JPH0391201A - Voltage nonlinear resistor - Google Patents

Voltage nonlinear resistor

Info

Publication number
JPH0391201A
JPH0391201A JP1226812A JP22681289A JPH0391201A JP H0391201 A JPH0391201 A JP H0391201A JP 1226812 A JP1226812 A JP 1226812A JP 22681289 A JP22681289 A JP 22681289A JP H0391201 A JPH0391201 A JP H0391201A
Authority
JP
Japan
Prior art keywords
glass
resistor
powder
voltage nonlinear
pbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1226812A
Other languages
Japanese (ja)
Other versions
JP2560851B2 (en
Inventor
Toyoshige Sakaguchi
豊重 坂口
Kazuo Koe
向江 和郎
Koichi Tsuda
孝一 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1226812A priority Critical patent/JP2560851B2/en
Publication of JPH0391201A publication Critical patent/JPH0391201A/en
Application granted granted Critical
Publication of JP2560851B2 publication Critical patent/JP2560851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a highly moisture-resistant and surge-current-resistant inexpensive voltage nonlinear resistor which can be made easily by coating the side faces of a voltage nonlinear resistor with composite glass layers composed of PbO.B2O3 glass and the specified ceramic powder added thereto for dispersion strengthening. CONSTITUTION:Powder of zinc oxide (ZnO) with added components such as praseodymia (Pr6O11), cobalt oxide (Co3O4), and potassium carbonate (K2CO3) mixed therein are granulated and baked and both end faces are polished to obtain a sintered body 1. ZrO2.SiO2 (zircon) powder is added to and sufficiently mixed in PbO.B2O3 glass and binder is added to and sufficiently mixed in composite glass powder thus made to obtain glass paste. The glass paste is applied to the side faces of the sintered body with a brush and hat-treated to form glass layers 3a. The upper and lower end faces of the sintered body are sand-blasted and spray electrodes 2 are made to obtain a voltage nonlinear resistor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアレスタなどに用いられ、ZnOを主成分とす
る焼結体側面にガラス層を被覆した電圧非直線抵抗体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a voltage nonlinear resistor that is used in arresters and the like and has a glass layer coated on the side surface of a sintered body mainly composed of ZnO.

〔従来の技術〕[Conventional technology]

酸化亜鉛(ZnO)を主成分とし、これに希土類元素、
コバルト(Co) 、カリウム(K)、クロム(Cr)
などを酸化物などの形で添加混合し、通常のセラミック
製造法により得られる電圧非直線抵抗体はアレスタ、バ
リスタなどに広く利用されている。
The main component is zinc oxide (ZnO), which also contains rare earth elements,
Cobalt (Co), potassium (K), chromium (Cr)
Voltage nonlinear resistors obtained by adding and mixing oxides and the like in the form of oxides and the like using ordinary ceramic manufacturing methods are widely used in arresters, varistors, and the like.

第4図は電圧非直線抵抗体の形状の一例を示した模式断
面図である。第4図においてこの電圧非直線抵抗体は、
円板または円柱状に成形後高温で坑底した電圧非直線性
を有する抵抗体1の上下両端面にそれぞれ電極2を設け
てあり、抵抗体1の側面に湿気などを防ぐためのガラス
層3を介して絶縁体層4を形成したものである。絶縁体
層4は湿気や異物の付着などの二次的な環境汚染から抵
抗体1を保護し、特性の信頼性を確保することおよび衝
撃電流吸収時における空気放電など抵抗体1の外部閃絡
(沿面フラッシュオーバ)を防ぐためのものである。
FIG. 4 is a schematic cross-sectional view showing an example of the shape of a voltage nonlinear resistor. In Fig. 4, this voltage nonlinear resistor is
Electrodes 2 are provided on each of the upper and lower end surfaces of a resistor 1 having voltage nonlinearity that is formed into a disk or cylinder shape and then bottomed out at high temperature.A glass layer 3 is provided on the side surface of the resistor 1 to prevent moisture from entering. The insulator layer 4 is formed through the insulator layer 4. The insulator layer 4 protects the resistor 1 from secondary environmental contamination such as moisture and foreign matter adhesion, ensures reliability of characteristics, and protects the resistor 1 from external flash shorting such as air discharge when absorbing shock current. This is to prevent creepage flashover.

ガラス層3の組成は例えばPbO・B2O3・Si0g
系であり、ガラス焼き付けの際のガラス層3のクランク
防止のため熱膨張係数が抵抗体1の熱膨張係数60 x
 10−’ / ℃に近いものが用いられる。また絶縁
体層4は例えばエポキシ系の樹脂が使用される。
The composition of the glass layer 3 is, for example, PbO・B2O3・Si0g
The thermal expansion coefficient is 60 x that of the resistor 1 to prevent the glass layer 3 from cranking during glass baking.
A temperature close to 10-'/°C is used. Further, the insulator layer 4 is made of, for example, epoxy resin.

しかしながら、このような電圧非直線抵抗体にはなお以
下に述べる問題がある。
However, such a voltage non-linear resistor still has the following problems.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図の構造を持つ電圧非直線抵抗体のガラス層3を形
成する過程で、上述のpbo  ・B2O3・SiO□
系組威のガラスを焼き付ける際、このガラスは焼付温度
範囲が狭く、低温側では耐湿性が劣り高温側では焼付処
理による電圧電流特性の劣化が大きいという問題があり
、電圧非直線抵抗体の製造上の管理が難しい。また上述
のガラス層3は強度が低く、衝撃電流を印加したとき抵
抗体lとガラス層3の温度上昇で、これらの熱膨張係数
の僅かな差によってガラス層3にクランクが発生し沿面
フラッシュオーバを起こしやすく、衝撃電流印加に対し
て弱いという欠点もある。しかも絶縁体層4となる例え
ばエポキシ系樹脂は抵抗体1やガラス層3との密着性が
悪く、また抵抗体1との熱膨張係数の差が大きいためク
ランクを発生しやすいので、エポキシ系樹脂を用いて絶
縁体層4を形成しても耐湿性や衝撃電流耐量に対して満
足できる状態になっていない。さらにガラス層3と絶縁
体層4の二層を設けているために、製造工数の点からコ
スト高に繋がることも問題である。
In the process of forming the glass layer 3 of the voltage nonlinear resistor having the structure shown in FIG.
When baking the glass of the system, there is a problem that this glass has a narrow baking temperature range, has poor moisture resistance at low temperatures, and large deterioration of voltage-current characteristics due to the baking process at high temperatures, making it difficult to manufacture voltage nonlinear resistors. Upper management is difficult. In addition, the glass layer 3 mentioned above has low strength, and when an impact current is applied, the temperature of the resistor l and the glass layer 3 rises, and a crank occurs in the glass layer 3 due to the slight difference in their thermal expansion coefficients, resulting in creepage flashover. It also has the disadvantage of being susceptible to shock current application. Moreover, the epoxy resin that forms the insulator layer 4 has poor adhesion with the resistor 1 and the glass layer 3, and also has a large difference in coefficient of thermal expansion with the resistor 1, which tends to cause cranking. Even if the insulating layer 4 is formed using the same, the moisture resistance and impact current resistance are not satisfactory. Furthermore, since two layers, the glass layer 3 and the insulator layer 4, are provided, there is another problem in that the cost increases due to the number of manufacturing steps.

本発明の目的は、上述の欠点を除去し耐湿性。The aim of the invention is to eliminate the above-mentioned drawbacks and provide moisture resistance.

衝撃電流耐量に優れ、製造方法が簡単で廉価な電圧非直
線抵抗体を提供することにある。
The object of the present invention is to provide a voltage nonlinear resistor that has excellent shock current resistance, is simple to manufacture, and is inexpensive.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するために、本発明の電圧非直線抵抗
体はその側面を、PbO−o、o、系ガラスにZr0t
 HSing (ジルコン)、2Mg0  ・2AZz
Os  ’ 5SiOz(コージェライト)、31Vt
O1・2SiO□(ムライト)ZnlSiOt(オルト
珪酸亜鉛)のうちの少なくとも一つのセラミック粉末を
添加して分散強化した複合ガラス層で被覆したものであ
る。
In order to solve the above problems, the voltage nonlinear resistor of the present invention has its side surfaces made of PbO-o, o, Zr0t glass.
HSing (Zircon), 2Mg0 ・2AZz
Os' 5SiOz (cordierite), 31Vt
It is coated with a composite glass layer which is dispersion-strengthened by adding ceramic powder of at least one of O1.2SiO□ (mullite) and ZnlSiOt (zinc orthosilicate).

〔作用〕[Effect]

pbo  ・B2O3系ガラスと従来のpbo  ・B
2O3・Sin。
pbo/B2O3 glass and conventional pbo/B
2O3・Sin.

系のガラスとの対比からガラス組成中のSiO□が焼付
時の電圧電流特性の劣化に関与していると見られ、Pb
O・B2O3系ガラスによれば焼付時の温度をより高く
設定することができるので抵抗体1とガラス層3aとの
反応が進み、良好な密着性とともに耐湿性、衝撃電流耐
量が向上する。即ち焼付時の流動性が良く抵抗体1表面
の凹凸部や細孔ヘガラスが浸透し、抵抗体1とガラス層
3aとの密着が一層強固となる。そして、PbO・B2
O3系ガラスにセラミック粉末を添加し分散させること
によりガラスの強度を上げることができ、熱衝撃に起因
するクラックの発生を防止することができる。セラもツ
ク粉末を分散させてガラスの強度を上げることができる
のは、熱衝撃による機械的な応力をセラミック粉末が緩
和しているからであり、またセラミック粉末はその添加
量によってガラスの熱膨張係数を抵抗体1のそれにほぼ
一致するように調整する役割もある。
From the comparison with the glass of the system, it appears that SiO□ in the glass composition is involved in the deterioration of voltage-current characteristics during baking, and Pb
With O.B2O3 glass, the temperature during baking can be set higher, so that the reaction between the resistor 1 and the glass layer 3a progresses, and good adhesion, moisture resistance, and impact current resistance are improved. That is, the glass has good fluidity during baking and penetrates into the uneven parts and pores on the surface of the resistor 1, thereby further strengthening the adhesion between the resistor 1 and the glass layer 3a. And PbO・B2
By adding and dispersing ceramic powder to O3-based glass, the strength of the glass can be increased and cracks caused by thermal shock can be prevented. The reason why ceramic powder can increase the strength of glass by dispersing it is because ceramic powder alleviates the mechanical stress caused by thermal shock, and depending on the amount of ceramic powder added, it can increase the strength of glass. It also has the role of adjusting the coefficient to almost match that of the resistor 1.

〔実施例〕〔Example〕

以下本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

第1図は本発明による電圧非直線抵抗体の構成を示した
模式断面図であり、第2図と共通部分を同一符号を用い
て表わしである。第1図が第2図と異なる所は絶縁体層
4を備えることなく抵抗体1の側面はPbO・B2O3
系ガラス内にセラミック粉末を分散した高抵抗の絶縁被
覆ガラス層3aのみ有することである。
FIG. 1 is a schematic cross-sectional view showing the structure of a voltage nonlinear resistor according to the present invention, and parts common to those in FIG. 2 are indicated by the same reference numerals. The difference between FIG. 1 and FIG. 2 is that the insulator layer 4 is not provided and the side surfaces of the resistor 1 are PbO/B2O3.
It has only a high-resistance insulating coating glass layer 3a in which ceramic powder is dispersed in the base glass.

本発明において、ガラス層3aを形成したのは次の理由
に基づくものである。
In the present invention, the reason why the glass layer 3a was formed is based on the following reason.

既に述べたように、ガラス層3を焼き付けるときの温度
条件により、耐湿不良や焼き付けによる電圧電流特性の
劣化およびガラス層3の強度が弱くクランクが発生しや
すいという問題、さらにはエポキシ系樹脂などによる絶
縁体層を付加することの必要性などにつき本発明者らが
種々実験検討を加えた結果、ガラス層3を形成するガラ
スの組成にPbO−B、0.系を主体とするガラスを用
いて、これをセラミック粉末で分散強化することにより
、焼付温度条件による電圧電流特性の劣化は非常に小さ
くなるとの結論を得ることができたからである。
As already mentioned, depending on the temperature conditions when baking the glass layer 3, there are problems such as poor moisture resistance, deterioration of voltage and current characteristics due to baking, and the weak strength of the glass layer 3, which is prone to cranking. As a result of various experimental studies conducted by the present inventors regarding the necessity of adding an insulating layer, we found that the composition of the glass forming the glass layer 3 includes PbO-B, 0. This is because we were able to reach the conclusion that by using glass that is mainly composed of glass and dispersion-strengthening it with ceramic powder, the deterioration of voltage-current characteristics due to baking temperature conditions can be minimized.

以下、本発明による電圧非直線抵抗体を製造す!手順に
ついて述べる。
Hereinafter, a voltage nonlinear resistor according to the present invention will be manufactured! Describe the procedure.

まず酸化亜鉛(ZnO)粉末に酸化プラセオジウム(P
raO++)+酸化コバルト(cosoaL炭酸カリウ
ム(KIC(h) 、酸化クロム(Cr*Os)などの
副成分を所定量添加した原料をボールミルで十分湿式混
合する。
First, praseodymium oxide (P) was added to zinc oxide (ZnO) powder.
Raw materials to which a predetermined amount of subcomponents such as cobalt oxide (raO++) + cobalt oxide (cosoaL potassium carbonate (KIC(h)) and chromium oxide (Cr*Os) are added are sufficiently wet-mixed in a ball mill.

この原料スラリーにポリビニールアルコールなどのバイ
ンダーを加えた後、噴霧乾燥器で造粒する。
After adding a binder such as polyvinyl alcohol to this raw material slurry, it is granulated using a spray dryer.

次いで直径38mΦ、厚さ34mmに底形し、この円柱
状の成形体を1100〜1300℃の温度範囲で大気中
で坑底した後、両端面を研磨し直径30fiΦ、厚さ2
5nの焼結体(抵抗体1)とする。
Next, the bottom was shaped to have a diameter of 38 mΦ and a thickness of 34 mm, and this cylindrical molded body was bottomed in the atmosphere at a temperature range of 1100 to 1300°C, and both end faces were polished to form a bottom with a diameter of 30 mΦ and a thickness of 2 mm.
A sintered body (resistance element 1) of 5n is used.

一方本発明の主眼である前述のpbo ・BzOs系ガ
ラス粉末にZrO2・Stow (ジルコン)粉末を0
〜60重量%の範囲で加え十分混合し、この複合系ガラ
ス粉末にバインダーとして例えばニトロセルローズ、ブ
チルカルピトールを加えて十分混練しガラスペーストを
得る。このガラスペーストを前記の直径30mΦ、厚さ
25mの焼結体の側面に30mg/aaの量となるよう
に筆塗りした後、これを大気中で温度700℃で20分
間熱処理しガラス層3aを形成する。そのときの温度の
昇降速度は40℃/分であり、ガラス層3aの厚さは5
0jrmである。次いで焼結体の上下両端面をサンドブ
ラストした後、直径28mΦのMの溶射電極を設けるこ
とにより第1図と同様の電圧非直線抵抗体を得ることが
できる。
On the other hand, ZrO2 Stow (zircon) powder is added to the above-mentioned pbo BzOs glass powder, which is the main focus of the present invention.
60% by weight is added and thoroughly mixed, and a binder such as nitrocellulose or butyl calpitol is added to this composite glass powder and thoroughly kneaded to obtain a glass paste. This glass paste was applied with a brush to the side surface of the sintered body with a diameter of 30 mΦ and a thickness of 25 m in an amount of 30 mg/aa, and then heat treated in the air at a temperature of 700°C for 20 minutes to form the glass layer 3a. Form. The rate of temperature rise and fall at that time was 40°C/min, and the thickness of the glass layer 3a was 5°C/min.
It is 0jrm. Next, after sandblasting both the upper and lower end surfaces of the sintered body, a voltage nonlinear resistor similar to that shown in FIG. 1 can be obtained by providing a sprayed electrode of M with a diameter of 28 mΦ.

以上のようにして得られた本発明の電圧非直線抵抗体の
耐湿性を試験し従来の電圧非直線抵抗体との比較におい
て得られた結果を第1表に示す。
The moisture resistance of the voltage nonlinear resistor of the present invention obtained as described above was tested and the results obtained in comparison with a conventional voltage nonlinear resistor are shown in Table 1.

第1表 第1表におけるV III A I V 10 JIA
は電流1mA+10 #Aを流したときの電極間の電圧
であり、■、。
V III A I V 10 JIA in Table 1 Table 1
is the voltage between the electrodes when a current of 1 mA + 10 #A is passed, and ■.

/lは単位厚さ当たりのVIIIAである。vl。#A
/V1mAは■1゜いと■1□の比であり、値が1に近
い程電圧非直線性が良いことを表わす。ΔV lsA。
/l is VIIIA per unit thickness. vl. #A
/V1mA is the ratio of ■1° to ■1□, and the closer the value is to 1, the better the voltage nonlinearity is. ΔV lsA.

Δv1゜、Aは試験後のV IIIA + V 10い
の変化率を示すものである。混生放置の試験条件は温度
60℃。
Δv1°, A indicates the rate of change in V IIIA + V 10 after the test. The test conditions for leaving the mixture together was at a temperature of 60°C.

相対湿度90%、放置時間は2000時間であり、pc
T (プレッシャークツカーテスト)の試験条件は温度
120℃、2気圧、50時間である。第1表にはpbo
  ・B!03系ガラス粉末に添加するZr0z・Si
O□粉末の量を20重量%としたサンプルの試験結果を
記載したが、Zr0z・SiO□粉末の量を0〜60重
景%として作製したサンプルの試験結果はいずれも顕著
な差はなかった。従来例は第4図に示したようにPbO
・BgOs・5ift系のガラス層3を介してエポキシ
系樹脂による絶縁体層4を形成したものを比較の対象と
している。
The relative humidity is 90%, the standing time is 2000 hours, and the PC
The test conditions for T (pressure test) are a temperature of 120° C., 2 atmospheres, and 50 hours. Table 1 shows pbo
・B! Zr0z・Si added to 03 series glass powder
Although the test results of samples with an amount of O□ powder of 20% by weight are listed, there was no significant difference in the test results of samples prepared with an amount of Zr0z・SiO□ powder of 0 to 60% by weight. . The conventional example is PbO as shown in Figure 4.
- A comparison is made with an insulator layer 4 made of epoxy resin formed through a BgOs 5ift glass layer 3.

第1表から明らかなように、本発明による電圧非直線抵
抗体は混生放置、PCTによるΔVIIIA+ΔV、。
As is clear from Table 1, the voltage nonlinear resistor according to the present invention has a PCT value of ΔVIIIA+ΔV when left in a mixed state.

、Aは小さく優れた耐湿性を有している。, A is small and has excellent moisture resistance.

次にPbO・B2O3系ガラスに含有するセラミック粉
末の量を変えた場合の電流波形4/104による衝撃電
流耐量を評価した結果を従来との比較において第2表に
示す。第2表における実施例に用いたセラ逅ツクはZr
O!・SiO□粉末である。第2表中の○印は沿面フラ
ッシュオーバを起こすことなく合格したものであり、X
印は沿面フラッシュオーバを生じたことを示す。
Next, Table 2 shows the results of evaluating the impact current withstand capacity using the current waveform 4/104 when the amount of ceramic powder contained in the PbO.B2O3 glass was changed, in comparison with the conventional glass. The ceramic used in the examples in Table 2 is Zr.
O!・SiO□ powder. The ○ marks in Table 2 are those that passed the test without causing creepage flashover, and the X
The mark indicates that creepage flashover occurred.

第2表からこの実施例による電圧非直線抵抗体はZrJ
・SiO□粉末添加量が5〜40重量%の範囲において
優れた衝撃電流耐量を持っていることがわかる。Zr(
h・Si0g粉末添加量が5重量%より少ない場合は、
この複合系ガラスの見゛掛けの熱膨張係数が電圧非直線
抵抗体のそれよりも大きくなることが衝撃電流耐量を低
下させる理由の一つである。
From Table 2, the voltage nonlinear resistor according to this example is ZrJ
- It can be seen that when the amount of SiO□ powder added is in the range of 5 to 40% by weight, it has excellent impact current resistance. Zr(
If the amount of h・Si0g powder added is less than 5% by weight,
The fact that the apparent coefficient of thermal expansion of this composite glass is larger than that of the voltage nonlinear resistor is one of the reasons why the impact current withstand capacity is reduced.

複合系ガラスの応力拡大係数(Klc)の測定結果から
も、Zr0g・5ift粉末添加量が5重量%より少な
い場合は、Kleの臨界値0.5MN/m””より小さ
くなり、熱衝撃によるクランクを発生しやすく衝撃電流
耐量は低下する。
According to the measurement results of the stress intensity coefficient (Klc) of composite glass, when the amount of Zr0g・5ift powder added is less than 5% by weight, it becomes smaller than the critical value of Kle of 0.5MN/m"", and the crankshaft due to thermal shock This tends to occur, and the shock current withstand capacity decreases.

第 2 表 電圧非直線抵抗体の熱膨張係数60 X 10−’ /
 ℃に対し、複合系ガラスの見掛けの熱膨張係数は50
×10−7〜70 X 10−’ / ’Cの範囲にあ
ることが衝撃電流印加時の熱衝撃によるクラックの発生
を防止し、大きな衝撃電流耐量を保持する上で重要なこ
とである。
Table 2 Coefficient of thermal expansion of voltage nonlinear resistor 60 x 10-' /
℃, the apparent coefficient of thermal expansion of composite glass is 50
The range of x10-7 to 70 x10-'/'C is important for preventing the occurrence of cracks due to thermal shock when impact current is applied and maintaining a large impact current withstand capacity.

PbO・B2O3系ガラスは例えばその組成割合がPb
088重量%、Bt0312重量%のときの熱膨張係数
は約120 Xl0−7/’Cであるが、このPbO−
BZO3系ガラスに低熱膨張係数を持つセラミック粉末
を添加することにより、見掛けの熱膨張係数を50 X
 10−7〜70 X 10−7/ ’Cとなるように
調整し熱衝撃によるクランクの発生を防止するのである
For example, PbO・B2O3 glass has a composition ratio of Pb.
The thermal expansion coefficient is approximately 120 Xl0-7/'C when the PbO-
By adding ceramic powder with a low coefficient of thermal expansion to BZO3 glass, the apparent coefficient of thermal expansion can be increased to 50
The temperature is adjusted to 10-7 to 70 x 10-7/'C to prevent cranking due to thermal shock.

一方、ZrO2・SiO□粉末の添加量が40重量%よ
り多い場合は、見掛けの熱膨張係数が50 X 10−
7/ ”Cより小さくなり衝撃電流耐量は低下する。ま
た実質的にガラス層の厚さが薄くなることも衝撃電流耐
量を低下させる原因となるので、zro1sio!粉末
はガラス層によく均一に分散させるようにすることが重
要である。
On the other hand, when the amount of ZrO2/SiO□ powder added is more than 40% by weight, the apparent coefficient of thermal expansion is 50 x 10-
7/ If it becomes smaller than "C", the impact current withstand capacity will decrease.Also, the fact that the thickness of the glass layer becomes substantially thinner will also cause a decrease in the impact current withstand capacity, so the zro1sio! It is important to make sure that

第3表は本発明による直径48fi、厚さ22mの電圧
非直線抵抗体について衝撃電流耐量を従来例との比較に
おいて評価した結果を示したものである。
Table 3 shows the results of evaluating the impact current withstand capacity of the voltage nonlinear resistor of the present invention having a diameter of 48 fi and a thickness of 22 m in comparison with a conventional example.

第 表 第3表の実施例におけるPbO−BtOz系ガラスに添
加するセラミック粉末はZrO□・SiO□であり、そ
の量は30重量%である。第3表における○、×の表示
は第2表の場合と同じであり、第3表から明らかなよう
に、本発明の電圧非直線抵抗体は優れた衝撃電流耐量を
有する。
The ceramic powder added to the PbO-BtOz glass in the examples shown in Table 3 is ZrO□.SiO□, and the amount thereof is 30% by weight. The indications of ○ and × in Table 3 are the same as those in Table 2, and as is clear from Table 3, the voltage nonlinear resistor of the present invention has an excellent impact current withstand capacity.

次に第2図はPbO・BzO3系ガラス粉末Zr(h 
・Stow粉末を20重量%添加して形成した本発明に
おける複合系ガラス層3aと、従来のpbo  ・B!
0.・SiO□系のガラス層3をそれぞれ抵抗体1の側
面に焼き付け、被覆したときの焼付前後の電圧非直線抵
抗体Vl、Aの変化を焼付温度との関係で表わした線図
である。第2図において、曲線Aの本発明による複合系
ガラス層3aは850℃においてもVl、Aの変化が少
ないのに対して、曲線Bの従来のPbO・B2O3・5
iOz系のガラス層3は680℃を超えるとVImAは
急激に低下することから、複合系ガラス層3aは650
〜850℃の範囲で耐湿性、衝撃電流耐量に優れている
ことがわかる。第3図はこの複合系ガラス層3aを温度
範囲650〜850℃で抵抗体1に焼き付けたときの状
態を部分的に拡大して示した模式断面図であり、5はセ
ラミック粉末、6は抵抗体1の細孔へ浸透したPb0−
BzOs系ガラス、7は焼結粒子である。ガラス6が抵
抗体1表面の凹凸部によく流動し、抵抗体1の細孔へ浸
透した距離が工〇−以上になると抵抗体1とガラス層3
aとの密着性が非常に強固となる。抵抗体重の細孔への
ガラス6の浸透距離を10−以上とするためには、焼付
時の温度は650℃以上を必要とする。焼付温度が65
0℃より低いと抵抗体1とガラス層3aとの密着性が悪
くなり、耐湿性、衝撃電流耐量は低下する。
Next, Figure 2 shows PbO/BzO3-based glass powder Zr (h
・The composite glass layer 3a of the present invention formed by adding 20% by weight of Stow powder and the conventional pbo ・B!
0. - It is a graph showing the change in the voltage nonlinear resistor Vl, A before and after baking in relation to the baking temperature when the SiO□-based glass layer 3 is baked and coated on the side surface of the resistor 1. In FIG. 2, the curve A of the composite glass layer 3a according to the present invention shows little change in Vl and A even at 850°C, while the curve B of the conventional PbO・B2O3・5
Since the VImA of the iOz-based glass layer 3 rapidly decreases when the temperature exceeds 680°C, the composite glass layer 3a has a temperature of 650°C.
It can be seen that the moisture resistance and impact current resistance are excellent in the range of ~850°C. FIG. 3 is a partially enlarged schematic cross-sectional view showing the state when this composite glass layer 3a is baked on the resistor 1 at a temperature range of 650 to 850°C, where 5 is the ceramic powder and 6 is the resistor. Pb0- penetrated into the pores of body 1
In the BzOs glass, 7 is a sintered particle. When the glass 6 flows well into the irregularities on the surface of the resistor 1 and penetrates into the pores of the resistor 1 for a distance of 0- or more, the resistor 1 and the glass layer 3
The adhesion with a becomes very strong. In order to make the penetration distance of the glass 6 into the pores of the resistor weight 10 or more, the temperature at the time of baking needs to be 650° C. or more. Baking temperature is 65
If the temperature is lower than 0° C., the adhesion between the resistor 1 and the glass layer 3a will deteriorate, and the moisture resistance and impact current resistance will decrease.

しかし、焼付温度が850℃を超えるとガラスに微細な
りランクや気泡が発生し、同じく耐湿性、衝撃電流耐量
ともに低下しVlmAの低下も大きくなる。したがって
最適焼付温度は650〜850℃の範囲と定めることが
できる。従来のPbO−B2O2・SiO□系のガラス
を用いた場合の耐湿性、衝撃電流耐量を考慮した最適焼
付温度範囲が660〜680℃と非常に狭かったのに対
し、本発明によるガラスの最適焼付温度が650〜85
0℃という広い範囲にあることは製造上極めて有利な点
である。
However, if the baking temperature exceeds 850° C., fine ranks and bubbles will be generated in the glass, and the moisture resistance and impact current resistance will also decrease, and the VlmA will also decrease significantly. Therefore, the optimum baking temperature can be determined to be in the range of 650 to 850°C. When using conventional PbO-B2O2/SiO□ glass, the optimum baking temperature range considering moisture resistance and impact current resistance was very narrow, 660 to 680°C. Temperature is 650-85
The wide temperature range of 0°C is extremely advantageous in manufacturing.

さらにPbO−Btus系ガラスに添加するzrO7・
5iOt粉末の量を0〜60重量%の範囲で変えたもの
について、焼付温度とVISAの関係を調べたが、Zr
O□・5iOt粉末の量を変えても■1□に顕著な差は
見られなかった。
Furthermore, zrO7 added to PbO-Btus glass.
The relationship between the baking temperature and VISA was investigated with respect to the amount of 5iOt powder varied in the range of 0 to 60% by weight.
Even when the amount of O□・5iOt powder was changed, no significant difference was observed in ■1□.

以上の実施例ではガラス層3aの厚さは50−としたが
、20−より薄いと残留気泡や厚さの不均一さらにはガ
ラス層3aの殆ど形成されない部分が生ずることがあり
耐湿性、衝撃電流耐量が低下し、ガラス層3aの厚さが
400μを超えると衝撃電流印加によりクランクが発生
しやすくなり、衝撃電流耐量が低下するようになる。し
たがって、耐湿性。
In the above embodiments, the thickness of the glass layer 3a was set to 50 -, but if it is thinner than 20 -, residual air bubbles, non-uniform thickness, and even parts where the glass layer 3a is hardly formed may occur, resulting in poor moisture resistance and impact resistance. If the thickness of the glass layer 3a exceeds 400 μm, the current withstand capacity is reduced, and if the thickness of the glass layer 3a exceeds 400 μm, cranking is likely to occur due to the application of an impact current, resulting in a decrease in the impact current capacity. Therefore, moisture resistant.

衝撃電流耐量がともに良好なガラス層3aの最適被覆厚
さとしては、20〜400−の範囲に設定する必要があ
る。
The optimum coating thickness of the glass layer 3a with good impact current resistance needs to be set in the range of 20 to 400 -.

以上本発明の電圧非直線抵抗体に形成するガラス層3a
について、PbO−BiOi系ガラスに添加し分散、強
化するセラミック粉末として、Zr01・Singを用
いた場合で説明してきたが、セラミック粉末はこれに限
ることなくその他にコージェライト(2層go  ・2
11zOs  ・5SiO□)、ムライト (3MiO
s25iOz)、  オルト珪酸亜鉛(Zn2SiO*
)のうちの1種または2種以上を添加することによりZ
rO□・SiO2粉末を用いるのと同様の優れた耐湿性
と衝撃電流耐量を持つ電圧非直線抵抗体を得ることがで
きる。
As described above, the glass layer 3a formed in the voltage nonlinear resistor of the present invention
We have explained the case where Zr01・Sing is used as a ceramic powder that is added to PbO-BiOi glass to disperse and strengthen it.
11zOs ・5SiO□), Mullite (3MiO
s25iOz), zinc orthosilicate (Zn2SiO*
) by adding one or more of the following.
It is possible to obtain a voltage nonlinear resistor having excellent moisture resistance and impact current withstand capacity similar to those obtained by using rO□.SiO2 powder.

これらのセラミック粉末は焼付時にPbO−agos系
ガラスと反応することなく、熱膨張係数が抵抗体lより
小さく、熱衝撃にも強く高抵抗であるなど有用な特性を
持つものである。本発明ではこれらセラミック粉末によ
って分散強化した高抵抗の絶縁被覆ガラス層を形成する
ものであり、従来のようにガラス層とは別の絶縁体層を
必要とせず、製造工程を簡略化することができるからコ
スト低減に寄与するという点でも効果的である。
These ceramic powders have useful properties such as not reacting with the PbO-agos glass during baking, having a coefficient of thermal expansion smaller than that of the resistor 1, being resistant to thermal shock, and having high resistance. The present invention forms a high-resistance insulating glass layer that is dispersed and strengthened using these ceramic powders, and does not require an insulating layer separate from the glass layer as in the past, simplifying the manufacturing process. Because it can be done, it is also effective in contributing to cost reduction.

なお第1図において本発明によるガラス層3aは、抵抗
体1の電極2を除く上下両端面に設けても、耐湿性、衝
撃電流耐量ともに側面のみに形成した場合と何ら変わる
ことはない。
In FIG. 1, even if the glass layer 3a according to the present invention is provided on both the upper and lower end surfaces of the resistor 1 except for the electrodes 2, there is no difference in moisture resistance and impact current resistance from when the glass layer 3a is formed only on the side surfaces.

〔発明の効果〕〔Effect of the invention〕

電圧非直線抵抗体の少なくとも側面に設けるガラス層は
、従来PbO・BzO1SiO□系ガラスを用いてこれ
に絶縁層を付設しており、ガラス層を焼き付けるときの
温度範囲が狭い上に焼付処理による電圧電流特性の劣化
もあり、満足すべき耐湿性や衝撃電流耐量が得られなか
ったのに対し、本発明では実施例で述べたように、Pb
O−BZOs系のガラスをZr0= HSiO□などの
セラミック粉末で分散強化した複合ガラス層として形成
したために、別の絶縁層を必要とすることなくこの複合
ガラス層を1層のみ形成すればよく、ガラス焼付時の広
い温度範囲に亘って電圧電流特性の劣化も非常に少なく
、抵抗体との密着性も良好で優れた耐湿性、衝撃電流耐
量を得ることができ、しかも製造工程が簡単であるから
価格も安価になるという多くの点で効果をもたらすもの
である。
The glass layer provided on at least the side surface of the voltage nonlinear resistor is conventionally made of PbO・BzO1SiO□-based glass with an insulating layer attached to it. In contrast, in the present invention, as described in the examples, Pb
Since O-BZOs glass is formed as a composite glass layer dispersed and strengthened with ceramic powder such as Zr0=HSiO□, only one composite glass layer needs to be formed without the need for another insulating layer. There is very little deterioration in voltage and current characteristics over a wide temperature range during glass baking, and the adhesion to the resistor is good, providing excellent moisture resistance and shock current resistance, and the manufacturing process is simple. This is effective in many ways, including lower prices.

【図面の簡単な説明】 第1図は本発明の電圧非直線抵抗体の構成を示す模式断
面図、第2図は本発明における複合ガラス層と従来のガ
ラス層の焼き付は前後の電圧非直線抵抗体のvloの変
化を焼付温度との関係で比較して示した線図、第3図は
複合ガラス層の部分的な拡大模式断面図、第4図は従来
の電圧非直線抵抗体の構成を示す模式断面図である。 1:抵抗体、2:電極、3 + 3a ニガラス層、4
:絶縁体層、5:セラ【ツク粉末、6:細孔へ浸透した
ガラス層、7:焼結粒子。
[Brief Description of the Drawings] Fig. 1 is a schematic cross-sectional view showing the structure of the voltage nonlinear resistor of the present invention, and Fig. 2 is a schematic cross-sectional view showing the structure of the voltage nonlinear resistor of the present invention. A diagram comparing vlo changes of linear resistors in relation to baking temperature, Figure 3 is a partially enlarged schematic cross-sectional view of a composite glass layer, and Figure 4 is a diagram of a conventional voltage non-linear resistor. FIG. 3 is a schematic cross-sectional view showing the configuration. 1: Resistor, 2: Electrode, 3 + 3a Niglass layer, 4
: insulator layer, 5: ceramic powder, 6: glass layer penetrated into pores, 7: sintered particles.

Claims (1)

【特許請求の範囲】[Claims] 1)ZnOを主成分とし電圧非直線性を有する焼結体の
少なくとも側面を、PbO・B_2O_3系ガラスとこ
のガラス内に分散したセラミック粉末とからなる複合ガ
ラス層で被覆したことを特徴とする電圧非直線抵抗体。
1) A voltage characterized in that at least the side surfaces of a sintered body containing ZnO as a main component and having voltage non-linearity are covered with a composite glass layer consisting of PbO・B_2O_3 glass and ceramic powder dispersed within this glass. Non-linear resistor.
JP1226812A 1989-09-01 1989-09-01 Voltage nonlinear resistor Expired - Fee Related JP2560851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1226812A JP2560851B2 (en) 1989-09-01 1989-09-01 Voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226812A JP2560851B2 (en) 1989-09-01 1989-09-01 Voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPH0391201A true JPH0391201A (en) 1991-04-16
JP2560851B2 JP2560851B2 (en) 1996-12-04

Family

ID=16850992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226812A Expired - Fee Related JP2560851B2 (en) 1989-09-01 1989-09-01 Voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JP2560851B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755648B2 (en) * 2004-09-15 2011-08-24 エプコス アクチエンゲゼルシャフト Barista
JP2021044286A (en) * 2019-09-06 2021-03-18 日本ケミコン株式会社 Zinc oxide varistor and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473264A (en) * 1977-11-25 1979-06-12 Tokyo Shibaura Electric Co Nonnlinear resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473264A (en) * 1977-11-25 1979-06-12 Tokyo Shibaura Electric Co Nonnlinear resistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755648B2 (en) * 2004-09-15 2011-08-24 エプコス アクチエンゲゼルシャフト Barista
US8130071B2 (en) 2004-09-15 2012-03-06 Epcos Ag Varistor comprising an insulating layer produced from a loading base glass
JP2021044286A (en) * 2019-09-06 2021-03-18 日本ケミコン株式会社 Zinc oxide varistor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2560851B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
EP0157276A2 (en) Voltage-dependent non-linear resistance ceramic composition
US4060663A (en) Electrical resistor glaze composition and resistor
US3495996A (en) Ceramic composition,improved electronic devices employing same,and method of fabrication
AU616441B2 (en) Material for resistor body and non-linear resistor made thereof
EP0452511B1 (en) Zinc oxide varistor, manufacture thereof, and crystallized glass composition for coating
US6507269B2 (en) Voltage nonlinear resistor
CA1100749A (en) Pre-glassing method of producing homogeneous sintered zno non-linear resistors
US5387432A (en) Method for making metal oxide varistors coated with passivating coating
US5307046A (en) Passivating coating for metal oxide varistors
JPH0391201A (en) Voltage nonlinear resistor
US4420737A (en) Potentially non-linear resistor and process for producing the same
JPS5941284B2 (en) Manufacturing method of voltage nonlinear resistor
US5203915A (en) Passivating coating for metal oxide varistors
JPH08172002A (en) Manufacture of voltage nonlinear resistor
CA1043587A (en) Electrical resistor glaze composition and resistor
US5387559A (en) Resistive paste
JP2692210B2 (en) Zinc oxide varistor
JP2688382B2 (en) Inspection method of zinc oxide arrester
JP2001052907A (en) Ceramic element and manufacturing method
CA1177550A (en) Resistance material, resistor and method of making the same
JPH038765A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
CA1065496A (en) Voltage dependent resistor and the manufacturing process
JPS5951724B2 (en) Ceramic voltage nonlinear resistor
JP2002305104A (en) Voltage nonlinear resistor and manufacturing method therefor
JPH038767A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees