amount of the polymer is produced. After the completion of the polymerization, the unreacted monomer is released, and the polymer is washed and dried.

【0017】 得られた重合体は、重合体の融点以上に加熱すること
により溶融成形できる。また成形物を200℃以上融点以
下の温度で5時間以上熱処理を行うことにより架橋剤の
添加なしに架橋させることができ、高弾性率で融点以上
でも流動しないフッ素樹脂の成形物が得られる。
The obtained polymer can be melt-molded by heating it to a temperature higher than the melting point of the polymer. By subjecting the molded article to a heat treatment at a temperature of 200 ° C. or more and a melting point or less for 5 hours or more, it is possible to crosslink without adding a crosslinking agent, and a molded article of a fluororesin which does not flow even at the melting point or more is obtained.

【0018】 本発明において、含フッ素重合体はメルトフローレー
トが0.01〜100のものである。メルトフローレートとは
含フッ素重合体の融点以上の温度で測定される押出速度
(g/分)であり、具体的には次に示す方法で測定した。 メルトインデクサーを用い、含フッ素重合体を内径9.
5mmのシリンダーに装填し380℃で5分間保持した後、そ
の温度で5kgのピストン荷重下に内径2.1mm、長さ8.0mm
のオリフィスを通して押出し、このときの押出速度(g/
分)をメルトフローレートとした。
In the present invention, the fluoropolymer has a melt flow rate of 0.01 to 100. The melt flow rate is an extrusion rate (g / min) measured at a temperature equal to or higher than the melting point of the fluoropolymer, and specifically measured by the following method. Using a melt indexer, the fluoropolymer has an inner diameter of 9.
After loading into a 5mm cylinder and holding at 380 ° C for 5 minutes, at that temperature under a 5kg piston load, inner diameter 2.1mm, length 8.0mm
Through an orifice at the extrusion speed (g /
Min) was taken as the melt flow rate.

【0019】 また、融点は真空理工製分析機(DTA)を用いて測定
した。試料10mgをアルミニウムカップに入れ、室温より
毎分10℃で昇温し、融解吸熱ピーク温度を融点とした。
メルトフローレートが極めて小さい、すなわち、超高分
子量のものは、成形性が極めて低く、成形材料として適
さない。また、メルトフローレートが極めて大きい、す
なわち、低分子量のものは、機械的強度が著しく低い。
The melting point was measured using an analyzer (DTA) manufactured by Vacuum Riko. A sample (10 mg) was placed in an aluminum cup and heated at a rate of 10 ° C./minute from room temperature, and the melting endothermic peak temperature was defined as the melting point.
Those having an extremely low melt flow rate, that is, those having an ultra-high molecular weight have extremely low moldability and are not suitable as molding materials. Further, those having an extremely high melt flow rate, that is, those having a low molecular weight, have extremely low mechanical strength.

【0020】 本発明では、上述の含フッ素重合体を200℃以上かつ
含フッ素重合体の融点以下の温度で熱処理することが重
要である。かかる熱処理を行うことにより高弾性率フッ
素樹脂が得られる。熱処理は所望の形状に成形した後に
行うことが好ましい。熱処理温度が低すぎると充分な高
弾性率化が達成されず、またあまりに高温で行うと熱処
理時に形状保持のための手段が必要となり、作業が煩雑
になるため好ましくない。また、熱処理は5時間以上行
うことが好ましい。熱処理時間が短いと充分な高弾性率
化が難しい。また、熱処理は窒素ガスなどのイナートガ
ス中で行ってもよいし、空気中で行ってもよい。作業性
の面からは空気中で行うことが好ましい。
In the present invention, it is important that the above-mentioned fluoropolymer is heat-treated at a temperature of 200 ° C. or higher and a melting point of the fluoropolymer or lower. By performing such heat treatment, a high elastic modulus fluororesin can be obtained. The heat treatment is preferably performed after forming into a desired shape. If the heat treatment temperature is too low, a sufficiently high elastic modulus cannot be achieved, and if the heat treatment is carried out at an excessively high temperature, a means for maintaining the shape is required during the heat treatment, which is not preferable because the operation becomes complicated. The heat treatment is preferably performed for 5 hours or more. If the heat treatment time is short, it is difficult to sufficiently increase the elastic modulus. The heat treatment may be performed in an inert gas such as a nitrogen gas, or may be performed in air. From the viewpoint of workability, it is preferable to carry out in air.

【0021】[0021]

【実施例】【Example】

以下の例1〜4が合成例、例5〜8が実施例、例9〜
10が比較例、である。
The following Examples 1-4 are synthesis examples, Examples 5-8 are Examples, and Examples 9-
10 is a comparative example.

【0022】 [例1] 内容積1200ccの撹拌機つきオートクレーブに、フロン
113を1474g、CF2=CFO(CF23COOCH3を41.7g、メタノ
ールを0.83g仕込み、内部空間を窒素ガスで1分置換し
た後これを排気し、これにテトラフルオロエチレン(TF
E)60gを圧入し、温度を50℃にし、撹拌を行った。これ
にビス(ペルフルオロプロパノイル)ペルオキシドを1
重量%フロン113に溶解させた重合開始剤を5.5cc加えて
重合を開始させた。反応中、圧力の降下に応じてTFEを
逐次追加し、一定圧力を保つようにした。TFEの逐次遂
加量が74gになったところで冷却、モノマーパージを行
った。得られたスラリー溶液をフロン113で洗浄し、120
℃で12時間乾燥して重合体を得た。
[Example 1] An autoclave having an internal volume of 1200 cc with a stirrer was charged with CFCs.
1474 g of 113, 41.7 g of CF 2 = CFO (CF 2 ) 3 COOCH 3 and 0.83 g of methanol were charged, and the internal space was replaced with nitrogen gas for 1 minute.
E) 60 g was injected, the temperature was raised to 50 ° C., and the mixture was stirred. Add bis (perfluoropropanoyl) peroxide to this
5.5 cc of a polymerization initiator dissolved in wt% Freon 113 was added to initiate polymerization. During the reaction, TFE was successively added as the pressure dropped, so as to maintain a constant pressure. When the sequential addition of TFE reached 74 g, cooling and monomer purging were performed. The obtained slurry solution was washed with Freon 113,
The polymer was obtained by drying at 12 ° C for 12 hours.

【0023】 重合体の物性の測定は次の方法によって行った。重合
結果および物性測定結果を表1に示す(例2〜4につい
ても同じ)。
The physical properties of the polymer were measured by the following methods. The results of polymerization and the results of measurement of physical properties are shown in Table 1 (the same applies to Examples 2 to 4).

【0024】 [メルトフローレート] メルトインデクサーにより測定したもので、重合体を
内径9.5mmのシリンダーに装填し380℃で5分間保持した
後、その温度で5kgのピストン荷重下に内径2.1mm、長さ
8mmのオリフィスを通して押出し、このときの押出速度
(g/分)をメルトフローレートとした。
[Melt flow rate] Measured by a melt indexer, the polymer was loaded into a cylinder having an inner diameter of 9.5 mm, kept at 380 ° C. for 5 minutes, and then heated at that temperature under a piston load of 5 kg to an inner diameter of 2.1 mm. length
Extrusion was performed through an 8 mm orifice, and the extrusion speed (g / min) at this time was defined as a melt flow rate.

【0025】 [式(2)で表わされる単位の含有量] 粉体の試料約0.8gを秤量し、0.35NのNaOHメタノール
溶液に浸漬し、密封して60℃で2日間放置した後、メタ
ノール溶液中の未反応のNaOHを0.1NのHCl水溶液で滴定
することにより求めた。
[Content of Unit Represented by Formula (2)] About 0.8 g of a powder sample was weighed, immersed in a 0.35 N NaOH methanol solution, sealed, and left at 60 ° C. for 2 days. Unreacted NaOH in the solution was determined by titration with a 0.1N aqueous HCl solution.

【0026】 [融点(℃)] 融点は、真空理工製熱分析機(DTA)を用いて測定し
た。試料10mgをアルミニウムカップに入れ、室温より毎
分10℃で昇温し、融解吸熱ピーク温度を融点とした。
[Melting Point (° C.)] The melting point was measured using a thermal analyzer (DTA) manufactured by Vacuum Riko. A sample (10 mg) was placed in an aluminum cup and heated at a rate of 10 ° C./minute from room temperature, and the melting endothermic peak temperature was defined as the melting point.

【0027】 [例2] CF2=CFO(CF23COOCH3を25.0g仕込み、メタノール
を1.13g仕込む以外は例1と同等の方法により重合体を
得た。
[0027] to give [Example 2] CF 2 = CFO (CF 2) 3 COOCH 3 and 25.0g were charged, by the same method as in Example 1 except that charged 1.13g of methanol polymer.

【0028】 [例3] 例1のCF2=CFO(CF23COOCH3のかわりにCF2=CFOCF
2CF(CF3)O(CF23COOCH3を64.3g仕込み、メタノー
ルを0.64g仕込む以外は例1と同等の方法により重合体
を得た。
[Example 3] CF 2 = CFO (CF 2 ) 3 COOCH 3 instead of CF 2 = CFOCF of Example 1
2 A polymer was obtained in the same manner as in Example 1 except that 64.3 g of CF (CF 3 ) O (CF 2 ) 3 COOCH 3 and 0.64 g of methanol were charged.

【0029】 [例4] CF2=CFO(CF23COOCH3を25.0g仕込み、CF2=CFOCF2
CF2CF3を21.7g仕込み、メタノールを0.95g仕込む以外は
例1と同等の方法により重合体を得た。
Example 4 CF 2 CCFO (CF 2 ) 3 COOCH 3 was charged with 25.0 g, and CF 2 FOCFOCF 2
A polymer was obtained in the same manner as in Example 1 except that 21.7 g of CF 2 CF 3 and 0.95 g of methanol were charged.

【0030】[0030]

【表1】 [Table 1]

【0031】 [例5〜10] 表2に例1〜4で得た含フッ素重合体(例5〜8)、
PFA樹脂(例9)およびPTFE樹脂(例10)の熱処理(300
℃×30hr)前後の物性を示す。なお、表2において、動
的弾性率(単位109dyne/cm2)は、バイブロンによる200
℃での測定値である。また、耐クリープ(単位:%)
は、室温24hr、荷重100kg/cm2における値である。
Examples 5 to 10 In Table 2, the fluoropolymers obtained in Examples 1 to 4 (Examples 5 to 8),
Heat treatment of PFA resin (Example 9) and PTFE resin (Example 10) (300
(° C x 30 hours). In Table 2, the dynamic elastic modulus (unit: 10 9 dyne / cm 2 ) is 200 by vibron.
It is a measured value in ° C. In addition, creep resistance (unit:%)
Is a value at a room temperature of 24 hours and a load of 100 kg / cm 2 .

【0032】[0032]

【表2】 [Table 2]

【0033】 熱処理を行うことにより、高弾性率で、融点以上に加
熱しても流動せず、耐熱性、耐薬品性の優れた成形物を
得ることができた。
By performing the heat treatment, a molded article having a high elastic modulus, not flowing even when heated to a temperature equal to or higher than the melting point, and having excellent heat resistance and chemical resistance was obtained.

【0034】[0034]

【発明の効果】【The invention's effect】

本発明の製造法によれば、高弾性率で融点以上に加熱
しても流動せず、耐熱、耐薬品性が良好であるという優
れた効果を有するフッ素樹脂が得られる。
According to the production method of the present invention, it is possible to obtain a fluororesin which has a high elastic modulus, does not flow even when heated to a temperature equal to or higher than the melting point, and has excellent effects of good heat resistance and chemical resistance.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記式(1)(ただし、Xはフツ素原子ま
たは塩素原子である)で表わされる単位が70〜99.9モル
%、下記式(2)(ただし、Rfは2価のフッ素置換有機
基、Aは炭素数1〜3のアルキル基または炭素数1〜3
のフルオロアルキル基である)で表される単位が0.1〜2
0モル%、下記式(3)(ただし、Zは1価のフッ素置
換有機基である)で表わされる単位(ただし、式(2)
で表わされる単位を除く)が0〜10モル%、の割合であ
り、メルトフローレートが0.01〜100である含フッ素重
合体を、200℃以上かつ該含フッ素重合体の融点以下の
温度で熱処理して、動的弾性率が0.8×109dyne/cm2以上
のフッ素樹脂を得ることを特徴とする高弾性率フッ素樹
脂の製造法。 −[−CF2CFX−]− ・・・(1) −[−CF2CF(ORfCOOA)−]− ・・・(2) −[−CF2CFZ−]− ・・・(3)
(1) a unit represented by the following formula (1) (where X is a fluorine atom or a chlorine atom): 70 to 99.9 mol%, and the following formula (2) (where R f is divalent fluorine) A substituted organic group, A is an alkyl group having 1 to 3 carbon atoms or 1 to 3 carbon atoms;
Is a fluoroalkyl group) represented by 0.1 to 2
0 mol%, a unit represented by the following formula (3) (where Z is a monovalent fluorine-substituted organic group) (provided that the formula (2)
Is 0 to 10 mol%, and the melt flow rate is 0.01 to 100, and the fluoropolymer is heat treated at a temperature of 200 ° C. or more and the melting point of the fluoropolymer or less. And obtaining a fluororesin having a dynamic elastic modulus of 0.8 × 10 9 dyne / cm 2 or more. − [− CF 2 CFX −] −… (1) − [− CF 2 CF (OR f COOA) −] −… (2) − [− CF 2 CFZ −] −… (3)
【請求項2】熱処理を5時間以上行う請求項1に記載の
製造法。
2. The method according to claim 1, wherein the heat treatment is performed for 5 hours or more.
JP2820490A 1990-02-09 1990-02-09 Manufacturing method of high modulus fluororesin Expired - Fee Related JP3210000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2820490A JP3210000B2 (en) 1990-02-09 1990-02-09 Manufacturing method of high modulus fluororesin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2820490A JP3210000B2 (en) 1990-02-09 1990-02-09 Manufacturing method of high modulus fluororesin

Publications (2)

Publication Number Publication Date
JPH03234753A JPH03234753A (en) 1991-10-18
JP3210000B2 true JP3210000B2 (en) 2001-09-17

Family

ID=12242137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2820490A Expired - Fee Related JP3210000B2 (en) 1990-02-09 1990-02-09 Manufacturing method of high modulus fluororesin

Country Status (1)

Country Link
JP (1) JP3210000B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69631595T2 (en) * 1995-10-27 2004-12-16 Daikin Industries, Ltd. RESIN COMPOSITION, MOLD MADE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
US6479161B1 (en) 1997-06-06 2002-11-12 Daikin Industries, Ltd. Fluorine-containing adhesive and adhesive film and laminated article made by using the same
JP4618911B2 (en) * 2001-03-09 2011-01-26 倉敷紡績株式会社 Method for improving PFA resin
US20100130690A1 (en) 2005-10-31 2010-05-27 Daikin Industries, Ltd. Method for molding polytetrafluoroethylene, polytetrafluoroethylene molded body, crosslinkable polytetrafluoroethylene, powdered polytetrafluoroethylene crosslinked body, resin blend composition of matter and resin blend molded body
JP2007153960A (en) * 2005-12-01 2007-06-21 Yunimatekku Kk Fluorine-containing copolymer and article on which thin film thereof is formed
EP3046952B1 (en) * 2013-09-19 2021-05-12 Terumo Corporation Polymer particles
JP6107613B2 (en) * 2013-11-15 2017-04-05 旭硝子株式会社 Method for producing fluorine-containing copolymer molded article, wire covering material, and sliding member
KR102264948B1 (en) * 2013-12-26 2021-06-14 에이지씨 가부시키가이샤 Method for manufacturing fluorine-containing cross-linked product and use thereof
US10370462B2 (en) * 2014-06-05 2019-08-06 Solvay Specialty Polymers Italy S.P.A. Melt-processable perfluoropolymers having improved thermal and mechanical properties after heating treatment

Also Published As

Publication number Publication date
JPH03234753A (en) 1991-10-18

Similar Documents

Publication Publication Date Title
US5378782A (en) Fluorine-containing polymers and preparation and use thereof
US3810875A (en) Fluorine-containing block copolymers
JP3293630B2 (en) Iodine-containing chain transfer agents for fluoromonomer polymerization
JPH05500070A (en) Cyano-containing perfluoropolymers with iodine cure sites
JPH04505345A (en) Production of cyano-containing perfluoropolymers with iodine cure sites
JP5844733B2 (en) Low temperature curable amorphous fluoropolymer
JP2006504844A (en) Emulsifier-free aqueous emulsion polymerization to produce copolymers of fluorinated olefins and hydrocarbon olefins
KR20140107428A (en) Crosslinkable compositions based on vinylidene fluoride-trifluoroethylene polymers
JP2007517964A (en) Fluoroelastomer having improved low temperature characteristics and method for producing the same
JP3210000B2 (en) Manufacturing method of high modulus fluororesin
JP3022614B2 (en) Thermoplastic fluoroelastomer with improved stability to bases
WO1994021696A1 (en) Process for producing fluoropolymer
KR100473549B1 (en) Fluororubber, a Process for Its production and Its use, as well as a Process for Producing Fluororubber Mouldings and/or Coatings
JP2007137982A (en) Radiation-crosslinkable fluorine-containing copolymer
JP4828783B2 (en) Perfluoroelastomers having a low glass transition temperature and methods for their production
EP3728493A1 (en) Fluorinated elastomers cured by actinic radiation and methods thereof
JPH11302394A (en) Molding product of crosslinked fluorine-containing polymer and its production
JPH10237130A (en) Fluorine-containing nitrile and its polymer
JPH05230151A (en) Fluorine-containing polymer and cured products thereof
JP2881837B2 (en) Fluorine-containing copolymer
JPH06345824A (en) Production of fluorine-containing copolymer
JP4547735B2 (en) Method for curing fluorine-containing polymer
JPH06136218A (en) Curable fluorine-containing polymer composition and method for curing the same
JPH06248026A (en) Curable fluorine-containing copolymer composition
EP0702036A1 (en) Fluorocopolymer, process for producing the same, and fluoroelastomer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees